
Factorization of Behavioral Integrity

Ximeng Li(B), Flemming Nielson, and Hanne Riis Nielson

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
{ximl,fnie,hrni}@dtu.dk

Abstract. We develop a bisimulation-based nonintereference property
that describes the allowed dependencies between communication behav-
iors of different integrity levels. The property is able to capture all pos-
sible combinations of integrity levels for the “presence” and “content”
of actual communications. Channels of low presence integrity and high
content integrity can be used to model the effect of Message Authen-
tication Codes or the consequence of Denial of Service Attacks. In case
the distinction between “presence” and “content” is deliberately blurred,
the noninterference property specialises to a classical process-algebraic
property (called SBNDC). A compositionality result is given to facilitate
a structural approach to the analysis of concurrent systems.

1 Introduction

The semantic validation of information flow security [6,15] is achieved with non-
interference properties [5,7]. Recent proposals of such properties for confiden-
tiality in event-based systems distinguish between the “presence” and “content”
of communication events (e.g. [13]).

Consider the simple process c1?x.c2!d, where some data is received from the
confidential channel c1, and forgotten immediately, with some data d subse-
quently sent over the public channel c2. Although the confidential input content
is not leaked through the public channel c2, this process is typically regarded
as insecure [2,3,6,8,13,18], in case the input can be occasionally blocked by the
environment. The reason is that the “presence” of the confidential input can be
leaked through the “presence” of the public output.

When separate confidentiality levels can be assigned for the presence and
content of communication, a more fine-grained analysis can be obtained. Sup-
posing both the “presence” level and the “content” level of c2 are public, then
the content level of c1 can still be confidential — only the presence level needs
to be public, for the process to be secure. However, existing work introduces the
constraint that “presence” can be no more confidential than “content” [13,14]:
observing the content of a communication implies the knowledge that the com-
munication is happening (present).

By the usually perceived duality [9] between confidentiality and integrity,
separating “presence” and “content” applies for integrity as well. Still consider
the process c1?x.c2!d. If both the “presence” and the “content” of communica-
tion over c2 are of high integrity, then only the “presence” of communication

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 500–519, 2015.
DOI: 10.1007/978-3-319-24177-7 25

Factorization of Behavioral Integrity 501

over c1 needs to be of high integrity as well, the input content can still be of low
integrity, for the process to be secure. However, the aforementioned constraint
would preclude the use of channels with low presence integrity and high con-
tent integrity. Nevertheless, this combination is practically meaningful. When
message authentication codes (MAC) are used, a MAC-checker can detect tam-
pered (low integrity) content and choose to accept only high integrity content.
As a result, the content, once received by an end user, can be used by her with
confidence that no harm will arise. The worry, though, is that the communi-
cation allowing to receive that content may not be present. The suspension of
this communication may be caused, for example, by message rejection in the
MAC-checker due to content corruption. It is therefore sensible to regard the
user channel as having low presence integrity and high content integrity.

Our contribution is a novel bisimulation-based noninterference property for
integrity, where the presence and content of communication events are dealt with
separately, and all combinations of integrity levels for these two dimensions are
allowed. The property is shown to degenerate to the classical process-algebraic
condition SBNDC (e.g., [6]), and a compositionality result is obtained to facili-
tate a structural approach to information flow analysis in a concurrent setting.

Our development will be performed in the Quality Calculus [12], a recent
extension of the π-calculus. The distinguishing feature of the Quality Calculus
is the use of composite binders &q(b1, ..., bn) that describe the combinations of
communications (at the basic input/output binders b1, ..., bn) that suffice for the
computation to proceed. This makes system models more robust, since when
faced with a computation environment that does not allow certain communica-
tions to be performed, their alternatives could still succeed. Take the composite
binder &1∨2(c1?x1, c2?x2) as an example. This binder is passed immediately after
the success of either input. If x1 has received data d when the binder is passed,
then x1 is bound to some(d); otherwise to none, which resembles the optional
data types used in languages like Standard ML. We can then use the “case
construct” of the calculus to model branching decisions based on whether x1 is
bound to some(d) or none. An example here is case x1 of some(y) : P1 else P2

where P1 and P2 are two processes.

2 Motivating Examples

Let us give a few examples (in Fig. 1) to frame our mind in terms of presence
integrity and content integrity, and further motivate the noninterference prop-
erty to be proposed. Channels with two subscripts (L or H, representing their
integrity classification) will often be used. The first level describes the presence
dimension and the second describes the content dimension. For each subscript,
an L (resp. H) will denote low (resp. high) integrity.

Processes 1 and 2 are intuitively secure. In process 1, given the low content
integrity and high presence integrity of cHL, the corruption of the input content
by an attacker can be “passed on” to the output content, while the input cannot be
blocked by the attacker, consequently blocking the output. Hence the low content
integrity, high presence integrity of c′

HL can be justified in accordance with the

502 X. Li et al.

integrity classes of cHL. In process 2, any influence on the presence of the input
can in turn influence the presence of the output, but cannot by itself corrupt the
output content, which also demonstrates the consistency of the integrity classes
of cLH and c′

LH . On the other hand, process 3 is insecure: the classification of c′
LH

does not meet the intuition that both the presence of the final output, and its
content, can be badly influenced.

One might think that the presence integrity can either be high for all chan-
nels, or low for all channels, hence at most one of the classes “high” and “low”
is needed. This is not true, as illustrated by the insecurity of process 4, and the
security of process 5. In process 4, the content integrity of the output channel
cannot be H, since the presence of the input leads to more choices for the output
content, some of which may not be possible with the input still blocked.

1. cHL?x.c′
HL!x

2. cLH?x.c′
LH !x

3. cLH?x1.cLL?x2.c
′
LH !f(x1, x2),

where f(a, b) �= f(c, d)
whenever a �= b or c �= d

4. cLH?x1.c
′
LH !x1 | c′

LH !d
5. cHH?x1.c

′
HH !x1 | c′

HH !d
6. M where

M � &1∨2(cLH?x1, cLL?x2).
case x1 of some(y1) : c′

LH !y1.M
else case x2 of some(y2) : c′′

LL!y2.M
else 0

7. A where
A � &1∨2(cLL?x1, c

′
LL?x2).

case x1 of some(y1) : cHL!y1.A
else case x2 of some(y2) : cHL!y2.A
else 0

Fig. 1. Some example processes

Given the insecure dependency
of high integrity content on low
integrity presence in process 4, it
becomes interesting to see when
certain source channels have the
presence level L, which sink chan-
nels can still have the content level
H without being affected. Process
6 is coded in the Quality Calcu-
lus. It is a call to the procedure
M whose definition follows. This
process is in fact a simple-minded
“multiplexer” that directs incom-
ing data from cLH to c′

LH , and from
cLL to c′′

LL. Note that if one of
the four channels has low presence
integrity, then all channels have low
presence integrity, since the influ-
ence by the presence of communi-
cation over one of the channels on
the control flow is global. However, c′

LH preserves the high content integrity of
cLH , despite this pervasive corruption on the “presence” dimension.

