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Abstract. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is
a modality which allows to investigate the white matter structure by
probing water molecule diffusion. A common way to model the diffusion
process is to consider a second-order tensor, represented by a symmet-
ric positive-definite matrix. Currently, there is still no consensus on the
most appropriate manifold for handling diffusion tensors. We propose to
evaluate the influence of considering an Euclidean, a Log-Euclidean or a
Riemannian manifold for conducting group comparison in DT-MRI. To
this end, we consider a multi-linear regression problem that is solved on
each of these manifolds. Statistical analysis is then achieved by comput-
ing an F-statistic between two nested (restricted and full) models. Our
evaluation on simulated data suggests that the performance of these
manifolds varies with the kind of modifications that has to be detected,
while the experiments on real data do not exhibit significant difference
between the methods.

1 Introduction

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is a modality com-
monly used to investigate the cerebral white matter integrity. There is a great
need in the neuroscientific community for efficient tools to compare DT-MRI
across cohorts of subjects according to clinical or cognitive data. Most studies
focus on the comparison of scalar images derived from DT-MRI such as Frac-
tional Anisotropy (FA) or Mean Diffusivity (MD) using either the voxel-based
analysis framework [1] provided in SPM! or the tract-based spatial statistics
(TBSS) method [2] provided in FSL?. However, these methods do not exploit
all the information contained in tensor images and thus cannot detect all kind
of changes. Different statistical frameworks have been proposed to compare the
whole diffusion tensor information [3,4,5,6,7]. Only a few take into account co-
variates (e.g. age, sex, cognitive scores) [4,6,7]. A convenient way to introduce
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these covariates is to consider a linear model [4,6,7]. The regression estimation
can be done by considering different metrics to compute the residuals. In this
work, we propose to compare the influence of considering either an Euclidean,
a Log-Euclidean or a Riemanian metric in the regression problem. A few works
have already evaluated the impact of these metrics for various image processing
problems [8,9], but there is still no consensus on the most appropriate one, es-
pecially in the context of group comparison. To compare the influence of these
metrics, a simulation framework has been set up, based on DT-MRI acquisitions
of healthy subjects in which different kinds of lesions have been introduced. This
study has also been complemented by results on a cohort of patients suffering
from neuromyelitis optica (NMO).

2 Methods

2.1 Pre-processing

To conduct group studies at the voxel level, all images should first be registered
in a common space. This is done by registering all FA images derived from DT-
MRI on a common template using an affine followed by a non-rigid registration
method [10]. Spatial transforms estimated from FA images are then applied on
tensor images using the Preservation of Principal Direction (PPD) reorientation
strategy.

2.2 Multi-linear Regression

Let M be a manifold and {y;}ic1..n) € M the observations from N individu-
als, each individual being characterized by K explanatory variables {x; ; } jEL..K]
such as age, gender or group affiliation. The regression problem consists in esti-
mating a function f : R¥ ~— M that best fits all the couples ({z;1 ... 2i Kk },¥i)-
A simple parametric model is to consider a multi-linear function:

Yi =a+ iz + Baxio + -+ BrTik + € (1)

where « is the intercept, §; are the regression coefficients and ¢; are the residuals.

Case of Scalar Observations. If y; are scalar observations (i.e., M C R),
this regression problem amounts to the general linear model commonly used to
perform voxelwise group comparison on scalar images derived from DT-MRI [1].
Let Y =[y1...yi. ..yN]t, X[i,jl=x;;and B=[B1...5;. BK]t If the resid-
uals ¢; are assumed to be independent and identically distributed according to
a normal distribution, then the least squares estimate of B can be obtained
analytically:

B=arg min |[Y — XB|? = (X'X)"'XtY (2)

BeRK

To extend this framework to tensors images, several strategies can be imple-
mented depending on the assumption made on the manifold M.
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Euclidean Framework. A diffusion tensor can be represented by D! =
D%, D., D, D D, D.]" e RS The previous regression problem can
straightforwardly be extended to the multivariate case by assuming the noise
variance on each tensor element to be identical (homoscedasticity assump-
tion) [7]. This method will be referred in the sequel as General Linear Model for
Diffusion Tensors (GLM-DT).

The basic idea is to concatenate all tensor components of the N individuals in
a single vector Y € RSN For each explanatory variable, six regressors are esti-
mated, one associated with each tensor component. This is done by constructing
a new design matrix X [i,j] = x;;, for ¢ = 1...N x6 and j = 1...K X 6,
where each explanatory variable is replicated in six columns: the first column is
composed of the values of the explanatory variable for the entries corresponding
to the first tensor components D’ and of zeros for the others entries, and so on
for the five others columns. With that formulation, the least squares estimate of
B has also a closed-form solution and leads to the estimation of K regressors of
six components [7].

