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Abstract. Peer-assisted smartphone localization, which leverages pair-
wise acoustic ranging among nearby peer phones to refine location esti-
mation, significantly pushes the accuracy limit of WiFi-based indoor
localization. Unfortunately, this technique is designed for non-adversarial
settings. Dishonest peers may cheat in their distance measurements.
Outside attackers may interfere with the acoustic ranging by continu-
ally broadcasting interference signals. In this paper, we propose coun-
termeasures against each of these attacks. We first present an algorithm
that can identify peers that are not cheating in the current localiza-
tion, by searching for devices that can be embedded into the same plane
according to their pairwise distances. We also design a robust acoustic
ranging method exploiting signal modulation, which can defend effec-
tively against intentional interference of outside attackers. Experimental
results demonstrate that our countermeasures can greatly improve the
robustness of peer-assisted localization.

Keywords: Peer-assisted localization · Acoustic ranging · Attack
resistance · Smartphone

1 Introduction

Outdoor localization with smartphones is being widely used in our daily life.
Indoor localization, however, remains in the elementary stage. Although there
do exist many accurate indoor location mechanisms [3,8,16], they require either
special hardware not yet supported by smartphones, or infrastructures expen-
sive to deploy. Compared with them, WiFi-based localization, which leverages
radio signals of existing WiFi access points, is much cheaper to implement on
smartphones. Whereas current proposals [1,17,21,23,24] can only achieve room-
level accuracy. For example, according to the experiments of Liu et al. [13], the
errors of Fingerprinting Based Localization [2,17,23], which is one of the most
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popular WiFi localization technologies, may exceed 8 m. This is far from enough
for indoor localization.

Targeting this problem, Liu et al. [13] propose an interesting approach of
peer-phone assisted acoustic ranging to push the accuracy limit of WiFi based
localization on smartphones. This proposal mainly takes advantage of the high
accuracy of acoustic ranging (Measurement error can be confined below 5 cm
[15]) to eliminate large WiFi localization errors. Specifically, when a target phone
wants to improve its location accuracy, a group of nearby peer phones (includ-
ing itself) are made to emit sound signals according to the schedule of a central
server. They also make recordings in this process, and all the recorded sound
files are sent back to the server. The server analyzes these files to calculate pair-
wise distances among these peers based on the Time of Flight (ToF) approach,
and then uses the obtained relative positions of nearby phones as physical con-
straints to refine the WiFi-based location estimation of the target phone. Their
experiments show that this approach can reduce the maximum and 80 % errors
to 2 m and 1 m, respectively.

While such peer-phone assisted localization (PAL) is effective for
non-adversarial settings, it is vulnerable to various attacks that can significantly
reduce its high accuracy or even prevent it from working properly. First, PAL
relies on a group of peers that are not under the control of the server. It is hard to
guarantee that all of them are honest. Instead, they may cheat by emitting their
signals without following the server’s schedule (which we call emission attacks –
see Sect. 2.2), or by directly manipulating the uploaded sound files (which we
call tampering attacks – see Sect. 2.2), thus altering the distance measurements,
and so disrupt the final location estimation of the target phone. In addition,
current acoustic ranging can be easily interfered with by even outsider attacks:
The server in PAL has no ability to associate ranging signals detected from the
recorded data to their emitters except based on their present order. As a result,
if an attacker continuously broadcasts his interference signals during the rang-
ing process, the server may mistake the interference signals for legitimate ones
and then obtain false distance measurements. We call these attacks saturation
attacks (please see Sect. 2.2).