The process 7 is a call to procedure A whose body uses the same predicate
1 ∨ 2, which enables it to source from alternative channels cLL and c′

LL. The
input content, no matter from which source channel, will be output over the
channel cHL. The process is not secure if the environment can block the two
inputs at the same time. However, cLL and c′

LL might represent sources that are
geographically distant or that fail with drastically different causes, which can be
modeled by an environment strategy (e.g., [10,13]) that always provides at least
one of the inputs when the computation proceeds to the composite input binder.
The procedure call will be secure under that strategy.

We end this section with a conceptualization of presence integrity and con-
tent integrity, although a more technical characterization comes along with our
security property to be presented later.

Factorization of Behavioral Integrity 503

– Presence integrity: for each i, whether the existence of the i-th output/input
over channel c in a finite sequence π of communication actions can be influ-
enced by the attacker

– Content integrity: for each i, whether the content of the i-th output/input
over channel c can be influenced by the attacker, in case the input/output
exists in a finite sequence π of communication actions

Note that it is not only whether an input/output on a channel c is eventu-
ally available, that matters, but how many times it occurs in each computation
sequence, since we are concerned with nonterminating computation and looping
behaviors: the processes 6 and 7 in Fig. 1 are such examples.

This paper is structured as follows. In Sect. 3, we present the syntax and
semantics of the Quality Calculus. We then present our noninterference condi-
tion for behavioral integrity in Sect. 4. Two main theoretical properties of the
noninterference condition, including its degeneration to SBNDC, and the compo-
sitionality result, are presented in Sect. 5. Further examples are given in Sect. 6,
to illustrate the condition and its compositionality. We conclude in Sect. 7, with
a few pointers to related work.

3 The Quality Calculus

Syntax. The Quality Calculus [12] has its roots in the π-calculus and CCS,
but allows to specify criteria on which communications have to succeed for the
computation to continue. This can be expressed by the construct &q(b1, ..., bn)
with predicate q and communication binders b1,...,bn. The computation can then
continue differently, depending on whether each of these communications has
succeeded, using the construct case e of some(y) : P1 else P2. The predicate q
can refer to any specific binder among b1, ..., bn, by its index (1,...,n), and can
denote any boolean combination of their evaluation status. Since some previous
inputs might be unsuccessful, we allow expressions that are missing data to be
evaluated to none, or else to some(c) with some constant c.

The complete syntax is given in Table 1. Terms t and expressions e are sepa-
rate syntactical categories that capture the distinction between data and optional
data. A constant c is either a channel (Chn), or a datum (Dt), or both, as we
allow Chn ∩ Dt �= {}. For a constant in Dt, we also use d (d′, etc.) for its
denotation. Atomic input binders are of the form t?x. Atomic output binders
are of the form t!t′{x}, where the variable x is used as an indicator of whether
the output has succeeded, the output content is also bound to x in case it has.
We abbreviate t!t′{x} to t!t′ when such indication provided by x is not needed.
With a procedure call A(ē), the procedure A needs to be defined as a process P ,
with A(x̄) � P . Looping behavior is allowed via recursive procedure calls. The
other features not mentioned so far are mostly standard. Although the Qual-
ity Calculus does not have a non-deterministic choice operator, an encoding of
internal nondeterministic choice (in the style of Hoare’s CSP) can be done using
composite binders and case constructs, as presented in [12].

504 X. Li et al.

Table 1. The syntax of the quality calculus

t ::= c | y | f(t1, . . . , tn)

e ::= x | some(t) | none P ::= (νc)P | P1|P2 | b.P | A(ē) | 0 |
case e of some(y) : P1 else P2

b ::= t?x | t!t′{x} | &q(b1, ..., bn)

Semantics. To facilitate the specification of open systems, and the formulation
of our security condition, we present a semantics that is parameterized on the
computation environment. The tight correspondence of this semantics with the
classical semantics [12] of the Quality Calculus is discussed in the appendix.

Processes and binders make transitions together with sequences π ∈ Π. Each
such sequence contains a separator �, which delimits the environment’s past
actions interacting with the process, and optionally a future communication
attempt. Each communication action/attempt is represented by an “abstract
binder” b̂ ∈ AB given by the syntax b̂ ::= c?x | c?c′ | c!c′ | �. The abstract binders
c?x and c?c′ represent a pending input and a completed input, respectively, of
the environment ; on the other hand, c!c′ represents either a pending output
or a completed output, also of the environment. In addition, � represents the
suspension of any communication by one step.

We write [π]� for the prefix of π up to the � in it, and Π� for the set
{[π]� | π ∈ Π}. Next introduce environment strategies δ : Π� → 2AB \ {c?c′|c, c′ ∈
Chn ∪ Dt} from the set Strat. For each π ∈ Π�, δ(π) gives the set of abstract
binders that represent the environment’s intended ways of “exercising” the spec-
ification for one more step. In case δ(π) is an input abstract binder, it will be of
the form c?x rather than c?c′, since it represents a pending input.

The transition relation for processes and binders is given in Table 2. We make
use of an unspecified evaluation relation � for terms and expressions. For binders,
each transition rule is of the form 〈b, π〉 β−→ 〈b′, π′〉, representing that the
binder b performs the communication action β (β �= τ) under the environment
π and becomes b′, turning the environment into π′. The intermediate binder
[c : some(c′)/x] is introduced (essentially extending the syntax for binders) to
record the completion of the communication of some content c′ over channel c,
subsequently binding some(c′) to the variable x.

A [c : some(c′)/x] is produced after a transition made by either t!t′{x} or
t?x, given that the content of the output/input is c′. In the case of t!t′{x},
π�c?x′ represents that the environment is expecting some data to be output
over channel c (from the process of t!t′{x} where t is evaluated to c), and the
resulting π.c?c′� represents the completion of this interaction, extending the
environment’s observational history by c?c′. In the case of t?x, π�c!c′ represents
that the environment attempts to output c′ over channel c (to the process of t?x
where t is evaluated to c), and the resulting π.c!c′

� represents the completion
of this interaction, growing the environment’s observational history by c!c′. The
transitions of composite binders &q(b1, ..., bn) are simply built on top of those of
their sub-binders.

Factorization of Behavioral Integrity 505

Table 2. The transition relation for processes and binders

〈b, π〉 c!c′/c?c′
−−−−−−→ 〈b′, π′〉

δ � 〈b.P, π〉 c!c′/c?c′
−−−−−−→ 〈P ′, π′〉

where P ′=

{
Pθ (if b′::ttθ)
b′.P (otherwise)

δ � 〈P1, �c?x〉 c!c′
−→ 〈P ′

1, π′
1〉 δ � 〈P2, �c!c′〉 c?c′

−→ 〈P ′
2, π′

2〉
δ � 〈P1|P2, π〉 τ−→ 〈P ′

1|P ′
2, π〉

e � some(c) δ � 〈P1[c/y], π〉 β−→ 〈P ′, π′〉
δ � 〈CS(e, y, P1, P2), π〉 β−→ 〈P ′, π′〉

e � none δ � 〈P2, π〉 β−→ 〈P ′, π′〉
δ � 〈CS(e, y, P1, P2), π〉 β−→ 〈P ′, π′〉

ē � w̄ δ � 〈P [w̄/x̄], π〉 β−→ 〈P ′, π′〉
δ � 〈A(ē), π〉 β−→ 〈P ′, π′〉

if A(x̄) � P
δ � 〈P1, π〉 β−→ 〈P2, π′〉

δ � 〈P1|P, π〉 β−→ 〈P2|P, π′〉

δ � 〈P, π〉 β−→ 〈P ′, π′〉
δ � 〈(νc)P, π〉 β−→ 〈(νc)P ′, π′〉

if c �∈ Ch(β)
P1 ≡ P2 δ � 〈P2, π〉 β−→ 〈P3, π′〉 P3 ≡ P4

δ � 〈P1, π〉 β−→ 〈P4, π′〉

¬(∃c, c′, β, P ′, π′′ : (β = c!c′ ∨ β = c?c′) ∧ δ � 〈P, π�α.π′〉 β−→ 〈P ′, π′′〉)
δ � 〈P, π�α.π′〉 �−→ 〈P, π.��π′〉

