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Abstract. Harmonizing diffusion MRI (dMRI) images across multiple
sites is imperative for joint analysis of the data to significantly increase the
sample size and statistical power of neuroimaging studies. In this work,
we develop a method to harmonize diffusion MRI data across multiple
sites and scanners that incorporates two main novelties: i) we take into
account the spatial variability of the signal (for different sites) in different
parts of the brain as opposed to existing methods, which consider one lin-
ear statistical covariate for the entire brain; ii) our method is model-free,
in that no a-priori model of diffusion (e.g., tensor, compartmental mod-
els, etc.) is assumed and the signal itself is corrected for scanner related
differences. We use spherical harmonic basis functions to represent the
signal and compute several rotation invariant features, which are used
to estimate a regionally specific linear mapping between signal from dif-
ferent sites (and scanners). We validate our method on diffusion data
acquired from four different sites (including two GE and two Siemens
scanners) on a group of healthy subjects. Diffusion measures such frac-
tional anisotropy, mean diffusivity and generalized fractional anisotropy
are compared across multiple sites before and after the mapping. Our
experimental results demonstrate that, for identical acquisition protocol
across sites, scanner-specific differences can be accurately removed using
the proposed method.

1 Introduction

Multi-site diffusion imaging studies are increasingly being used to study sev-
eral disorders such, Alzheimer’s disease, Huntington’s disease, schizophrenia
etc. However, intra-site variability in the acquired data sets poses a potential
problem for joint analysis of diffusion MRI data [1,2]. Thus, aggregating data
sets from different sites is challenging due to the inherent differences in the
acquired images from different scanners. Although the inter-site variability of
neuroanatomical measurements can be minimized by acquiring images using
similar type of scanners (same vendor and version) with similar pulse sequence
parameters and same field strength [3], many recent studies have shown that
there still exist large differences between diffusion measurements from differ-
ent sites [4]. This inter-site variability in the measurements can come from sev-
eral sources, e.g., subject physiological motion, number of head coils used for
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measurement (16 or 32 channel head coil), imaging gradient non-linearity as
well as scanner related factors [5]. This can cause non-linear changes in the im-
ages acquired as well as the estimated diffusion measures such as fractional
anisotropy (FA) and mean diffusivity (MD). Inter-site variability in FA can be
upto 5% in major white matter tracts and between 10-15% in gray matter ar-
eas [1]. On the other hand, FA differences in diseases such as schizophrenia are
often of the order of 5%. Thus, harmonizing data across sites is imperative for
joint analysis of the data.

Broadly, there are two approaches used to combine data sets from multiple
sites. One approach is to perform the analysis at each site separately, followed
by a meta-analysis as in [6]. Another standard practice is to use a statistical
covariate to account for signal changes that are scanner-specific [7]. The first
approach (meta-analysis) does not allow for a “true” joint analysis of the data,
while the second method requires the use of a statistical covariate for each dif-
fusion measure analyzed. Further, the latter method is inadequate to analyze
results from tractography where tracts travel between distant regions. For ex-
ample, in the cortico-spinal tract, scanner related differences in the brain stem
might be quite different from those in the cortical motor region. Thus, using
a single statistical covariate for the entire tract may produce false positive or
false negative results. Consequently, region-specific scanner differences should
be taken into account for such type of analyses. Another alternative is to add
a statistical covariate at each voxel in a voxel based analysis method, however,
such methods are susceptible to registration errors.

2  Our Contributions

In this work, we propose a novel scheme to harmonize diffusion MRI data from
multiple scanners, taking into account the brain region-specific difference in the
acquired signal from different scanners. Our method harmonizes the acquired
signal at each site compared to a reference site using several rotation invariant
spherical harmonic (RISH) features. A region specific linear mapping is pro-
posed between the rotation invariant features to remove scanner specific differ-
ences in the white matter between a group of age-matched subjects at each site.
The method uses model-free SH features' and thus is independent of any mod-
eling assumptions, making it useful to be used for any type of future analysis
(e.g., using single or multi-compartment models). To the best of our knowl-
edge, this is a first work that has explicitly addressed the issue of dMRI data
harmonization without the use of statistical covariates. Since the mapping is
obtained from a set of healthy controls, it will not alter the signal due to dis-
ease or pathology, while ensuring that we do not directly modify model-based
diffusion features such as FA, which are used in population studies [6].

