
Quantifying Microstructure

in Fiber Crossings with Diffusional Kurtosis

Michael Ankele and Thomas Schultz

University of Bonn, Germany�

Abstract. Diffusional Kurtosis Imaging (DKI) is able to capture non-
Gaussian diffusion and has become a popular complement to the more
traditional Diffusion Tensor Imaging (DTI). In this paper, we demon-
strate how strongly the presence of fiber crossings and the exact cross-
ing angle affect measures from diffusional kurtosis, limiting their inter-
pretability as indicators of tissue microstructure. We alleviate this lim-
itation by modeling fiber crossings with a mixture of cylindrically sym-
metric kurtosis models. Based on results on simulated and on real-world
data, we conclude that explicitly including crossing geometry in kurtosis
models leads to parameters that are more specific to other aspects of
tissue microstructure, such as scale and homogeneity.

1 Introduction

Diffusional Kurtosis Imaging (DKI) is a natural and popular extension of Dif-
fusion Tensor Imaging (DTI) that accounts for the empirically observed non-
Gaussianity of diffusion in biological tissue. Measures of diffusional kurtosis are
known to be affected by factors such as the scale and homogeneity of obstacles
to the molecular motion [4], and therefore provide useful information on tissue
microstructure, complementing the information captured in the diffusion tensor.

Many studies of white matter are motivated by an interest in structural pa-
rameters, such as nerve fiber density or myelination. They use diffusion MRI
because it provides quantities that are affected by such factors, and that are
easy and safe to obtain in vivo. A known limitation of diffusion tensor imaging
is the fact that measures such as fractional anisotropy are sensitive, but not
specific to those parameters of interest: The effect of confounding factors, such
as the presence of orientational dispersion or fiber crossings, can be substantial.

In Section 3 of this paper, we discuss an analogous limitation in DKI: We show
that common measures of diffusional kurtosis are not specific to microstructural
parameters of individual fibers, but are heavily affected by the presence, and the
exact angle, of fiber crossings. This motivates development of a novel computa-
tional method in Section 4, in which the impact of those nuisance parameters is
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greatly reduced. Its building block is a cylindrically symmetric kurtosis model.
In Section 5, we present results on simulated data, confirming that our newly
derived kurtosis measures are affected far less by the crossing angle than re-
sults of traditional DKI. We also show parameter maps that demonstrate the
effectiveness of our method on real data.

2 Related Work

Several recent works have aimed to reduce the effects of fiber crossings and
orientational dispersion on quantitative markers from diffusion MRI. NODDI
disentangles the effects of neurite orientation dispersion and density, but does not
model fiber crossings [16]. Spherical deconvolution can be used to quantify fiber
properties in a way that is robust to fiber crossings, either by analyzing the fiber
orientation distribution function after using a fixed deconvolution kernel [8,2],
or by calibrating the kernel itself [10]. Finally, estimation of per-compartment
diffusion parameters can be integrated into crossing-fiber tractography [6,9].

Our work is most closely related to a series of approaches that have fitted
multiple diffusion tensors [15,5,13]. However, none of them model diffusional
kurtosis. We demonstrate how fiber crossings affect kurtosis measures and pro-
pose novel kurtosis measures whose sensitivity to crossings is greatly reduced.

3 How Fiber Crossings Affect Diffusional Kurtosis

It is well-known that fiber crossings strongly affect measures derived from the
diffusion tensor model, such as Fractional Anisotropy (FA). It is unsurprising
that the same is true for measures of diffusional kurtosis. Our first goal is to
systematically demonstrate the exact extent of this dependence.

We have synthesized crossings with varying crossing angles between 0 and
90 degrees, and created plots of how diffusional kurtosis depends on it. Signal
synthesis was performed in a data-driven manner from a subject from the Human
Connectome Project (288 DWIs on shells at b ≈ {5, 1000, 2000, 3000} s/mm2). It
is based on 300 voxels thought to contain a single dominant fiber compartment,
given as the voxels with highest FA within a white matter mask. The DKI
model was fit to the data, and model parameters were analytically rotated by
the desired crossing angle. Diffusion-weighted signals were computed from the
original and rotated model, and averaged. This simulates two fiber compartments
that cross at a known angle, with no significant exchange within the diffusion
time. Since we use the full DKI model, it does not impose cylindrical symmetry.