δ � 〈P, π〉 env−−→ 〈P, π.α〉 if π = [π]� ∧ α ∈ δ(π)

t � c t′ � c′

〈t!t′{x}, π�c?x′〉 c!c′
−−→ 〈[c : some(c′)/x], π.c?c′

�〉
t!t′{x} ::ff [none/x] t?x ::ff [none/x]

t � c

〈t?x, π�c!c′〉 c?c′
−−−→ 〈[c : some(c′)/x], π.c!c′

�〉
[c : some(c′)/x] ::tt [some(c′)/x]

〈bj , π〉 β−→ 〈b′
j , π′〉

〈&q(..., bj , ...), π〉 β−→ 〈&q(..., b′
j , ...), π′〉

∀i : bi ::vi θi v′ = [{q}](v̄)
&q(b1, ..., bn) ::v′ θn . . . θ1

The last couple of rules in Table 2 define the evaluation b ::v θ of binders
b, which is used by the transition rules for processes. Here θ is the substitution
produced, recording the optional data bound to variables, and v is a boolean
value indicating whether the binder b can already be passed. The basic binders
t!t′{x} and t?x represent pending (incomplete) communications and hence for
the evaluation of both binders, v = ff , and the resulting substitution is [none/x],
representing that no data is received into the variable x. For composite binders
&q(...), the last evaluation rule in Table 2 uses [{q}], the interpretation of the
predicate q, to aggregate the evaluation statuses of the individual sub-binders.
As examples, we have [{2}](v1, v2) = v2, and [{1 ∨ 2}](v1, v2) = v1 ∨ v2. On the
other hand, the resulting substitution is the composition of all the substitutions
resulting from the evaluation of the sub-binders.

For processes, each transition rule of the form δ � 〈P, π〉 β−→ 〈P ′, π′〉 governs
the transition of process P under environment π into process P ′, turning the

506 X. Li et al.

environment into π′. On the other hand, each transition of the form δ � 〈P, π〉 env−→
〈P, π′〉 represents the advancement of the environment alone. This transition
relation is defined assuming a standard structural congruence ≡ (given in detail
in Table 3 of the appendix).

For output and input, we start from a process of the form b.P . Suppose the
binder b makes a transition to the binder b′. In case b′ has the evaluation b′ ::tt θ,
the execution will embark on the process Pθ — the process P with the substi-
tution θ applied to it. In case b′ has the evaluation b′ ::ff θ, we stay with the
process b′.P , waiting for further communication required by the binder b′ before
it can be passed. The communication action (either an input or an output) per-
formed by the process b.P is the one performed by b. A synchronization between
two processes does not rely on the environment π, and has no impact on it.

The next two rules use the abbreviation CS(e, y, P1, P2) for the process case e of
some(y) : P1 else P2, and describe the execution of the case construct. In case
the expression e is evaluated to some(c), where c is a constant, then the process
P1[c/y] is executed, where the substitution records the binding of y to c. In case
e is evaluated to none, then the process P2 is executed, with no reference to y.

The rules for procedure calls, for parallel composition, for restriction, and for
dealing with processes equivalent under ≡, are self-explanatory. Notation-wise,
Ch(β) represents the set of channels occurring in β.

The second last transition rule for processes says that when a process P
cannot perform any communication action when the environment attempts to
use the abstract binder α for the next interaction, we allow P to do a �-step,
signaling that there is one step of delay. At the same time, the observational
history of the environment is extended by a �, recording the observation of this
delay.

The last transition rule says that the environment can make its next interac-
tion attempt when its observational history ends with a �: it can only “prescribe”
the most imminent interaction, without further predication of the future.

We illustrate the semantics in Example 1, where δALL = λπ�.{c!c′|c, c′ ∈
Chn ∪ Dt} ∪ {c?x|c ∈ Chn} ∪ {�} is the strategy that allows the environment to
produce any sensible abstract binder with any observation it has.

Example 1. The procedure call M in Fig. 1 has the following transition sequence.

δALL � 〈M, �〉 env−→ 〈M, �cLL!d〉
cLL?d−→ 〈 case none of some(y1) : c′

LH !y1.M
else case some(d) of some(y2) : c′′

LL!y2.M else 0
, cLL!d�〉

env−→ 〈 case none of some(y1) : c′
LH !y1.M

else case some(d) of some(y2) : c′′
LL!y2.M else 0

, cLL!d�c′′
LL?x〉

c′′
LL!d−→ 〈M, cLL!d.c′′

LL?d�〉
We elaborate slightly on the second step above. According to the transition rules for

binders, we have 〈cLL?x2, �cLL!d〉 cLL?d−→ 〈[cLL : some(d)/x2], cLL!d�〉, which gives
rise to 〈&1∨2(cLH?x1, cLL?x2), �cLL!d〉 cLL?d−→ 〈&1∨2(cLH?x1, [cLL : some(d)/x2]),

cLL!d�〉. Using the evaluation rules for binders, we have &1∨2(cLH?x1, [cLL :

some(d)/x2]) ::tt [none/x1][some(d)/x2]. Hence by the transition rule for b.P , with
b taken to be &1∨2(cLH?x1, [cLL : some(d)/x2]), the second transition is derived.
�

Factorization of Behavioral Integrity 507

Hereafter, we will use the more compact δ � 〈P, π〉 env,β−−−→ 〈P ′, π′〉 to represent
∃π0 : δ � 〈P, π〉 env−→ 〈P, π0〉 ∧ δ � 〈P, π0〉 β−→ 〈P ′, π′〉. We will also use rch(P)
to represent the channel, polarity pairs of all possible communications that can
be performed by a derivative of 〈P, �〉 under the strategy δALL, i.e., rch(P) =

{(c, ρ) | ∃P ′, π′, c′ : δALL � 〈P, �〉 →∗ 〈P ′, π′〉 cρc′
−→}.

4 Noninterference for Behavioral Integrity

In this section, we build up to our noninterference condition for behavioral
integrity. We introduce the classification mappings P and C to keep track of
the presence levels and content levels, respectively, for communication chan-
nels. In our definitions and propositions, we tacitly assume that all variables not
explicitly quantified are in fact universally quantified.

We start by introducing a way of indexing into traces: π@c,ρ
i is (n, c′) if the i-

th communication over channel c with polarity ρ in π is the n-th communication
overall in π, and the content of the communication is c′. All the indices start
with 0. If the number of communications over c with polarity ρ in π is less than
or equal to i, then π@c,ρ

i is ⊥. This is formalized in Definition 1 and illustrated
in Example 2.