Note that spherical harmonics is a non-parametric basis and does not assume any par-
ticular model of diffusion as in the case of single tensor, or multi-compartment models
(nothing a-priori is assumed about the diffusion process in terms of the compartments
or number of fiber bundles).
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Fig.1. Outline of the proposed method for inter-site dMRI data harmonization
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3 Method

Figure 1 shows an outline of the proposed dMRI data harmonization method.
Our goal is to map the dMRI data from a target site to an arbitrarily chosen
reference site. We start by computing a set of rotation invariant spherical har-
monic (RISH) features from the estimated SH coefficients. A region-specific lin-
ear mapping between the RISH features is then computed to map the dMRI
data from target site to the reference site. Next, a secondary mapping is com-
puted that appropriately updates each of the SH coefficients at each voxel in the
brain. From the mapped SH coefficients, the mapped diffusion signal is com-
puted at the desired set of gradient directions for each subject in the target site.

3.1 Diffusion MRI and RISH Features

Let S = [s1...5g]T represent the dIMRI signal along G unique gradient directions.
In the spherical harmonic (SH) basis, the signal S can be written as [8]: S ~
Y.i ¥ CijYij, where Y;; is a SH basis function of order i and phase j and C;; are the
corresponding SH coefficients. It is well-known that the “energy” or L, norm
of the SH coefficients for each order forms a set of rotation invariant (RISH)

features [9]:
2i+1

1G> = Y (Ci)*. (1)

j=1
One can think of the RISH features ||C;||? as being the total energy at a particular

frequency (order) in the SH space. Given the RISH features for Nj subjects for
the k" site (the target site), we compute the expected value as the sample mean:

Ni
Ex([ICil2) = Y. [1Ci(m) %)/ N 2
n=1
In this work, we computed the RISH features for order {O, 2,4, 6} and ignored
the higher order terms as they are the high frequency terms primarily captur-
ing noise in the data. However, if required, the proposed methodology is quite
general and can be extended to SH of any order.

3.2 Mapping RISH Features Between Sites

Figure 2 shows the RISH features of different orders computed for each site
as well as for different anatomical regions of the brain. In particular, we used
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Fig. 2. RISH features in the white matter for different SH orders and sites.

Freesurfer [10] software to parcellate the brain into different regions and subse-
quently grouped them into the following anatomical regions for each
hemisphere: frontal, parietal, temporal, occipital, brain stem, cerebellum, the
cingulate-corpus-callosum complex and centrumsemiovale-insula. For each of
these white matter regions and for each site, we computed the sample aver-
age Ex(-) (Eq. 2) of the RISH features shown in Figure 2. Clearly, these features
vary significantly between sites as well as for different regions, showing that a
regionally specific mapping is required to ensure proper harmonization of the
diffusion data.

Given two groups of subjects that are matched for age, gender, handedness
and socio-economic status, we expect that at a group level, they will have simi-
lar diffusion profiles and hence none of the RISH features should be statistically
different between any two sites (or scanners). In other words, the diffusion mea-
sures between two groups of matched subjects (healthy) are statistically differ-
ent only due to scanner differences. Thus, our aim is to find a proper mapping
I1(-) for the RISH features such that all scanner related group differences be-
tween two sites are removed, i.e.,

Ex(I1([|Cil[*) = Ex(lICil1?), ©)

where 7 is the reference site and k is the target site. Any difference in the sample
mean for the two sites (or scanners) k and r can be computed as the difference
AE = E, — [Ei. By linearity of the expectation operator, the mapping for each
subject n is given by:

([ICi(m)[1%) = [ICi(m) > + Er — By @

Note that, this mapping I1(-) only gives the amount of shift required to re-
move any scanner specific “group” differences. Thus, this mapping is only at
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the population level and a separate mapping is required that will change the
individual SH coefficient at each voxel such that equation Eq. 4 is satisfied . We
should also note that the mapping Il(-) is different for different RISH features
even for the same ROL. For a subject 1, we have the following map:

2i+1 2i+1
T([|ICi(n)[1%) = 21 (Cij(n)?) = ||Ci(n)||> + AE = 21 Cij(n)*> + AE. (5
= j=

We extend this mapping to each voxel in an ROIL by uniformly changing the
SH coefficients at each voxel v (we do not include the voxel indexing in our
equations to keep the notation simple). There are two possible ways to obtain
a mapping 7t(-) for each SH coefficient C;;. One possibility is to use 7(C;j) =
Cij + ¢ (for all j) such that Eq. 5 is satisfied. However, this would entail adding
a positive or negative constant J to all coefficients (i.e. shifting the coefficients),
which could potentially lead to a change in sign for coefficients that are smaller
than J. The effect of such a “shifting” operation is shown in Figure 3 (b), where
the sign of some of the coefficients was changed by adding a small constant J.
This leads to a change in orientation and shape of the signal, which is erroneous
and undesirable.