Location information is a critical input to a wide variety of high-level location-
based applications. Compromised localization results are a serious threat because
of their impacts on applications [4]. For example, indoor navigation applica-
tion may bring users to wrong ways and advertising applications may deliver
unmatched ads to users if localization results are compromised. So, in this paper,
we aim to achieve a secure PAL resistant to the three attacks we mentioned
above. Specifically, we make the following contributions:

We first study emission attacks. We show that when a peer launches this
kind of attack, all the distance measurements between him and other phones are
increased or decreased by the same value, which in theory makes this peer no
longer embeddable in the same plane with any three honest ones. We leverage
this observation to identify those peers having not performed emission attacks.
In particular, we prove that if we find greater than or equal to k +3 peers (here,
k is the number of dishonest peers) embeddable in the same plane according to
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their distance measurements, we can guarantee that none of them is launching
emission attacks.

Next, we consider the scenario involving tampering attacks. Dishonest peers
launch this kind of attack could manipulate any distance measurement involving
them to arbitrary values. We show that so long as we synchronize the clocks
of peers in advance, the above result for emission attacks also applies to this
scenario and the distance measurements among the k + 3 or more peers, which
can be embedded into the same plane, do not suffer from any emission attacks.

We thus present an algorithm in search of no fewer than k + 3 peers that
can be embedded in the same plane if they really exist. These phones are con-
sidered not cheating in the current localization. This algorithm has a worst-case
computational complexity polynomial in n – the total number of peers. Since
n is usually very small due to the limitation of the transmission range of beep
signals, this algorithm is extremely fast. In addition, to apply this algorithm to
the real world, we take ranging errors into consideration. We propose additional
mechanisms to reduce false positives and false negatives due to these errors.

After that, we propose a new correlation-based beep detection approach
that can well defend against saturation attacks during acoustic ranging. In this
approach, beep signals assigned to peers are produced by modulating distinct
pseudonoise (PN) codes on a sine carrier wave. Such modulations guarantee that
these signals are poorly cross-correlated. The server can then precisely identify
a specific beep from a recorded signal by searching for the earliest sharp peak of
the cross-correlation function between them. If attackers have no knowledge of
the PN codes, they have small chance of producing highly correlated beeps to
interfere with the beep detection.

We finally perform extensive experiments to demonstrate the real effects of
the above countermeasures. For the algorithm against dishonest peers, we show
that it can achieve a high detection rate of honest peers while produce very few
false positives. For the new correlation-based acoustic ranging method, we show
that it confines the ranging errors to the same level (below 20 cm) before and
after we introduce the saturation attack. By contrast, the errors of the existing
energy-based method may exceed 1 m facing this attack.

2 Peer Assisted Localization and Attacks

2.1 Review of Peer Assisted Localization

Peer Assisted Localization (PAL) proposed by Liu et al. [13] uses nearby phones
as reference anchors to push the limit of WiFi-based indoor localization. It
exploits the high accuracy of acoustic ranging. There can be many possible
designs of PAL protocols. To be specific, we use [13] as an example in this sub-
section and present attacks against it in Sect. 2.2. This technique includes the
following four steps:

(1) WiFi-Based Localization: Smartphones use traditional WiFi-based localiza-
tion techniques to roughly estimate their locations.
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(2) Peer Recruitment: When a target phone wants to refine his location, he has
to first broadcast a special audio signal to recruit a group of nearby peers.
All the phones receiving this signal will report themselves to a central server.

(3) Relative Acoustic Ranging Among Peers: The server creates a time schedule
to specify which device should emit a beep signal for ranging at what time.
Involved devices send beeps accordingly while also turn on their recording
function at the outset. All the recorded sound files are uploaded to the
server, which will compute the relative distances among peers by estimating
the sound travel time among them, and then construct a graph based these
distances.

(4) Location Refining: the server then refines the location estimation of the
target by superimposing the graph based on the relative distances among
peers onto the graph base on the WiFi localization. The final result is sent
back to the target.

