
Software Model Creation
with Multidimensional UML

Lukáš Gregorovič1, Ivan Polasek1(&), and Branislav Sobota2

1 Faculty of Informatics and Information Technologies Institute of Informatics
and Software Engineering, Slovak University of Technology in Bratislava,

Bratislava, Slovakia
{xgregorovic,ivan.polasek}@stuba.sk
2 Faculty of Electrical Engineering and Informatics,

Department of Computers and Informatics,
Technical University of Košice, Košice, Slovakia

branislav.sobota@tuke.sk

Abstract. The aim of the paper is to present the advantages of the Use Cases
transformation to the object layers and their visualization in 3D space to reduce
complexity. Our work moves selected UML diagram from two-dimensional to
multidimensional space for better visualization and readability of the structure or
behaviour.
Our general scope is to exploit layers for particular components or modules,

time and author versions, particular object types (GUI, Business services, DB
services, abstract domain classes, role and scenario classes), patterns and
anti-patterns in the structure, aspects in the particular layers for solving cross-
cutting concerns and anti-patterns, alternative and parallel scenarios, pessimistic,
optimistic and daily use scenarios.
We successfully apply force directed algorithm to create more convenient

automated class diagrams layout. In addition to this algorithm, we introduced
semantics by adding weight factor in force calculation process.

Keywords: 3D UML � Analysis and design � Sequence diagram � Class dia-
gram � Fruchterman-Reingold

1 Introduction

Increasing requirements and the complexity of designed systems need improvements in
visualization for better understanding of created models, for better collaboration of
designers and their teams in various departments and divisions, countries and time
zones in their cooperation creating models and whole applications together.

In software development, Unified Modeling Language (UML) is standardized and
widely used for creation of software models describing architecture and functionality of
created system [4].

There are many tools that allow creation of UML diagrams in 2D space. Mov-
ing UML diagrams from two-dimensional to three-dimensional space reduces com-
plexity and allows visualization of the large diagrams in modern three-dimensional

© IFIP International Federation for Information Processing 2015
I. Khalil et al. (Eds.): ICT-EurAsia 2015 and CONFENIS 2015, LNCS 9357, pp. 343–352, 2015.
DOI: 10.1007/978-3-319-24315-3_35

graphics to utilize benefits of the third dimension and achieves more readable schemas
of complex models to decompose structure to particular components, type layers, time
and author versions.

We need to decompose behaviour and functionality to particular scenarios of the
system, alternative and parallel flows, pessimistic, optimistic and daily use scenarios.

2 Related Work for 3D UML

There are some existing alternatives how to visualize UML diagrams in 3D space. Paul
McIntosh studied benefits of the 3D solution compared to traditional approaches in
UML diagrams visualization. Because of using combination of X3D (eXtensible 3D)
standard and UML diagrams, he named his solution X3D-UML [9]. X3D-UML dis-
plays state diagrams in movable hierarchical layers [3].

GEF3D [5] is a 3D framework based on Eclipse GEF (Graphical editing frame-
work) developed as Eclipse plugin. Using this framework, existing GEF-based 2D
editors can be easily embedded into 3D editors. GEF3D applications are often called
multi-editor. Main approach of this framework is to use third dimension for visuali-
zation connections between two-dimensional diagrams.

Another concept in field of 3D UML visualization is on virtual boxes [8]. Authors
placed diagrams onto sides of box allowing them to arrange inter-model connections
which are easily understandable by the other people. GEF3D does not allow users to
make modifications in displayed models. Due to fact that UML diagrams can be
complex and difficult to understand, geon diagrams [7] use different geometric prim-
itives (geons) for elements and relationships for better understanding [11].

3 Our Approach

Our method visualizes use case scenarios using UML sequence diagrams in separate
layers all at once in 3D space, transforms them to the object diagrams (again in separate
layers) and automatically create class diagram from these multiple object structures with
real associations between classes to complete structure of designed software application.

Sequence diagrams in 3D space of our prototype allow to analyse and study process
and complexity of the behaviour simultaneously and compare alternative or parallel
Use Case flows.

Identical elements in object diagrams have fixed positions for easy visual projection
to the automatically created class diagrams with classes derived from these objects.
Their relationships (associations) are inferred from the interactions in the sequence
diagrams and class methods are extracted from the required operation in the interac-
tions of these sequence diagrams.