Definition 1 (π@c,ρ
i). π@c,ρ

i = π@c,ρ
i,0 , where i ≥ 0 and π@c,ρ

i,0 is defined by

π@c,ρ
i,n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥ (if π = ε)

(n, c′) (if ∃π′ : π = cρc′.π′ ∧ i = 0)

π′@c,ρ
i−1,n+1 (if ∃c′ : π = cρc′.π′ ∧ i �= 0)

π′@c,ρ
i,n+1 (if ∃c′′, ρ′′, c′′′ : π = c′′ρ′′c′′′.π′ ∧ (c′′ �= c ∨ ρ′′ �= ρ))

Example 2. Consider the trace π = cLL!d.c′′
LL?d� left by the environment from

Example 1. We have π@c′′
LL,?

0 = (1, d) and π@c′′
LL,?

i = ⊥ whenever i ≥ 1.
�
We define the trace correspondence relation WP

C as follows, where |π| stands for
the length of π. The presence and content of communications in traces related
by WP

C are supposed to reflect the integrity levels of their channels.

Definition 2 (WP
C). π1 WP

C π2 if and only if π1 and π2 are finite, |π1| = |π2|,
and ∀i ≥ 0 : ∀c, ρ : π1@

c,ρ
i W

P(c)
C(c) π2@

c,ρ
i .

In Definition 2, two traces related by WP
C are required to have the same finite

length, and the i-th occurrences of communication over channel c, with polarity
ρ, are required to be related by W

P(c)
C(c) , for each c and ρ. The latter relation is in

turn defined as follows, where c′
1

.= c′
2 if and only if c′

1 = c′
2 or c′

2 �∈ Chn ∪ Dt.

Definition 3 (W lP
lC). (n1, c

′
1) W lP

lC (n2, c
′
2) if and only if

(n1, c
′
1) W lP

lC (n2, c
′
2) iff (lP = H ⇒ n1 = n2) ∧ (lC = H ⇒ c′

1
.
= c′

2)

(n1, c
′
1) W lP

lC ⊥ iff lP = L

⊥ W lP
lC (n2, c

′
2) iff lP = L

⊥ W lP
lC ⊥ iff true

508 X. Li et al.

It can be seen that for a channel c with high presence integrity, the i-th occur-
rences of input/output over c need to have the same overall index in their respec-
tive traces. On the other hand, for a channel c with high content integrity, the i-th
occurrences of input/output over c need to have equivalent content. This corre-
sponds tightly to our description of “presence integrity” and “content integrity”
in Sect. 2. The reason that .= is used for relating content, instead of =, is the
potential existence of variables in traces of the form ...�c?x.

We will write
̂β′

=⇒ for the weak transition used for standard observational
equivalence, i.e., it stands for (

τ−→)∗◦ β′
−→ ◦(

τ−→)∗ when β′ �= τ and for (
τ−→)∗

when β′ = τ . The weak transition will not be used directly in our noninterference

property, but encapsulated within the transition
̂β′

=⇒
β

introduced in Definition 4.

It boils down to the weak transition
̂β′

=⇒ in case β is a communication with high
presence integrity; otherwise τ ’s are not allowed.

Definition 4 (
̂β′

=⇒
β

).
̂β′
=⇒

β
=

⎧
⎨

⎩

β′
−→ (if β = � ∨ ∃c, ρ, c′ : β = cρc′ ∧ P(c) = L)
̂β′
=⇒ (otherwise)

We then define the notion of δ-bisimulation, where δ ∈ Strat is a strategy.

Definition 5 (δ-Bisimulation). A δ-bisimulation is a symmetric relation R

on configurations such that if 〈P1, π1〉 R 〈P2, π2〉, δ � 〈P1, π1〉 env,β−−−→ 〈P ′
1, π′

1〉,
δ �〈P2, π2〉 env−→ 〈P2, π20〉, and π′

1 WP
C π20, then we have

∃P ′
2, π

′
2, β

′ : δ � 〈P2, π20〉
̂β′

=⇒
β

〈P ′
2, π

′
2〉 ∧

[π′
1]� W P

C [π′
2]� ∧ 〈P ′

1, [π
′
1]�〉 R 〈P ′

2, [π
′
2]�〉.

If two configurations 〈P1, π1〉 and 〈P2, π2〉 are related by a δ-bisimulation R,
then after 〈P1, π1〉 interacts with the environment δ for one step, and the envi-
ronment makes an interaction attempt with 〈P2, π2〉, such that the interaction
and the attempt meet the integrity classes of their channels (π′

1 WP
C π20), the

configuration 〈P2, π20〉 can simulate the interaction made by 〈P1, π1〉, in a way
that meets the integrity classes of the channels involved ([π′

1]� WP
C [π′

2]�).
The definition of δ-Bisimulation introduces two universally quantified transi-

tions, before simulating the first one with an existentially quantified transition.
This pattern, previously adopted in [11], is rare in the literature.

We then define δ-bisimilarity (∼
δ
) as the union of all δ-bisimulations (which

is itself a δ-bisimulation). Note that δ-bisimilarity is not reflexive. In fact, our
noninterference condition identifies the δ-security of a process P with the self-
relatedness of 〈P, �〉 in ∼

δ
, as stated in Definition 6.

Definition 6 (δ-Security). A process P is δ-secure, denoted by Secδ(P), if and
only if 〈P, �〉 ∼

δ
〈P, �〉.

To arrive at a better understanding of δ-security, we introduce in Definition 7
the notion of kernel δ-bisimulation, which constrains the pairs of observational

Factorization of Behavioral Integrity 509

histories further than δ-bisimulation does. Proposition 1 then says that kernel
δ-bisimulations, with a more complex formulation, can be used to characterize
δ-security equally well.

Definition 7 (Kernel δ-Bisimulation). A δ-bisimulation R is said to be a
kernel δ-bisimulation if and only if 〈P1, π1〉 R 〈P2, π2〉 implies knl(π1, π2),
where knl(π1, π2) represents π1 WP

C π2, [π1]� = π1, and [π2]� = π2.

Proposition 1. There is a δ-bisimulation R such that 〈P, �〉 R 〈P, �〉, if and
only if there is a kernel δ-bisimulation R′ such that 〈P, �〉 R′ 〈P, �〉.
For a δ-secure process P , the implications of the existence of a kernel δ-bisimulation
R such that 〈P, �〉 R 〈P, �〉 are:

1. A communication β with high presence integrity needs to be simulated by
a communication over the same channel, possibly together with τ ’s. In case
the channel also has high content integrity, the content of the simulating
communication should be the same as that of β. If the channel has low content
integrity, on the other hand, then the bisimulation should continue under all
contents possibly attempted by the environment, that are not necessarily the
same as that of β.

2. A communication β with low presence integrity, or a �-transition, is simulated
by a communication over a channel also of low presence integrity, or by a �-
transition. If the channel of β, say c, has high content integrity, and it is
being used for the i-th time with polarity ρ, then the content of β needs to
agree with the content of the communication occurring on c with polarity ρ
for the i-th time in the second execution, in case that communication exists.
A similar requirement is imposed on the simulating communication, when its
channel has high content integrity.

3. A τ can only be simulated by a (possibly empty) sequence of τ ’s. This is
because when a τ -transition is made from a configuration 〈P, π〉, the � in π
does not move, which is not the case otherwise. By Proposition 1, it is obvious
that |π′

1| = |π20|. Hence [π′
1]� and [π′

2]� will not have the same length and
[π′

1]� WP
C [π′

2]� will not hold, if a τ is not simulated only by τ ’s.