We now review more details on the third step since most of our work below
focuses on the acoustic ranging process in this step. We first want to mention
that peer phones in this system are only responsible for emitting and record-
ing beeps, and all the signal processing and computation are carried out on
the server. This could avoid the inconvient peer-to-peer communication among
smartphones. Next, the high accuracy of the acoustic ranging is based on an
assumption that the server could precisely detect the earliest position of each
beep signal in the recorded sound files of peer phones, which is corresponding
to the arrival time of each beep signal on these phones. The server uses the
difference between the specified emission time and the detected arrival time to
estimate the distances between two phones.

There exist two methods to detect beep signals hidden in the sound files
[13,22]. The first one is correlation-based. It computes the cross-correlation (CC)
function of an emitted beep signal and a recorded signal. The first sharp peak
in this function is considered with a high probability to be corresponding to
the arrival time. The second method is energy-based. It generates beep signals
with stronger energy than the background noises. Thereby, the point before and
after which the energy distribution differs significantly is regarded as the arrival
point of a beep signal. Through extensive experiments, Liu et al. [13] employ the
second method due to its higher accuracy.

2.2 Attacks Against Peer Assisted Localization

As the current PAL system is designed for non-adversarial settings, it is highly
vulnerable to both insider and outsider attacks. We now analyze the possible
vulnerabilities of PAL and present the details of the attacks this research aims
to address.

Insider Attacks. As peers in PAL are recruited randomly from the neighbors
of the target and are beyond the control of the system, their behaviors are
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hard to predict. We mentioned earlier in this section that peer devices in PAL
are mainly responsible for signal emitting and recording. Dishonest peers may
launch attacks by cheating in either of them.

(a) An example of emission attacks (b) An example of tampering at-
tacks

Fig. 1. Attacks from dishonest peers

In the emission task, they may intentionally bring forward or delay their beep
emissions rather than follow the schedule of the server. The server computes the
distance between two devices by estimating the sound travel time between them.
Suppose that the server schedules peer Pi to emit his beep signal bi at time ETi.
Then, if Pi follows this schedule and really emits bi at time ETi, the server can
learn the true distance between Pi and Pj by computing dij = c(RTij − ETi)
provided that their clocks are synchronized. Here, c is the sound speed, and
RTij is the arrival time of bi at Pj , which is obtained by analyzing the audio
record uploaded by Pj . However, if Pi sends his beep (ranging) signal tδ earlier
or later than ETi as we show in Fig. 1(a), all the values of RTij(j = 1, 2, · · · , n)
will be tδ smaller or larger than the true value, respectively. As a result, all
the distances dij from Pi to other peers are decreased or increased by the same
value ctδ.

In the recording task, dishonest peers may manipulate their recorded signals
before sending them back to the server. Since the server learns RTij based on the
detected position of the related beep signal in the recorded data uploaded by Pj ,
if Pj intentionally modifies the position of this signal (e.g., swaps the positions of
this signal and a nearby noise window as we show in Fig. 1(b)), RTij will diverge
from its real value and the obtained distance will also be changed. We name such
kind of attacks tampering attacks. Compared with emission attacks, tampering
attacks are relatively more flexible: a dishonest peer could freely choose one or
several phones to change his distances to them without affecting other distances.

In addition, we assume that dishonest peers know their own locations in
advance and may collude with each other.

Outsider Attacks. Outsider attacks are mainly caused by another vulnera-
bility exists in the energy-based beep detection approach employed in acoustic-
ranging. As we show in Fig. 2, the arrival of a beep signal will significantly change
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Fig. 2. Detecting the arrival time of a
signal by identifying the energy salta-
tion point (circled in red) (Color figure
online)

Fig. 3. Event sequence in the acoustic
ranging algorithm of Beepbeep

the energy distribution of the recorded signal. This approach then locates ranging
beeps in the recorded signal by identifying the earliest saltation points (marked
by a red circle in Fig. 2) from where the energy distribution changes severely. It
has no way to tell the difference between beep signals emitted by different devices
but based on the assumption that the server’s schedule makes these beep sig-
nals touch every device in a pre-defined order. Consequently, this technique can
be easily fooled by interference signals from attackers even outside the system.
For example, if an attacker in the proximity emits a strong signal at the same
time when a peer emits his beeps, other peers may mistake the arrival of the
interference signal for the legitimate one.