3.1 Our Prototype

We have created our prototype as a standalone system in C++ language with Open
Source 3D Graphics Engine (OGRE) or OpenSceneGraph as an open source 3D

344 L. Gregorovič et al.

graphics application programming interface and high performance 3D graphics toolkit
for visual simulation, virtual reality, scientific visualization, and modeling.

For integrated development environment (IDE) we can use Eclipse or Microsoft
Visual Studio and build standalone system with import/export possibilities using XMI
format (XML Metadata Interchange) or plugin module to IBM Rational Software
Architect or Enterprise Architect.

Our prototype allows to distribute diagrams in separate layers arranged in 3D space
[10]. In this tool is possible to create UML class diagram, sequence diagram and
activity diagram in multidimensional space with 3D fragments [6].

Layers can be interconnected and diagrams can be distributed to the parts in these
separate layers to study interconnections and for better readability.

3.2 Diagram Transformation

In software analysis and development is good practise to start with describing and
capturing system behaviour. For this purpose of behavioural modeling we can use
sequence diagrams.

Algoorithm 1. Class ddiagram creationn algorithm

Creating sequence diagrams we automatically identify essential objects and their
methods that are necessary for functionality of the system. Thanks to element simi-
larities between sequence diagram and object diagram in the UML metamodel defi-
nition, it is possible to use same shared data representation. Object diagram can be
rendered from sequence diagram. Modifications are made in drawing algorithms.
Instead of drawing full timeline graphic, lifelines are ignored and only upper part with
object names is drawn. Messages between lifelines are moved from original position to
directly connect appropriate objects. Transformation can be visible in Figs. 1 and 2.

Software Model Creation with Multidimensional UML 345

Fig. 1. Example of sequence diagrams in 3D UML.

Fig. 2. Object diagrams rendered from sequence diagram.

346 L. Gregorovič et al.

For development in early phases of testing the concept we used layout algorithm
that can be seen in Algorithm 1. Each unique element was placed on next available cell
in imaginary grid. Advanced layout creation with force-directed algorithms is described
in the next section of this paper.

Class diagram is gradually created. Instead of multiple passes through sequential
diagrams to create the classes and append methods to these classes in the next iteration,
algorithm for class diagram creation was optimised with buffering and memorisation.
Each time when unknown class type is found for lifeline, new class instance in class
diagram is created and reference is stored under unique identifier matching class name.
Class types are then complemented with method names.

4 Class Diagram Layout

In transformation process we use some basic grid algorithms to arrange the objects in
the matrix. With the growing number of the objects also grows the complexity of the
diagram and relations between vertices, so it is crucial to create layout that is clear and
readable.

4.1 Force-Directed Algorithms

One way how to accomplish better layout is to use force-directed algorithms, so the
diagram will be evenly spread on the layer and elements with real relations are closer to
each other as to the other elements. We have tested Fruchterman-Reingold and FM3
algorithms.

Fruchterman-Reingold. Fruchterman-Reingold (FR) is simple force-directed algo-
rithm. Each vertex is repelled from the other vertices. Edges between vertices acts as
springs and pulls vertices to each other, counteracting repulsive forces.

Algorithm iterates through the graph many times and each time decreases the
magnitude of changes in positions, this effect is called cooling down. It could settle in
some configuration to ensure the layout instead of oscillating in some other cases.
Speed of layout generating is Oðn3Þ, where n is number of vertices [1].

Fm3. FM3 algorithm is more complex approach. Basic idea of the forces is the same,
but FM3 uses principle of multiple levels of layout. Main difference is in the step,
where provided graph is reduced into smaller subgraphs by packing multiple vertices
into one. Analogy of this principle is based on finding so-called solar systems, where
one vertex is identified as the sun and the other edges that are related to the sun are
marked as the planets and the moons.

Reduction of the graph is recursively called on subgraphs until simple graph is
reached, then the subgraphs are arranged and unfold, so it is returned to its higher
graphs (see Figs. 3 and 4). These steps are repeated until we reach original graph. Last
step arranges the final graph.

Software Model Creation with Multidimensional UML 347

This solution is significant quicker than Fruchterman-Reingold algorithm. It is
possible to reach speed O(|V|log|V|+|E|) [2].

4.2 Problems of Force-Directed Algorithms

Unfortunately the outputs of these algorithms were not good enough for proposed use.
More appropriate applications are the visualisation of large graph with tree structures.