We performed a constrained least squares fit of the diffusional kurtosis model
to the simulated data [12]. Fig. 1 plots mean and one standard deviation of
the resulting mean, axial, and radial kurtosis, over the 300 voxels used to sim-
ulate the crossings. The plots in the top row show that the dependence on the
crossing angle is substantial: Compared to the baseline (value for a single fiber
compartment, indicated by a green line), the crossing changes radial kurtosis by
a factor of up to 4.23, and axial kurtosis up to 5.65. A very similar dependence
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Fig. 1. Top: The angle at which fibers cross has a severe impact on the parameters
of DKI. Bottom: The proposed model reduces effects of crossing geometry, leading to
biomarkers that more specifically quantify microstructure properties.

is observed for axial and radial diffusivities (not shown). Studies that aim to use
kurtosis to specifically quantify microstructure properties, without confounding
effects from crossings, should be aware of this problem. We will now introduce
a method to compute novel kurtosis measures, shown in the lower row of Fig. 1,
that are less susceptible to the undesired impact of crossing geometry.

4 A Mixture of Kurtosis Models

The general strategy of our method is to fit a mixture of kurtosis models to fiber
crossings. In effect, this adds kurtosis to previous methods that have modeled
fiber crossings using multiple diffusion tensors.

4.1 A Cylindrically Symmetric Kurtosis Model

The full kurtosis model has six parameters for the diffusion tensor, plus 15 for the
kurtosis tensor. This seems prohibitive for fitting a mixture. We thus constrain
the kurtosis models that will represent the individual fiber compartments in our
mixture to be cylindrically symmetric around the principal diffusion direction.

The same symmetry is frequently assumed in multi-tensor models [15,5]. It
reduces the 21 parameters in the full kurtosis model to only 7: Two angles
that parameterize a unit vector v indicating the fiber direction, axial and radial
diffusivities (λ‖, λ⊥), as well as three kurtosis-related parameters: In addition to
κ‖ and κ⊥, which are related to axial and radial kurtosis, the fact that kurtosis
is a fourth-order quantity introduced a third parameter κ�. The resulting signal
equation as a function of gradient direction g and b value is
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(1)

To simplify Eq. (1), κ∗ absorb the square of the mean diffusivity λ̄ = (λ‖ +
2λ⊥)/3 that usually occurs as a factor in diffusional kurtosis. This means that
axial and radial kurtosis K∗ can be computed from our parameters as

K‖ =
κ‖
λ2
‖

and K⊥ =
κ⊥
λ2
⊥
. (2)

Assuming that the fiber is oriented along the z axis, our model parameters
translate to a standard kurtosis tensor via

Wxxxx = Wyyyy = 3Wxxyy =
κ⊥
λ̄
2 , Wxxzz = Wyyzz =

κ�
6 λ̄

2 , Wzzzz =
κ‖
λ̄
2 . (3)

This allows computation of mean kurtosis MK using the equations given in [12].
Wehave used theBayesian InformationCriterion (BIC) to compare our cylindri-

cally symmetric model with two variants, one with a ball compartment, the other
one with a dot compartment [7], and with the full kurtosis model. Ranking them
with respect to their BIC preferred “symmetric+dot” in 96.3% of all cases, “sym-
metric” in 3.0%, the full kurtosis model in 0.7%, and “symmetric+ball” in 0%.
Therefore, we include a dot compartment in all our experiments.