A better mapping 77(+) is to uniformly scale all the SH coefficients (belonging
to a given SH order) so that Eq. 5 is satisfied. Such a mapping is given by:

(i (n) )
m(Cj) = (Cyj, where: “”:\/ ICimlE ©

Such scaling only changes the ”size” of the signal and not its orientation, as seen
in Figure 3 and as shown via experiments in the results section. The harmonized
diffusion signal at each voxel v of a given ROI (for each subject 1) is then com-
puted using the mapped coefficients using 5(v, n) = ¥; ¥ (Cij(v,n))Y;j. Such
a unique mapping is computed for each ROI and each subject in the target site.

“» @ o

(a) Original Signal (b) Shift (c) Scale

Fig. 3. Effect of using different mapping functions 7 - shift vs scale. (a) Original dMRI
signal. (b) 7r used as a shift map, (c) Estimated signal with 77 as a scaling map (Eq. 6).

4 Results

We used our method on data set acquired from 4 different sites and scanners;
see Table 1 for details about each scanner as well as the number of subjects from
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each site. Nearly identical dMRI scan protocol was used at each site with the
following acquisition parameters: spatial resolution of 2 x 2 x 2mm?, maximum
b-value of b = 900s/mm? and TE/TR = 87/10000 ms. For the GE sites, the
data was acquired with a 5/8 partial Fourier encoding, while the Siemens used
6/8 partial Fourier acquisition. Subjects at each site were age-matched to the
group at the reference site.

Table 1. Scanner details and subject numbers for each site.

Site# Manufacturer Field strength Model Software version # of channels # of subjects # of directions
1 GE 3T MR750 20xM4 8 10 86
2 GE 3T MR750 M4 8 6 86
3 Siemens 3T Tim Trio (102x32) vb17 12 14 87

Ref. Siemens 3T Tim Trio (102x18) VB15 12 10 87

An appropriate mapping was computed for each of the ROIs (obtained from
Freesurfer) in each hemisphere of the brain as defined earlier. We tested our
method by computing the p-value for the RISH features as well as standard diffu-
sion measures. For each ROI, we computed if the RISH features were statistically
different between the reference site and each of the target sites (site #1, #2, #3)
and then used the algorithm described above to obtain the mapped signal. Due
to space limitations, we have not provided the p-values for the RISH features
in this paper, but all statistical differences were removed after the mapping. We
also extensively tested our method on diffusion features that were not explicitly
used in the mapping procedure, such as MD, FA, GFA and tensor orientation.

Table 2. P-values before and after mapping for MD, FA, GFA for different sites and ROIs.

MD FA GFA

Site#1 Site#2 Site#3 Site#1 Site#2 Site#3 Site#1 Site#2 Site#3
Before After Before After Before After Before After Before After Before After Before After Before After Before After
IFrontal 24e-06 1 1.7e-08 1 1.6e-07 1 045 054 2.8e-02 043 021 093 6.0e-16 04 69e-03 0.62 2.6e-08 0.49
IParietal 6.5e-08 1 2.5e-07 1 1.1e-07 1 1.0e-04 0.25 7.8e-04 0.27 1.5e-03 0.41 1.5e-08 0.77 6.3e-02 0.53 1.1e-09 0.66
ITemporal 5.4e-09 1 3.3e-08 1 54e-08 1 018 047 3.9e-02 095 6.4e-02 071 3.8e-09 0.75 5.6e-02 0.84 4.2e-08 073
1Occipital 7.1e-06 1 22e-02 1 8.7e-07 1 64e-02 081 2.7e-02 076 3.3e-02 081 2.8e-08 093 082 085 1.6e-06 097
ICentrumSemi. 1.5e-10 1  8.9e-08 1 2.0e-08 1 4.7e-03 0.62 1.3e-05 0.90 1.3e-02 093 2.2e-12 093 042 0.7 7.8e-09 0.74
ICerebellum 5.6e-07 1  8.6e-05 1 1.7e-07 1 079 034 077 072 33e-02 073 7.5e-09 0.86 6.4e-02 086 1.1e-07 092
rFrontal 4.8e-06 1 1.7e-08 1 58e-10 1 019 061 8.6e-02 039 013 0.18 4.0e-09 0.89 1.4e-03 0.71 1.0e-09 0.23
rParietal 1.6e-06 1 2le-06 1 1.8e-07 1 2.8e-02 051 1.4e-03 0.84 7.7¢-02 054 1.8e-07 091 02 094 4.5e-09 0.62
rTemporal 1.4e-06 1 7.4e-05 1 1.6e-06 1 055 039 9.6e-03 0.77 0.63 0.65 4.4e-08 0.86 7.5e-02 0.96 5.9e-08 0.62
rOccipital 5.5e-05 1 13e-02 1 3.0e-02 1 9.6e-02 091 12e-02 0.83 038 081 5.0e-07 0.89 7.4e-02 075 4.2e-09 0.71
rCentrumSemi. 8.7e-13 1 7.0e-09 1 3.7e-10 1 8.5e-04 0.98 8.8e-04 0.83 22e-03 0.78 6.4e-10 0.68 025 0.61 5.5e-06 0.50
rCerebellum 1.3e-06 1 4.9e-04 1 0.11 1 027 059 079 087 85e-04 095 51e-08 098 0.10 091 1.8e-08 0.90
BrainStem 5.6e-10 1  74e-06 1 1.2e-05 1 24e-04 067 7.6e-04 099 049 080 2.2e-06 065 022 088 4.0e-08 0.64