Both these algorithms have a tendency to create uniform distribution of elements in
diagram. Users have a tendency to arrange elements into groups, order elements by
priority, hierarchy and so on. They are looking for patterns, relations, semantics and
other hidden aspects of model. This is important factor for conservation the readability
and understandability of the modelled diagrams. Deficiency of this features in force
directed algorithms make them not ideal to create class diagram layout.

Our focus in this phase was on the creation of the algorithm that is more appro-
priate. Starting point and proof of concept was considering simple semantics in dia-
gram layout creation. Assuming that in class diagram the most important relation
between two elements from semantic view is generalisation, then aggregation and
finally association, it is possible to modify output of layout algorithm by adding weight
factor in attractive force calculation process.

Analysing mainly two mentioned force-directed algorithms (but also the others)
was created some methods how to accomplish the task of incorporation the semantic
into the selected algorithms.

In case of Fruchterman-Reingold it is possible to introduce weight to vertices or
edges. By adding weight, it is possible to modify the original behaviour of algorithm.

Modifying process of solar systems selection in FM3 could allow to create sub-
graphs, where semantically relevant objects are merged into one vertex. This ensures
the separation of less relevant parts of diagram in space and then the layout is enriched

Fig. 3. FM3 - solar systems collapsed into subgraph [2]

Fig. 4. FM3 - unfolding sub-graphs and layout creation [2]

348 L. Gregorovič et al.

by adding more elements in relevant places by reversing graph into its higher
sub-graphs.

Our decision was to utilise Fruchterman-Reingold algorithm. Time complexity of
the algorithm in comparison with FM3 does not become evident according to the scale
in which we use these algorithms: class diagram with size of 10-100 classes, layout
calculation is fast. Implementation of the algorithm is simple and it is possible to make
modifications more easily than in FM3. Implementation using FM3 can be realized in
the future if it.

4.3 Weighted Fruchterman-Reingold

Simple modification of FR algorithm in the form of adding weight to edges in cal-
culation of attractive forces make desired layout improvement. Weight of edge is taken
into account in process of calculating attractive forces of edge connecting two vertices.

Calculated force is multiplied by weight of corresponding type of edge. It is nec-
essary to identify current type of the edge while calculating attractive forces. Imple-
mentation of the system distinguishes different relations as instances of different classes
and therefore it is easy to use appropriate weight.

While prototyping phase, weights of relations-edges were experimentally set as
follows:

• generalisation → 200
• aggregation → 100
• association → 10

Application of the selected weights affected the outputs of the algorithm in desired
manner. To escalate effects of attraction, reflecting the semantics of the diagram,
vertices are repelling each other with equivalent force, but magnified by factor of 10
according to original force calculated by algorithm. This tends to push vertices more
apart, so the difference in distances between related and unrelated vertices is greater.
This allows to make semantics patterns of class diagram more visible.

5 Results and Evaluation

New weighted Fruchtermant-Reingold algorithm was tested against Fruchterman-
Reingold algorithm. Empirical comparison of generated layouts on multiple class dia-
gram examples indicates, that our new algorithm provides more appropriate layout.

First example in Figs. 5 and 6 shows one of tested class diagrams: Sequence
diagram metamodel. Differences between both layouts are clearly visible. Figure 6
shows layout generated by Fruchterman-Reingold algorithm. This layout is evenly
distributed across available space and it has symmetrical character.

Distribution of the classes is not optimal and orientation in such diagrams is still not
easy and natural. Random scattering of connected classes is not very useful in case of
readability and understanding of created class diagram.

Software Model Creation with Multidimensional UML 349

Using weighted Fruchterman-Reingold algorithm on the same class diagram
example achieves significantly better layout. Main difference is that layout put relevant
classes more together and creates smaller chunks of classes instead of one big mass as it
was in the previous case. This means better readability, understanding and modifying
designed diagrams.

Fig. 5. Sample (Sequence diagram metamodel) - layout generated with Fruchterman-Reingold
algorithm

Fig. 6. Sample (Sequence diagram metamodel) - layout generated with Weighted Fruchterman-
Reingold

350 L. Gregorovič et al.

Algorithm still creates some unwanted artefacts. For example, by pushing on some
classes creates unnecessary edge crossings. These problems may be addressed in the
future.

Nevertheless algorithm is able to create decent layout for the class diagram. Output
is not perfect, but it is an initial layout, which could be corrected by the user: weighted
Fruchterman-Reingold algorithm is suitable for this purpose.