We may alleviate this problem by encrypting the communications between
the server and the peers with individualized keys to prevent them and outside
attackers from knowing the emission time of other devices. However, attackers
may still obstruct the normal ranging with saturation attacks, i.e., constantly
emitting interference signals. Such attacks will make the audio files recorded by
peers full of energy saturation points. It is hard for the server to tell which one
of them is due to the arrival of a real ranging signal. In this research, we focus
on improving the PAL system to resist the above three attacks.

3 Countermeasure Against Insider Attacks

In this section, we first present countermeasures against insider attacks in an
ideal scenario without measurement errors in the acoustic ranging. We then
consider measurement errors to make our countermeasures more practical.

3.1 Countermeasure Against Emission Attacks

We first consider emission attacks, in which dishonest peers violate the server’s
schedule to bring forward or delay their beep emissions. We temporarily assume
that dishonest peers do not perform tampering attacks except those altering
distance measurements among themselves.
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A naive way to defeat emission attacks is to employ the acoustic ranging
algorithm of Beepbeep [15], which can reach an accuracy of 5 cm when there are
unintentional faults in the timing of emitting signals. Below we briefly explain
why this naive approach does not work when there are intentional attacks.

In this algorithm, the distance between two peers P1 and P2 is computed by

dP1P2 =
c

2
· (tb1 − ta1 + ta2 − tb2) +

dAA + dBB

2
, (1)

where c is the speed of sound and dxy is the distance between device x’s speaker
and device y’s microphone. Other notations are illustrated in Fig. 3. If P1 delays
his emission for tΔ due to unintentional faults, then both ta1, the arrival time of
his beep on P1, and tb1, the arrival time of the same beep on P2, are increased
by tΔ. These two increments will cancel each other out in Eq. 1, and we will
obtain the correct distance measurement between P1 and P2. In fact, the biggest
advantage of this mechanism is that many uncertainties including those due
to the lack of clock synchronization between devices can be eliminated in the
calculation.

Nevertheless, if P1 is an intentional attacker, he can easily bypass this coun-
termeasure by manipulating his recorded sound file to change the value of ta1
before uploading it. For instance, P1 can move a noise window of length tΔ after
the position of his ranging signal to its front in his recorded data, which will
result in an error of c/2 · tΔ in every distance measurement involving P1. Thus,
we require a more advanced mechanism to defend against this type of attack.

Our new mechanism aims to filter out false distance measurements due to
emission attacks. For simplicity, we present our theoretical analysis in a two-
dimensional scenario. This is reasonable because the peers in PAL are on the
same floor. In addition, we first assume the estimated distances among honest
peers are exactly equal to their real values and we will consider measurement
errors in the final algorithm design. Under these assumptions, we have the fol-
lowing lemma:

Lemma 1. For four peers in the same plane but not in the same line, if one
of them launches the emission attack while the other three keep honest, these
four peers cannot be embedded in the same plane according to their distance
measurements.

Please find the proof in the extended version. This leads to our first theorem:

Theorem 1. Let k be the maximum possible number of dishonest peers. Assume
that the target phone is not in the same line with any three peers, and there are
only emission attacks and no other attacks. If we can find m ≥ k + 3 peers
(including the target phone) that can be embedded into the same plane according
to distance measurements among them, none of them performs emission attacks.
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Please find the proof in the extended version. We may design an algorithm based
on Theorem 1 to identify a group of peers that do not launch emission attacks.
However, Theorem 1 does not consider tampering attacks. If dishonest peers are
allowed to perform tampering attacks, Theorem 1 is valid only when k < 3. We
explain the reasons below.