4.2 Strategy for Fitting the Final Mixture

Our final signal equation results from using Eq. (1) to model each of k crossing
fiber compartments and adding the dot compartment:

S(g, b) = S0

[

fdot +

k∑

i=1

fiScyl(g, b;vi)

]

(4)

Volume fractions f∗ are constrained to be non-negative, and to add to one.
We ensure numerical stability in evaluating Eq. (2), and force vi to align with a
principal diffusion direction, by constraining λ⊥ ∈ [0.01λ‖, λ‖] and λ‖ > ε. We
also impose the same constraints on our kurtosis parameters as Tabesh et al.,
3/(bmaxλ) ≥ K ≥ 0 [12]. As in the widely used ball-and-stick model [1], the
diffusion and kurtosis parameters of all compartments are coupled. Trying to
obtain stable estimates without this constraint is a topic for future work.

Even though Eq. (4) is relatively straightforward conceptually, fitting it to
a given set of measurements amounts to a difficult non-convex optimization
problem. We have developed the following strategy for solving it: A suitable
initialization is obtained from a diffusion tensor fit, by setting λ‖ to the largest
eigenvalue and λ⊥ to the mean of the two smaller ones. Fiber volume fractions fi
and directions vi are initialized by discretizing an orientation distribution func-
tion from spherical deconvolution, as proposed in [11]. The kurtosis parameters
and fdot are initialized to zero.
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Table 1. Statistics on the difference between kurtosis estimates in simulated crossings
and the single fiber voxels from which they were generated quantify the extent to which
we reduce the impact of crossings. At low SNR, neither model gives useful results.

Kurtosis Tensor Model Our Kurtosis Mixture Model
SNR MK K‖ K⊥ MK K‖ K⊥
∞ −0.15± 0.17 −0.09± 0.22 −1.69± 1.60 −0.00± 0.07 0.02 ± 0.07 −0.20± 1.01
40 −0.15± 0.28 −0.09± 0.21 −1.75± 1.76 0.01 ± 0.31 0.02 ± 0.08 −0.14± 1.62
30 −0.15± 0.28 0.17± 0.38 −1.95± 1.36 0.16 ± 0.40 0.20 ± 0.50 −0.36± 1.48
20 −0.04± 0.45 0.35± 0.51 −1.89± 1.35 0.42 ± 0.84 0.52 ± 1.00 −0.27± 1.95
10 0.49± 1.18 0.83± 0.96 −1.43± 2.02 1.79 ± 5.05 1.61 ± 2.52 1.88± 14.90

The fitting itself is performed with constrained Levenberg-Marquardt opti-
mization. We found that it can be accelerated greatly by re-parametrizing diffu-
sivity and kurtosis parameters. The actual parameters visible to the optimizer
are ln(λ‖), λ⊥/λ‖, 1000κ‖/λ‖, 1000κ⊥/λ⊥, 1000κ�/λ‖. Moreover, we observed
that convergence benefits from splitting the parameters into two blocks, and al-
ternating between their optimization. The first block contains the volume frac-
tions and directions, which we parameterize using elevation and azimuth angles.
The second block optimizes diffusion and kurtosis. Despite these optimization,
processing a slice of 174× 145 voxels on 6 cores of a 3.4GHz i7 takes 6 minutes.

5 Results

5.1 Simulated Data

As an initial validation of our model and fitting procedure, we applied it to
the simulated data that was described in Section 3. The results are shown in the
bottom row of Fig. 1. They confirm that our crossing model succeeds in absorbing
a significant part of the variation in kurtosis measures which is otherwise caused
by crossing geometry. The results remain much closer to the baseline, which is
indicated by the green line. Note that differences between the baselines in both
rows are due to the presence of the dot compartment.

For a quantitative summary, we have taken the difference of kurtosis param-
eters estimated in the crossing by the two models, and a baseline, computed by
the same method from the single-fiber voxel that was used to simulate the fiber
crossing. Table 1 reports the mean and standard deviation of this difference over
all 300 voxels and all crossing angles. It confirms that our model greatly reduces
the impact of crossings, in particular in case of radial kurtosis. The relatively
low standard deviations indicate that fitting works reliably. Table 1 also shows
the results of adding Rician noise to the simulation, indicating that our fitting
starts to degrade around SNR ≈ 20. At this point, even values from the full
model start to exhibit a noticeable bias.