The δALL-security/insecurity of processes 1-6 in Fig. 1 of Sect. 2 agrees with the
claims based on intuition in the same section, with an unconstrained environ-
ment. And process 7 is δALT-secure, where δALT characterizes an environment
that provides content over at least one of cLL and c′

LL whenever the process is
ready for input from these two alternative channels:

δALT(π) =

{
{c1!d | c1 ∈ {cLL, c′

LL} ∧ d ∈ Dt} (if π = � ∨ ∃π′, d′ : π = π′.cHL?d′
�)

AB (otherwise)

The construction of the underlying kernel δALL-bisimulation R� for the δALL-
security of process 6 is given in the appendix. We demonstrate in Example 3 that
some of the requirements of 〈M, �〉 R� 〈M, �〉 are fulfilled, to aid in the reader’s
intuition.

510 X. Li et al.

〈M, �〉 R� 〈M, �〉

〈M, �cLL!d2〉

〈c′
LH !d1.M, cLH !d1�〉 R� 〈c′′

LL!d2.M, cLL!d2�〉

〈c′′
LL!d2.M, cLL!d2�c′′

LL?x〉

〈M, cLH !d1.c′
LH?d1�〉 R� 〈M, cLL!d2.c′′

LL?d2�〉

〈M, cLL!d2.c′′
LL?d2�cLH !d1〉

〈M, cLH !d1.c′
LH?d1.��〉 R� 〈c′

LH !d1.M, cLL!d2.c′′
LL?d2.cLH !d1�〉

〈c′
LH !d1.M, cLL!d2.c′′

LL?d2.cLH !d1�c′
LH?x〉

〈c′′
LL!d′

1.M, cLH !d1.c′
LH?d1.�.cLL!d′

1�〉 R� 〈M, cLL!d2.c′′
LL?d2.cLH !d1.c′

LH?d1�〉

env,
cLH?d1

1

env,
c′

LH !d1
4

env,
� 7

env,
cLL?d′

1
10

env2

cLL?d23

env5

c′′
LL!d26

env8

cLH?d19

env11

c′
LH !d112

Fig. 2. Partial unfolding of the kernel bisimulation containing (〈M, �〉, 〈M, �〉)

Example 3. Figure 2 contains a partial unfolding of 〈M, �〉 R� 〈M, �〉 where R�

is a kernel δALL-bisimulation. For each pair 〈P1, π1〉 and 〈P2, π2〉 related by R�

in Fig. 2, π1 WP
C π2 holds. After transitions 1 and 2, the environment has made

the attempt to interact with the process on two different channels cLH and cLL.
This is allowed since cLH !d1� WP

C �cLL!d2 holds. The process M can indeed
perform an input over cLH , resulting in transition 1. This transition needs to be
simulated by either an input over cLL, or a �-transition in case such an input
cannot be performed. We are in the former situation and transition 1 is thus sim-
ulated by transition 3. Note that according to Definition 4, the simulation of low
presence communications should be done without using τ ’s. This is because such
simulation is actually used to introduce interference, rather than to demonstrate
resilience to it. And τ -transitions are conventionally used to weaken the require-
ment for a process to be resilient to interference. We then direct our attention
to transitions 7, 8 and 9. The environment intentionally resists communication
with the process in transition 7. On the other hand, it attempts to feed some
content over cLH to the process through transition 8. That content is restricted
to d1 since only then it holds that cLH !d1.c

′
LH?d1.�� W P

C cLL!d2.c
′′
LL?d2�cLH !d1.

Intuitively, the input over cLH is blocked for a while in the second execution,
but it needs to happen with the same content d1 since the channel has high
content integrity. For transitions 10, 11 and 12, the attempt of the environment
to input from the process over channel c′

LH in transition 11 is satisfied with
the content d1, resulting in transition 12. The latter transition is a legitimate
simulation of transition 10 since the content d1 is the same as that of transition
4 — the corresponding communication over c′

LH in the first execution.
�
A total order can be built on the set Strat of environment strategies, charac-
terizing their relative aggressiveness (Definition 8), which has its impact on the
strength of the security condition (Theorem 1).

Factorization of Behavioral Integrity 511

Definition 8 (Aggressiveness of Environments). Environment δ2 is said
to be more aggressive than δ1, denoted δ1 ≤ δ2, if ∀π ∈ Π� : δ1(π) ⊆ δ2(π).

Theorem 1 (Monotonicity). δ-bisimilarity is anti-monotonic in δ, i.e., for
all δ1, δ2 such that δ1 ≤ δ2, it holds that ∼

δ2
⊆ ∼

δ1
.

This monotonicity result may look counter-intuitive since δ appears to be used

both positively and negatively in Definition 5. However, δ � 〈P2, π20〉
̂β′

=⇒
β

〈P ′
2, π

′
2〉

if and only if δ′ � 〈P2, π20〉
̂β′

=⇒
β

〈P ′
2, π

′
2〉 for all δ′ ∈ Strat. In other words, δ is not

actually used in the derivation of the transition sequence from 〈P2, π20〉.
Corollary 1. The permissiveness of δ-security is anti-monotonic in δ, i.e.,

∀δ1, δ2 ∈ Strat : δ1 ≤ δ2 ∧ Secδ2(P) ⇒ Secδ1(P).

We will discuss deeper theoretical properties of our security condition in
Sect. 5, focusing on δALL-security. It will be seen that the most pessimistic
assumption about the environment, captured by its most aggressive strategy
δALL, is in line with classical process-algebraic conditions like SBNDC, and also
facilitates the compositional verification of the security property.

5 Theoretical Properties

Connection with SBNDC. We reformulate SBNDC [6] using the classical
semantics of the Quality Calculus, and with respect to the environment I :

Chan → {H, L} ∪ {⊥} that gives the presence level of a channel only when its

presence level and content level are the same, i.e., I(c) =

{

P(c) (if P(c) = C(c))
⊥ (otherwise)

.

The aim of I is to obtain the integrity class of each channel when its presence
integrity and content integrity are the same (using C(c) instead of P(c) in the
definition of I(c) would have the same effect).

We also introduce the notation loi to represent the list of low integrity chan-
nels, i.e., loi = {c | I(c) = L}, and use ch(β) to denote the channel used by the
(non-τ) communication action β. The reformulation is then given in Definition 9,
where ≈ is the standard observational equivalence. The intuitive interpretation
is that before and after each low integrity communication, a process is required
to have the same high integrity behaviors. Then the central result of this subsec-
tion, that δALL-security coincides with SBNDC when the same integrity levels
are always used for both “presence” and “content”, is given in Theorem 2.

Definition 9 (SBNDC). P ∈ SBNDC if for all P ′, P ′′, communication β,

such that P →∗ P ′, P ′ β−→ P ′′, and I(ch(β)) = L, we have (ν loi)P ′ ≈ (ν loi)P ′′.

Theorem 2 (Degeneration). For all processes P , if ∀c, ρ s.t. (c, ρ) ∈ rch(P) :
P(c) = C(c), then SecδALL(P) if and only if P ∈ SBNDC.