3.2 Countermeasure Against Tampering Attacks

In PAL, the emission schedule in PAL guarantees that the arrival sequence of
beep signals on each peer is exactly the same as the emission sequence. The
server leverages this property to distinguish among different beep signals. Unfor-
tunately, this property may also be exploited by dishonest peers. Two of them
with synchronized clocks could associate their recorded data to calculate the
time difference that the same beep touched them. Therefore, if there exist three
or more dishonest peers that know their own locations, they could cooperate
with each other to precisely locate every honest peer with TDoA localization
technique.

Once the dishonest peers know the exact locations of the honest peers, they
can further invalidate Lemma 1 and Theorem 1 by tampering with their recorded
sound signals. For instance, if P4 knows the positions of P1, P2 and P3, he can
easily predict the false distance measurements between him and these peers
due to his emission attack. He can then adjust these measurements by altering
the positions of corresponding beep signals in his recorded data to make them
consistent in the same plane again. Therefore, due to the presence of tampering
attacks, even if a peer can be embedded into the same plane with three honest
peers, he may still perform emission attacks without being detected. Lemma 1
works iff k < 3 in the presence of tampering attacks. When k < 3, since the
number of dishonest peers is not enough to position honest peers, they do not
know how to adjust their distance measurements to make them consistent in the
same plane.

We now present countermeasures against tampering attacks. Our proposal
requires that all the peers synchronize their clocks before the localization. A
possible solution is to use NTP (Network Time Protocol). There exists a free
Android application, ClockSync, which can synchronize system clocks of Android
devices with atomic time from local or remote NTP servers. If the user can use
the root mode, the accuracy can reach milliseconds based on the NTP server.

Since the server knows the scheduled emission time of every peer, he can
derive two distance estimations for each pair of peers (Pi and Pj): dij = c ·
(tij − tePi

) and dji = c · (tji − tePj
), where tij is the detected arrival time of

Pi’s ranging signal on Pj , and tePi
is the emission time of Pi. Once all the peers’

clocks are synchronized, the two estimations for the same pair should be very
close: if not exactly the same because of other local uncertainties of smartphones,
the difference will, at least, be much less than the error due to attacks. If they
are inconsistent (i.e. the difference between them is beyond some predefined
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threshold ε), we can conclude that at least one peer has lied. On the other
hands, however, if the two values are consistent, we cannot simply claim that
both phones are honest because they may have colluded with each other. Under
this assumption, we have the following theorem:

Theorem 2. Let k be the maximum possible number of dishonest peers. Assume
that there are Tampering Attacks in addition to Emission Attacks, but no other
attacks. If we can find m ≥ k + 3 peers (including the target phone) that can
be embedded into the same plane according to the distance measurements among
them, and if any three involved peers are not in the same line, then none of them
has performed any attack that affects the distance measurements among them.

Please find the proof in the extended version.
We design an algorithm based on Theorem 2 to identify a group of peers that

do not lie about the distances among them. This algorithm can always succeed
when the total number of peers (including the target phone) n ≥ 2k+3. Its basic
idea is to transverse triangles including the target phone (The total number of
such triangles is C(n − 1, 2)) until we find one that can be embedded into the
same plane with at least additional k peers. Specifically, for each triangle, we
first test whether it can be embedded into the same planes with R > k peers
(We name them candidate peers) separately. If so, we place this triangle into a
two-dimensional coordinate system by assigning the three peers coordinates con-
sistent with their distance measurements. Once we do like this, the coordinates
of the R candidate peers are also determined based on their distances to the
triangle vertexes. We compute the required lengths of edges between each pair
of the candidate peers and then remove those peers that the derived distance
measurements based on their uploaded sound files are contradicting to the corre-
sponding edge lengths. Afterwards, if the number of remained candidate peers is
greater than k, the algorithm succeeds. Otherwise, it tries the next triangle. Due
to the space limit, please find the pseudocode of this algorithm in Appendix.