5.2 Real Data

In addition to the quantitative validation on simulated data, we have verified
that our model produces plausible results on real human brain scans by fitting
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(a) DKI (b) Our Model (c) CSD

Fig. 2. Our mixture of cylindrically symmetric kurtosis compartments (b) results in
principal fiber directions that agree well with constrained spherical deconvolution (c).
In contrast to the traditional kurtosis model (a), it leads to measures that disentangle
the effects of microstructure and crossing geometry.

it to data from the human connectome project. In each voxel, the BIC has been
used to select between models with a single, two, or three cylindrically symmetric
kurtosis compartments.

A detail of the result on a coronal slice, in the region where fibers from the
corpus callosum, corticospinal tract, and superior longitudinal fasciculus cross,
is visualized in Fig. 2 using superquadric glyphs [3] for the diffusion tensor part
of the kurtosis model. Glyphs have been scaled with the volume fraction of the
respective compartment, and color coded with directional kurtosis. In contrast to
the traditional kurtosis model in (a), directions of crossing fibers are immediately
apparent from our result (b).

A comparison to the widely used constrained spherical deconvolution model
[14], which we fitted to the subset of measurements with b ≈ 3000 s/mm2, is
shown in Fig. 2 (c). The agreement of principal fiber directions and relative vol-
ume fractions confirms that the individual kurtosis compartments in our model
successfully capture the dominant fiber populations in real crossings.

However, our main interest is in the kurtosis measures themselves, which are
mapped in the bottom row of Fig. 3 and compared to the corresponding ones
from standard kurtosis imaging in the top row. MK and K‖ are mapped with
range [0, 2]; K⊥ is mapped with range [0, 5]; FA is shown with range [0, 1].

Within the white matter, our model measures a much lower K‖ than the
classical DKI model, close to that of free diffusion. In gray matter, our K‖
remains high, providing a clear contrast between the two tissue types. This
correlates with the volume fraction of the dot compartment; after factoring it
out, MK is nearly uniform over the brain tissue (Fig. 3 (e)).

K⊥ and FA have been computed from the diffusion tensors of both models.
There is a clear visual similarity between structures in Fig. 3 (c) and (d), which
is much reduced in the corresponding Fig. 3 (g) and (h): While the FA from our
model remains high throughout the white matter (in agreement with the results
in [10]), confirming the reduced impact of fiber crossings, our radial kurtosis
still shows substantial variation, which reflects more subtle aspects of tissue
architecture. We believe that the similarity between Fig. 3 (c) and (d) is caused
by the fact that, in standard DKI, FA and K⊥ are both reduced in regions
of fiber crossings, and that factoring out the effect of crossings emphasizes the
information specific to diffusional kurtosis.
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(a) DKI MK (b) DKI K‖ (c) DKI K⊥ (d) DKI FA

(e) Our MK (f) Our K‖ (g) Our K⊥ (h) Our FA

Fig. 3. Differences in MK and K‖ between our model and standard DKI appear to
be due to including a dot compartment, while those in K⊥ and FA are more strongly
affected by the reduced impact of fiber crossings.

6 Conclusion

In this work, we have demonstrated how strongly measures from diffusional
kurtosis are affected by fiber crossings, which limits their interpretability as
indicators of tissue microstructure. To alleviate this, we have explicitly accounted
for crossings by adding a cylindrically symmetric kurtosis term to the popular
multi-tensor model. Results on simulated data confirm that the resulting model
remains tractable, and successfully disentangles the effects of crossings and per-
compartment tissue parameters.

In real data, the maps from our model differ significantly from standard dif-
fusional kurtosis imaging; we believe that they more specifically indicate factors
such as scale and homogeneity of tissue microstructure. As a next step, we plan
to use additional simulations and a systematic comparison to other MR-derived
quantities to gain more insight into the exact interpretation of these maps. We
also plan to use spatial regularization to achieve stable fitting on noisy data.
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