512 X. Li et al.

To build up to a proof of Theorem 2, we recast SBNDC in the form of self-
bisimilarity. The underlying bisimulation is the �-bisimulation of Definition 10.

Definition 10 (�-Bisimulation). A symmetric relation R on processes qual-
ifies as a �-bisimulation if P1 R P2 implies:
for all P ′

1 and β such that P1
β−→ P ′

1, there exists P ′
2 such that

– if I(ch(β)) = L, then P ′
2 ≡ P2 and P ′

1 R P ′
2,

– if I(ch(β)) = H or β = τ , then P2

̂β
=⇒ P ′

2 and P ′
1 R P ′

2.

We define �-bisimilarity as the union of all �-bisimulations. The � used here
symbolizes the triangular structure created by the simulation of a low integrity
communication by inaction, as required in Definition 10. It can be shown that
self-�-bisimilarity coincides with self-δALL-bisimilarity when the presence levels
and content levels are the same for all channels whose uses are reachable.

Lemma 1. Suppose P is such that ∀c, ρ s.t. (c, ρ) ∈ rch(P) : P(c) = C(c). Then
P ∈ SBNDC ⇐⇒ P ∼� P , and P ∼� P ⇐⇒ 〈P, �〉 ∼

δALL
〈P, �〉.

The degeneration result presented above demonstrates that the notion of δ-
security is in fact well-based on the classical process-algebraic noninterference
properties, and SBNDC, as one of those properties, actually has the implicit
assumption of the most aggressive environment.

Compositionality. Compositionality is a desirable property for the verifica-
tion of noninterference properties. The security of a parallel composition can be
directly obtained from that of its constituents, in case full compositionality is
enjoyed by a noninterference condition. However, δ-security is not fully composi-
tional. Nevertheless, this is key to spotting the insecurity of the example process
4 given in Sect. 2, since the processes cLH?x1.c

′
LH !x1 and c′

LH !d are themselves
δALL-secure. We then discuss the sufficient conditions required for δALL-security
to be compositional.

A process P is deterministic with respect to output over a channel c, denoted
by det(P, c), if

δALL � 〈P, �〉 →∗ 〈P ′, π′〉 ∧ (∀i ∈ {1, 2} : δALL � 〈P ′, π′〉 c!c′
i−→ 〈P ′

i , π′
i〉) ⇒ c′

1 = c′
2.

We then have the following theorem for the compositionality of δALL-security.

Theorem 3 (Compositionality). If SecδALL(P1), and SecδALL(P2), then we
have SecδALL((νc̄′)(P1|P2)), provided that for all i ∈ {1, 2} and channel c:

P(c) �� C(c) ∧ (c, ρ1) ∈ rch(Pi) ∧ (c, ρ2) ∈ rch(P3−i) ⇒ ρ1 �= ρ2 ∧ det(Pi, c) ∧ c ∈ {c̄′}.

In words, Theorem 3 says that given two processes P1 and P2 that are both
δALL-secure, the process (νc̄′)(P1|P2) is δALL-secure, provided that

1. No LH-channels are used by both P1 and P2 with the same polarity (note
that the process 4 given in Sect. 2 does not meet this requirement), and

Factorization of Behavioral Integrity 513

2. For each LH-channel c used by P1 and P2 with different polarities, P1 and
P2 must be deterministic with respect to output on c, and c must be among
the constants over which there is a top-level restriction; thus the input side
always sources from the output side, never from the environment.

Corollary 2. Suppose ∀c, ρ : (c, ρ) ∈ rch(P) ⇒ P(c) � C(c). Then SecδALL(P1|P2)

can be deduced from SecδALL(P1) and SecδALL(P2).

The results presented above help elucidate the points below.

1. If δ-security had been fully compositional, it would not have uncovered cer-
tain insecure dependencies of high integrity content on low integrity presence.

2. The notion of δ-security is fully compositional for processes that do not make
use of LH-channels.

6 Further Examples and Discussion

We have associated with LH-channels the meaning: communications over these
channels can be blocked by the attacker, but with uninfluenced contents when
they finally happen. So far the abstract environment has been assumed to be
able to induce these channels. In this section, we present a concrete process in
the Quality Calculus that can accomplish the same task. We then make the
multiplexer process presented in Sect. 2 obtain its input from this process, to
illustrate our compositionality result.

On LH-Channels. We illustrate that LH-channels can be induced from chan-
nels that are LL and HH by a concrete process. The procedure SINK in Fig. 3
mimics the potential congestion of the high integrity data source cHH using a
queue: output of the oldest element suspended in the queue is attempted through
the sink channel cLH only when the low integrity switch cLL is on. Recall that
the &2(,) can be passed if and only if the second communication is successful.

SINK � &2(cLL?x1, cHH ?x2).
case x2 of some(y2) :
(νcf)(ci!(y2, cf).cf?xf .

case x1 of some(y1) :
(νce, cr)(cp!(ce, cr).cr?x3[y3].

&2(cLH !y3{x′
3}, c′

HH?xt).
case x′

3 of some(y′
3) :

(νc′
e, c

′
r)(cd!(c

′
e, c

′
r).cr?x4[y4].SINK)

else SINK)
else c′

HH?xt.SINK)
else 0

Fig. 3. The “Realization” of sink channels with low
presence integrity and high content integrity

The channels ci, cd, and
cp are interfaces for the
operations “insert” (“en-
que”), “delete” (“deque”),
and “peek” (the non-
destructive inspection of the
oldest element) of the queue
specified by the procedure
QUE (adapted from the
priority queue in [17]) in
the appendix. The proce-
dure SINK waits on the
input over cHH for the com-
posite binder on the first
line to be passed. When
that happens, the input data over cHH is enqued, with the completion of the

514 X. Li et al.

“enque” operation signaled on cf . If the input over cLL was also successful, then
outputting the head of the queue is attempted, with a high integrity timeout
supposed to come over c′

HH . If the output is successful before the timeout, then
the data item of the output is deleted from the queue. In the “peek” and “deque”
operations, the channels ce and c′

e are sent to the queue for the latter to signal
back whether it is already an empty queue. In our case the non-emptiness of
the queue is an invariant and hence neither ce nor c′

e is subsequently used. The
process (νci, cd, cp)(SINK |QUE (some(ci), some(cd), some(cp))) is δALL-secure.

Compositionality. We now consider making the multiplexer process (process
6 in Fig. 1) source from the channel cLH in Fig. 3. Let SRC � (νci, cd, cp) (SINK |
QUE(some(ci), some(cd), some(cp))). The process under consideration is (νcLH)
(SRC |M). It is not difficult to see that det(SRC, cLH) and det(M, cLH) hold.
Hence we can deduce the validity of SecδALL((νcLH)(SRC |M)) by Theorem 3
and the δALL-security of SRC and M .

Confidentiality. We are in a position to further explain having developed our
theory for integrity, rather than confidentiality. It has been illustrated by the
example in Fig. 3 that a concrete process can influence the presence of com-
munication over a sink channel of it, without influencing the communication
content. For confidentiality, a channel c� with high presence confidentiality and
low content confidentiality would correspond to our channel with LH-integrity.
Assuming the existence of c� and developing the same theory would not be prob-
lematic. However, it is difficult to come up with a possibilistic process that leaks
the content of c� properly, without leaking the presence of communication over
it, unless other channels also with confidential presence and public content are
used. Hence the meaning of “confidential presence, public content” would be
harder to justify as opposed to “low integrity presence, high integrity content”.