Log-Euclidean Framework. The Euclidean framework does not take into
account that diffusion tensors are symetric positive-definite matrices, i.e. M =
Sym™(3), which is in fact only a subset of R®. Consequently, the estimated
regression can possibly map some sets of explanatory variables to vectors that do
not correspond to positive-definite matrices. A way to circumvent this limitation
is to conduct the regression on the logarithm of tensors instead on the tensors
directly. Indeed, the logarithmic transformation enables to map the space of
symmetric positive-definite matrices Sym™ (3) to the space of symmetric matrices
Sym(3). Thus, the same framework as in [7] can be used for the regression
estimation. The corresponding regression model is then given by:

Y =exp(XB+¢) (3)

where exp(-) stands for the matrix exponential. This method will be referred as
General Linear Model for Diffusion Log-Tensors (GLM-LOG-DT).

Riemannian Framework. Recently, a multiple geodesic regression model
based on Riemannian geometry has been proposed [6]. This framework enables
to account for the positive-definite nature of diffusion tensors. The corresponding
regression model is given by:

N
yi = Bxp(Exp(a, Y Fzi ), ) (4)
j=1

where Exp refers to the exponential map. The regressors 5 and the intercept «
are simultaneoustly estimated using a gradient descent scheme ‘5)\}/ minimizing
the distance between the data y; and the estimate §; = Exp(a, >_;_; #/2;,5). To
this end, the following geodesic distance is used:

d(yi, i) = \/(Log(yu@i)v Log(yi, Ui))y: (5)
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Fig. 1. Representation of the four kinds of lesions. The green and the red tensors
represent respectively the initial tensor and the modified tensor.

The implementation of this method has been made available on
https://www.nitrc.org/projects/riem_mglm This method will be referred
in the sequel as Manifold General Linear Model for Diffusion (MGLM).

2.3 Statistical Test

The objective of the statistical test is to evaluate whether a given explanatory
variable has a significant contribution in the regression model. To this end, an F-
test is used to compare the Residuals Sum of Squares (RSS) of two nested models:
a full model taking into account all the covariates (RSS2) and a restricted model
where the covariate of interest is discarded (RSS;):

RSS1—RSS>
Pl ©
N—p2

with py and p; representing respectively the number of covariates for both mod-
els. Assuming that the residuals follow a normal distribution, F' follows a Fisher
distribution with ps —p; and N —py degrees of freedom under the null hypothesis
that model 2 does not provide a significantly better fit than model 1. The Gaus-
sianity assumption of the residuals is a reasonable hypothesis for the Euclidean
and Log-Euclidean frameworks, but it is no longer valid for the Riemannian
framework. Permutations may be used to obtain corresponding p-values in the
latter case [6], but it was not done in this work because of prohibitive computa-
tional time.

3 Validation Framework

The Euclidean, the Log-Euclidean and the Riemannian frameworks are compared
on both simulated and real data. All DT-MRI images were acquired on a 1.5T
Siemens scanner with 30 encoding gradients (b-value of 1000 s/mm?) and two
baseline images (i.e., b-value of 0 s/mm?). The image dimensions are 128 x 128 x

41 and the spatial resolution is 1.8 x 1.8 x 3.5 mm?3.
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Fig.2. Area under the ROC curve (AUC) wvs lesion amplitude (a) (Legend:
, A = GLM-LOG-DT, B = MGLM)

3.1 Synthetic Data

A set of 11 images with simulated lesions in the corpus callosum (CC) are gen-
erated from the DT-MRI acquisitions of 11 healthy subjects. We focused on the
CC since it consists of a single direction white matter tract, where the tensor
assumption holds. These simulated images, considered in the experiments as the
patient group, are compared with the group of 11 images of healthy subjects, in-
troducing age, gender, and group affiliation as covariates. For the statistical test,
the group affiliation is discarded in the restricted model. Four kinds of lesions
are simulated: mean and radial diffusion augmentation, longitudinal diffusion
diminution and diffusion orientation modification. A parameter « € [0 : 0.9]
controls the amplitude of the simulated lesions (Fig.1). An image is generated
for each a and each kind of lesions, leading to 4 x 19 = 76 groups of 11 patients
images. The three first kind of lesion are consistent with real case scenarios [11].
The last one is rather a toy example, since a realistic diffusion orientation mod-
ification would imply the deflection of the whole trajectory of a fiber bundle.