6 Conclusion

We applied force directed algorithm successfully in the second phase of transformation
from object diagrams (derived from use case scenarios in sequence diagrams) to class
diagram representing static structure of the modeled software system.

In addition we introduced semantics by adding weight factor in force calculation
process in the layout algorithm. Type of relation between vertices influence weight
applied on the attractive forces. This creates more useful layout organisation, as ele-
ments are grouped by semantics that is more readable.

Research started with software development monitoring [13] and software visual-
ization [12] and now, we are preparing interfaces and libraries for leap motion, 3D
Mouse, and Kinect to allow gestures and finger language for alternative way of creating
and management of the particular models.

Acknowledgement. This work was supported by the KEGA grant no. 083TUKE-4/2015
“Virtual-reality technologies in the process of handicapped persons education” and by the Sci-
entific Grant Agency of Slovak Republic (VEGA) under the grant No. VG 1/1221/12.

This contribution is also a partial result of the Research & Development Operational Pro-
gramme for the project Research of Methods for Acquisition, Analysis and Personalized Con-
veying of Information and Knowledge, ITMS 26240220039, co-funded by the ERDF.

References

1. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw.
Pract. Experience 21(11), 1129–1164 (1991)

2. Hachul, S., Jünger, M.: Large-graph layout with the fast multipole multilevel method. Online
verfügbar unter http://www.zaik.uni-koeln.de/*paper/preprints.html (2005)

3. McIntosh, P., Hamilton, M., van Schyndel, R.: X3d-uml: Enabling advanced uml
visualisation through x3d. In: Proceedings of the Tenth International Conference on 3D
Web Technology, Web3D 2005, pp. 135–142, New York, NY, USA, 2005. ACM

4. OMG. OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1,
August 2011

5. Pilgrim, J., Duske, K.: Gef3d: a framework for two-, two-and-a-half-, and three-dimensional
graphical editors. In: Proceedings of the 4th ACM Symposium on Software Visualization,
SoftVis 2008, pp. 95–104, New York, NY, USA, 2008. ACM

6. Škoda, M.: Three-dimensional visualization of uml diagrams. Diploma project, Slovak
University of Technology Bratislava, Faculty of informatics and information technologies,
May 2014

Software Model Creation with Multidimensional UML 351

http://www.zaik.uni-koeln.de/%7epaper/preprints.html

7. Casey, K., Exton, Ch.: A Java 3D implementation of a geon based visualisation tool for
UML. In: Proceedings of the 2nd international conference on Principles and practice of
programming in Java, Kilkenny City, Ireland, 16–18 June (2003)

8. Duske, K.: A Graphical Editor for the GMF Mapping Model (2010). http://gef3d.blogspot.
sk/2010/01/graphical-editor-for-gmf-mapping-model.html

9. McIntosh, P.: X3D-UML: user-centred design. implementation and evaluation of 3D UML
using X3D. Ph.D. thesis, RMIT University (2009)

10. Polášek, I.: 3D model for object structure design (In Slovak). Systémová integrace 11(2),
82–89 (2004). ISSN 1210–9479

11. Ullman, S.: Aligning pictorial descriptions: an approach to object recognition. Cognition 32,
193–254 (1989)

12. Polášek, I., Uhlár, M.: Extracting, identifying and visualisation of the content, users and
authors in software projects. In: Gavrilova, M.L., Tan, C., Abraham, A. (eds.) Transactions
on Computational Science XXI. LNCS, vol. 8160, pp. 269–295. Springer, Heidelberg
(2013)

13. Bieliková, M., Polášek, I., Barla, M., Kuric, E., Rástočný, K., Tvarožek, J., Lacko, P.:
Platform independent software development monitoring: design of an architecture. In:
Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol.
8327, pp. 126–137. Springer, Heidelberg (2014)

352 L. Gregorovič et al.

http://gef3d.blogspot.sk/2010/01/graphical-editor-for-gmf-mapping-model.html
http://gef3d.blogspot.sk/2010/01/graphical-editor-for-gmf-mapping-model.html

	Software Model Creation with Multidimensional UML
	Abstract
	1 Introduction
	2 Related Work for 3D UML
	3 Our Approach
	3.1 Our Prototype
	3.2 Diagram Transformation

	4 Class Diagram Layout
	4.1 Force-Directed Algorithms
	4.2 Problems of Force-Directed Algorithms
	4.3 Weighted Fruchterman-Reingold

	5 Results and Evaluation
	6 Conclusion
	Acknowledgement
	References