7 Conclusion

We have studied the integrity of communication behaviors in process-algebraic
systems from the viewpoint of information flow control. A fine-grained, bisimul-
ation-based noninterference property is proposed: the presence and content of
communications have separate integrity levels, and all combinations of integrity
levels for both dimensions are allowed. When identical levels are always used for
both dimensions, the property coincides with the classical process-algebraic prop-
erty SBNDC (e.g., [6]), demonstrating faithful inheritance from known frame-
works. A compositionality result is obtained, facilitating modular flow analysis
of concurrent processes.

Our recasting of SBNDC as self-�-bisimilarity may reflect the insights behind
existing work [3] in bridging language-based and process-algebraic security, but
may be the first direct reformulation of BNDC-like properties as self-bisimilarity.
This gives another perspective on the secure semantics induced by SBNDC.

Clarkson et al. [4] dimensions quantitative integrity in terms of information
suppression and contamination, where dissimilarity of integrity to confidentiality
is also examined: information suppression has no confidentiality counterpart.

Factorization of Behavioral Integrity 515

It would not be difficult to adapt δ-security to support the use of down-
grading [16], which relaxes information flow constraints. This can be done along
the directions of [1]. Another interesting line of future work is the design of
information flow type systems supporting δ-security.

Acknowledgement. We would like to thank the ProSec research group at Chalmers
University of Technology, especially Andrei Sabelfeld, Willard Rafnsson and David
Sands, for useful feedback on this work at an earlier stage.

A Appendix

Structural Congruence. The structural congruence is the smallest congru-
ence relation satisfying the rules in Table 3. In Table 3, the α-equivalence of two
processes is denoted by ≡α, and fc(P) gives the set of free constants of the
process P and can be defined in a straightforward manner.

Table 3. The structural congruence

P1|P2 ≡ P2|P1 (νc1)(νc2)P ≡
P1|(P2|P3) ≡ (P1|P2)|P3 (νc2)(νc1)P (if c1 �= c2)

P | 0 ≡ P (νc)(P1|P2) ≡ ((νc)P1)|P2

(νc)P ≡ P (if c �∈ fc(P)) (if c �∈ fc(P2))

P ≡α P ′ ⇒ P ≡ P ′ P1 ≡ P2 ⇒ (νc)P1 ≡ (νc)P2

Semantics Without Environment. The “classical” semantics [11] of the
Quality Calculus is given in Table 4. The transitions made by processes are
of the form P

β−→ P ′, where β is a communication action or a τ . The cor-
respondence between the two semantics is given in Lemma 2, where ch(β) ={

c (if β = c!c′ ∨ β = c?c′)

⊥ (if β = τ ∨ β = �)
, ρ(β) =

{
ρ0 (if∃c, c′ : β = cρ0c

′)

⊥ (otherwise)
, ˜! =? and ˜? =!.

Lemma 2. For all processes P , P ′, actions β1, β2, ..., and βn such that there
is at most one i ∈ {1, ..., n} for which βi �= τ , and ∀i ∈ {1, ..., n} : βi �= �,
histories π such that π = [π]�, and π0 such that ∀i ∈ {1, ..., n} : βi �= τ ⇒ π0 =
π.ch(βi)˜ρ(βi)c′ for some c′, the following are equivalent:

1. P
β1...βn=⇒ P ′, and

2. δALL � 〈P, π〉 env−→ 〈P, π0〉 ∧ ∃π′
0 : δALL � 〈P, π0〉 β1...βn=⇒ 〈P ′, π′

0〉.

Proof. Both directions can be shown by induction on the length of the corre-
sponding sequences of semantic derivation.
�

516 X. Li et al.

Table 4. The transition relation for processes

b
c!c′
−−−→ b′

b.P
c!c′
−−−→ P ′

where P ′ =

{
Pθ (if b′::ttθ)
b′.P (if b′::ffθ)

b
c?c′
−−−→ b′

b.P
c?c′
−−−→ P ′

where P ′ =

{
Pθ (if b′::ttθ)
b′.P (if b′::ffθ)

P1
c!c′
−→ P ′

1 P2
c?c′
−→ P ′

2

P1|P2
τ−→ P ′

1|P ′
2

e � some(c) P1[c/y]
β−→ P ′

case e of some(y) : P1 else P2
β−→ P ′

e � none P2
β−→ P ′

case e of some(y) : P1 else P2
β−→ P ′

ē � w̄ P [w̄/x̄]
β−→ P ′

A(ē)
β−→ P ′

if A(x̄) � P
P

β−→ P ′

(νc)P
β−→ (νc)P ′

if c �∈ Ch(β)

P1
β−→ P2

P1|P β−→ P2|P
P1 ≡ P2 P2

β−→ P3 P3 ≡ P4

P1
β−→ P4

t � c t′ � c′

t!t′{x} c!c′
−−−→ [c : some(c′)/x]

t!t′{x} ::ff [none/x] t?x ::ff [none/x]

t � c

t?x
c?c′
−−−→ [c : some(c′)/x]

[c : some(c′)/x] ::tt [some(c′)/x]

bj
β−→ b′

j

&q(. . . , bj , . . .)
β−→ &q(. . . , b′

j , . . .)

∀i : bi ::vi
θi v′ = [{q}](v̄)

&q(b1, ..., bn) ::v′ θn . . . θ1

We introduce the notation π ↓ C for π ending with �, and C a set of channels,
to represent the order-preserving sequence of all communications on channels
within C in π, and abbreviate π ↓ {c} as π ↓ c where c is a channel.

δALL-Security of Process 6. We construct the binary relation Rsym that is
the symmetric closure of the following relation R. Below, φ(π1, π2) stands for

knl(π1, π2) ∧
∀i ∈ {1, 2} : ∀ca, cb : cLH !ca is followed immediately by c′

LHρcb in πi ↓ {cLH , c′
LH}

=⇒ ρ =? ∧ ca = cb.

In addition, CSs(e1, e2) stands for

case e1 of some(y1) : c′
LH !y1.M

else case e2 of some(y2) : c′′
LL!y2.M else 0

R = {(〈M, π1〉, 〈M, π2〉) | φ(π1, π2)} ∪
{(〈CSs(some(c′

a), none), π1〉, 〈M, π2〉) | π1 = ...cLH !c′
a� ∧ φ(π1, π2)} ∪

{(〈CSs(none, some(c′
a)), π1〉, 〈M, π2〉) | π1 = ...cLL!c′

a� ∧ φ(π1, π2)} ∪
{(〈CSs(some(c′

a), none), π1〉, 〈CSs(some(c′
b), none), π2〉) |

π1 = ...cLH !c′
a� ∧ π2 = ...cLH !c′

b� ∧ φ(π1, π2)} ∪
{(〈CSs(none, some(c′

a)), π1〉, 〈CSs(none, some(c′
b)), π2〉) |

π1 = ...cLL!c′
a� ∧ π2 = ...cLL!c′

b� ∧ φ(π1, π2)} ∪
{(〈CSs(some(c′

a), none), π1〉, 〈CSs(none, some(c′
b)), π2〉) |

π1 = ...cLH !c′
a� ∧ π2 = ...cLL!c′

b� ∧ φ(π1, π2)}
It can be shown that Rsym is a δALL-bisimulation relating 〈M, �〉 to itself.