Methods are compared using ROC analysis, which allows to compare the
statistical maps with the ground truth for various statistical thresholds. The
area under the ROC curve (AUC) is computed for each experiment. An AUC of
50% corresponds to a random detection and 100% to a perfect detection. AUCs
are plotted with respect to the lesions amplitude « for each kind of simulated
lesion (Fig. 2). This way, it is possible to assess the performance of each method
for major changes as well as smaller ones and for different types of lesions.

3.2 Neuromyelitis Optica Cohort

The Neuromyelitis Optica (NMO) is an inflammatory disease characterized by
alterations of the normal-appearing white matter in relation to several disor-
ders [12]. A group of 34 patients suffering from NMO are compared to a group
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Fig. 3. Results obtained for the three methods on the comparison of NMO patients
(n = 34) to healthy subjects (n = 22). The statistical thresholds have been chosen to
detect the 5% most significant voxels within the white matter mask for each method.
Clusters of less than 10 voxels are discarded.

of 22 healthy subjects by considering age, gender, and group affiliation as covari-
ates. For the statistical test, the group affiliation is discarded in the restricted
model. Since the F-statistic maps may not follow the same distribution for the
three methods, they cannot be compared by using the same statistical thresh-
old. To obtain comparable detection maps, the threshold is adjusted for each
method to obtain the same number of detected voxels within the white matter
mask for each method. To compare the similarity of the detection maps obtained
by two methods, the Dice coefficient is computed. This is done for a wide range
of thresholds (adjusted for each method) in order to compare the behavior of
the three methods for different levels of sensitivity (Fig. 4).

4 Results

4.1 Results on Synthetic Data

The results on simulated data are summed up in Fig. 2. They highlight that the
performance of the methods varies with the kind of simulated changes. On one
hand, the GLM-DT outperforms the two other methods for detecting a mean
diffusivity augmentation and a longitudinal diffusion diminution. On the other
hand, the GLM-LOG-DT and the MGLM exhibit better results for detecting
an augmentation of the radial diffusion. Notice that all the three methods show
similar performance for detecting modifications of orientation. Finally, it has to
be pointed out that the Log-Fuclidean and Riemannian frameworks lead to very
close results.

4.2 Results on NMO Patients

Fig.3 shows the results obtained by the three methods for the comparison of
34 NMO patients to 22 healthy subjects. The statistical thresholds have been
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Fig. 4. Dice coefficient vs percentage of detected voxels in logarithmic scale (Legend:
, A=GLM-DT / GLM-LOG-DT, @ = MGLM / GLM-DT)

chosen to detect the 5% most significant voxels within the white matter mask for
each method. Visually, all three methods lead to very close results, which does
not allow us to assert that one method outperforms the others. They succeed
to detect the regions involved in the NMO pathology [12]: the visual cortex, the
corticospinal tract and the CC that are respectively related to the visual, motor
and cognitive disorders induced by the pathology. To strengthen the claim that
there is no significant difference between the methods on these data, the Dice
coefficient for the three couples are presented in Fig. 4 for several statistical
thresholds. It shows a good agreement between the methods, with a Dice co-
efficient always greater than 70%. The best agreement is obtained between the
GLM-LOG-DT and MGLM frameworks (Dice coefficient greater than 90%),
which is in accordance with the conclusion on simulated data.

5 Conclusion and Discussion

In this paper, the Euclidean, the Log-Euclidean and a Riemannian framework
have been compared in the context of a DT-MRI group comparison. The ex-
perimental results on simulated lesions highlight that all methods can efficiently
detect the four kinds of lesions, with performance varying for each framework
according to the kind of simulated lesions. The results on the real database con-
firm the good ability of the three methods to detect the regions affected by the
NMO, without exhibiting any significant difference between the detection maps.
Typical computation time on a standard workstation is about 2 min for the Eu-
clidean and Log-Euclidean approaches as compared to more than 80 hours for
the Riemannian framework on the real database with the provided implemanta-
tion. This time gap may probably be reduced by optimizing the implementation
of the Riemannian framework, for instance by rewriting the matlab code in C++
language. But in any case, the Riemannian framework would still be much more
computationally intensive than the Euclidean and Log-Euclidean approaches. In
conclusion, this study suggests that, despite the mathematical elegance offered
by the Riemannian framework, its superiority on both simulated and real clinical
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data could not be demonstrated compared to the Euclidean and Log-Euclidean
frameworks. For a similar performance, these two latter methods present the
advantage to be easily implementable and computationally effective. Bearing in
mind the limitation of tensors to model crossing fibers, we plan to investigate
more complex diffusion models.
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