Table 2 gives the p-values for each of the ROIs (nomenclature — 1Frontal is
left-frontal and rFrontal is right-frontal lobe) before and after the harmonization
of the data. Notice that MD was statistically different for almost all regions and
sites as compared to the reference site, but these differences were completely
removed. The p-value after mapping is almost 1 in this case following Eq. 6 and
the fact that MD is directly proportional to the IL, norm of the SH coefficients.
All statistical group differences between FA and GFA are also removed for each
of the sites.

We also ran a TBSS study [11] for the FA values for each of the sites. Figure 4
shows widespread group differences between the subjects from the reference
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(a) Before (b) After

Fig. 4. TBSS results for site #1 before (a) and after (b) applying our method. The yellow-
red colormap displays p-values less than 0.05. Only white matter regions were used
in this work, and sub-cortical gray matter regions were not harmonized resulting in a
statistical group difference in that region in (b).

site (Siemens scanner) and site #1 (GE scanner). After data harmonization, most
white matter group differences were removed confirming the results seen in
Table 2. However, group differences in the sub-cortical regions are still seen, as
that region was not “harmonized” or mapped for scanner differences. Extend-
ing the current methodology to gray matter and sub-cortical region is part of
our future work.

We also compared the average error in degrees in the orientation of the fibers
(estimated using the single tensor model and SH-based orientation distribu-
tion function (ODF)) at each voxel, before and after the mapping. For the ten-
sor based model, the average change in orientation at each voxel was always
less that 1° resulting in the following average whole brain change in orienta-
tion for each site 0.7606 + 0.1250°, 0.1400 £ 0.0830° and 0.7259 + 0.2180°, re-
spectively. Change in orientations estimated from the discretized ODF’s were
0.24e-5°,0.17e-5° and 0.26e-5°, respectively for each site. We also computed the
coefficient of variation (CV) in FA [1] for each site before and after the harmo-
nization procedure (CV, before: 0.0321 £ 0.0121,0.0285 £ 0.0137,0.0579 £ 0.0097
and after 0.0315 & 0.0114, 0.0272 & 0.0142, 0.0595 & 0.0128 respectively). Thus
the within site CV did not change much after the mapping.

5 Conclusion and Limitations

In this work, we proposed a novel method that allows to harmonize the dMRI
signal from different sites in a region-specific, subject-dependent manner, while
maintaining the inter-subject variability at each site but removing scanner spe-
cific differences in the signal. Once such a mapping is computed from healthy
subjects, it can then be used to map another cohort of diseased subjects without
altering the signal due to disease or pathology. The proposed method is model
independent and directly maps the signal to the reference site. The method can
be of great use to aggregate data from multiple sites and making it feasible to
do joint analysis of a large sample of data. We should note that, to the best of
our knowledge, this is a first work that has explicitly addressed the issue of
dMRI data harmonization without the use of statistical covariates.
Nevertheless, the proposed method has some limitations that we note: 1). It is
dependent on the accuracy of Freesurfer segmentations, 2). It is possible that the
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ROIs used in this work are too large to remove local scanner-specific differences.
One way to address this concern is to test if any sub-region within an ROI is still
statistically different between two sites and subsequently obtain a separate map-
ping for such “smaller ROIs”. In this work, we did not harmonize gray matter
and sub-cortical structures, however, the proposed method is general enough
to be applied to these areas of the brain as well. Our future work will involve
ways to address all these limitations. Further, the proposed method can be used
to separately harmonize each b-value shell for multi-shell diffusion data.
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