Factorization of Behavioral Integrity 517

Queue Specification. We adapte the priority queue discussed in [17] to be a FIFO
queue specified in Fig. 4. A peek operation that returns but does not remove the head
of the queue is added.

QUE(xi, xd, xp) � (νcg)(E(xi, xd, xp, some(cg)) | G(some(cg)))

G(xg[cg]) � cg?(xi, xd, xp).E(xi, xd, xp, xg) | G(xg)

E(xi[ci], xd[cd], xp[cp], xg[cg]) �
ci?(x, xf)[, cf].

(νc′
i, c

′
d, c′

p)(cg!(c
′
i, c

′
d, c′

p).cf !�.F (xi, xd, xp, x, some(c′
i), some(c′

d), some(c′
p), xg))

+ cd?(xe, xr)[ce,].ce!�.E(xi, xd, xp, xg)
+ cp?(x

′
e, x

′
r)[c

′
e,].c′

e!�.E(xi, xd, xp, xg)

F (xi[ci], xd[cd], xp[cp], xk[ck], x
′
i[c

′
i], x

′
d[c

′
d], x

′
p[c

′
p], xg) �

ci?(x, xf)[y, cf].
(νc′

f)(c
′
i!(y, c′

f) | c′
f?x

′.cf !�.F (xi, xd, xp, xk, x
′
i, x

′
d, x′

p, xg)) +
cd?(xe, xr)[, cr].

(νc′
e, c

′
r)(c

′
d!(c

′
e, c

′
r) |

(c′
e?x

′′.cr!ck.E(xi, xd, xp, xg) + c′
r?x

′′′.cr!ck.F (xi, xd, xp, x′′′, x′
i, x

′
d, x′

p, xg))) +
cp?(x

′′
e , x′′

r)[, c′′
r].c′′

r !ck.F (xi, xd, xp, xk, x
′
i, x

′
d, x′

p, xg)

Fig. 4. Specification of FIFO queue

Sketch of Proof for Compositionality (Theorem 3). Define π̃ to be the order-
preserving sequence of all actions in π with all the polarities ρ changed to ρ̃. For
convenience we rename the P1 and P2 in the precondition of Theorem 3 into P ◦

1 and
P ◦
2 , and the list c̄′ into c̄◦.

Construct the binary relation R as:

R = {(〈P1, π1〉, 〈P2, π2〉) | ∃P11, P12, P21, P22, π11, π12, π21, π22 :
ψ(P1, P2, P11, P12, P21, P22, π1, π2, π11, π12, π21, π22)},

where ψ(P1, P2, P11, P12, P21, P22, π1, π2, π11, π12, π21, π22) is the conjunction of the fol-
lowing clauses:

∀i ∈ {1, 2} : Pi ≡ (νc̄◦)(P1i|P2i) (1)
∀j, i ∈ {1, 2} : ∃π′ : δALL � 〈P ◦

j , �〉 −→∗ 〈Pji, π′〉 (2)
∀j ∈ {1, 2} : 〈Pj1, πj1〉 ∼

δALL
〈Pj2, πj2〉 (3)

knl(π1, π2) (4)
∀j ∈ {1, 2} : knl(πj1, πj2) (5)
∀c s.t. P(c) = L ∧ C(c) = H : ∀i ∈ {1, 2} : (6)

((∃ρ : (c, ρ) ∈ rch(P1) ∧ (c, ρ̃) �∈ rch(P2)) ⇒ πi ↓ c = π1i ↓ c ∧ π2i ↓ c = ε) ∧
((∃ρ : (c, ρ) ∈ rch(P2) ∧ (c, ρ̃) �∈ rch(P1)) ⇒ πi ↓ c = π2i ↓ c ∧ π1i ↓ c = ε) ∧
((∃ρ : (c, ρ) ∈ rch(P1) ∧ (c, ρ̃) ∈ rch(P2)) ⇒ π2i ↓ c = ˜π1i ↓ c ∧ πi ↓ c = ε)

518 X. Li et al.

We show that R qualifies as a δALL-bisimulation. Then SecδALL((νc̄◦)(P ◦
1 |P ◦

2))
will follow, since it holds that

ψ((νc̄◦)(P ◦
1 |P ◦

2), (νc̄◦)(P ◦
1 |P ◦

2), P ◦
1 , P ◦

1 , P ◦
2 , P ◦

2 , �, �, �, �, �, �),

and we thus have 〈(νc̄◦)(P ◦
1 |P ◦

2), �〉 R 〈(νc̄◦)(P ◦
1 |P ◦

2), �〉.
We omit further details.
�

References

1. Bossi, A., Piazza, C., Rossi, S.: Modelling downgrading in information flow security.
In: 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28–30
June 2004, Pacific Grove, CA, USA, p. 187 (2004)

2. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M., Rezk, T.: Session types for
access and information flow control. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 237–252. Springer, Heidelberg (2010)

3. Castellani, I.: State-oriented noninterference for CCS. Electron. Notes Theor. Com-
put. Sci. 194(1), 39–60 (2007)

4. Clarkson, M.R., Schneider, F.B.: Quantification of integrity. In: Proceedings of the
23rd IEEE Computer Security Foundations Symposium, CSF (2010)

5. Cohen, E.S.: Information transmission in computational systems. In: SOSP, pp.
133–139 (1977)

6. Focardi, R., Gorrieri, R.: Classification of security properties. In: Focardi, R.,
Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331–396. Springer, Hei-
delberg (2001)

7. Goguen, J.A, Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

8. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Inf.
42(4–5), 291–347 (2005)

9. Montagu, B., Pierce, B.C., Pollack, R.: A theory of information-flow labels. In:
2013 IEEE 26th Computer Security Foundations Symposium, New Orleans, LA,
USA, 26–28 June 2013, pp. 3–17 (2013)

10. Muller, S., Chong, S.: Towards a practical secure concurrent language. In: Proceed-
ings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2012, pp. 57–74 (2012)

11. Nielson, H.R., Nielson, F.: Safety versus security in the quality calculus. In: Liu,
Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods.
LNCS, vol. 8051, pp. 285–303. Springer, Heidelberg (2013)

12. Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Păsăreanu, C.S.,
Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg
(2013)

13. Rafnsson, W., Hedin, D., Sabelfeld, A.: Securing interactive programs. In: 25th
IEEE Computer Security Foundations Symposium, CSF 2012 (2012)

14. Sabelfeld, A., Mantel, H.: Static confidentiality enforcement for distributed pro-
grams. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp.
376–394. Springer, Berlin Heidelberg (2002)

15. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

Factorization of Behavioral Integrity 519

16. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17(5), 517–548 (2009)

17. Sangiorgi, D., Walker, D.: The Pi-Calculus - A Theory of Mobile Processes.
Cambridge University Press, UK (2001)

18. van Bakel, S., Vigliotti, M.G.: Note on a simple type system for non-interference.
CoRR, abs/1109.4843 (2011)

	Factorization of Behavioral Integrity
	1 Introduction
	2 Motivating Examples
	3 The Quality Calculus
	4 Noninterference for Behavioral Integrity
	5 Theoretical Properties
	6 Further Examples and Discussion
	7 Conclusion
	References