It is easy to find that the worst-case time complexity of Algorithm 1 is O(n4).
Since n is very small in PAL (usually below 10), this algorithm can be fast enough
as you can see in Sect. 5. Once we identify these correct distance measurements,
we can execute the last step of PAL to precisely locate the target phone.

Our discussion has assumed that there is no measurement error in acoustic
ranging, which is obviously too ideal for the real world. Thus, to apply
Algorithm 1 into the real world, we have to consider how to tolerate measurement
errors. Due to the space limit, please find this part in Appendix.

4 Countermeasure Against Saturation Attacks

So far we have presented the countermeasures against insider attacks. We now
consider countermeasures against Saturation Attacks.
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As we pointed out in Sect. 2.2, the energy-based beep detection technique in
current PAL is a major reason for the existence of saturation attacks. Beepbeep
[15] uses a correlation-based technique, which is completely different from the
energy-based method, to detect the location of a specific beep signal within
a recorded signal. This technique has the potential to be extended to defend
against saturation attacks: so long as we can prevent attackers from producing
interference beeps that are highly correlated with ranging signals, they cannot
affect the normal beep detection in theory because non-correlated interferences
will not introduce noisy sharp peaks in the correlation functions with ranging
signals.

Beepbeep does not fully solve this challenge since security is not its major
focus. It makes all the ranging participants simply share the same ranging signal,
which leads to that even if we prevent the outside attackers from knowing this
signal, malicious peers inside can still launch saturations attacks to interfere with
the server. In this section, we aim to present a new correlation-based method
that can better resist saturation attacks.

4.1 Modulation-Based Beep Generation

Specifically, to resist the saturation attacks, we need beep signals that satisfy
the following requirements:

– Each beep signal is only assigned to one peer. Aside from this peer and the
server, it is infeasible for others to guess it in a short time.

– Beep signals have bad cross-correlation with each other or background noises.
It is also hard to create a signal that is highly cross-correlated with a beep
signal without knowing it.

– Each beep signal has a good auto-correlation property, which is critical for
countering multi-path effects.

We find that the modulation technique in Direct Sequence Spread Spectrum
(DSSS) [20], which is widely used in digital radio communication systems, can
help us generate our required signals. The basic idea is to produce beep signals
by using pseudonoise (PN) codes to modulate a sine sound-wave. For simplicity,
we use Binary Phase Shifting Key (BPSK) as our modulation strategy. The
correlation properties of the obtained signals are completely determined by PN
codes (i.e., binary sequences in BPSK). If we can find a family of PN codes that
satisfy the requirements above, the resulting signals hold similar properties.

We find that Maximum Length Sequences (M-Sequences) [20], which is a
special class of pseudo-random binary sequences generated with maximal linear
feedback shift registers, are ideal for such PN codes. An M-Sequence has a good
autocorrelation property: the autocorrelation function RA(τ) reaches its peak
when τ = 0, and as τ deviates from 0, RA(τ) drops quickly. As a result, if we
choose non-overlapped subsequences from the same M-Sequence as our PN codes
for modulation, they must satisfy the requirements of R2 and R3. In addition,
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Fig. 4. An illustration of the effects of random signal attenuation on the results of CC
functions (the peaks in red circles are due to the presence of ranging signals) (Color
figure online)

to guarantee R1, we can use an extremely long M-Sequence that can produce
a huge number of PN codes. For instance, if we use an M-Sequence of length
248 − 1 and suppose the length of the final PN codes is 256 bits (this length is
long enough according to our experiments), we can obtain a family of 240 PN
codes. Given such a huge space, it is infeasible for an attacker to guess a specific
code assigned to a peer.

4.2 Beep Detection

To detect a specific ranging signal from a recorded signal, we have to compute
their CC function and then search for the sharp peak of this function. This task
is not trivial due to the possible existence of some noise peaks, which are mainly
caused by the correlation noises of the ranging signal with background noises,
interference signals and the same signals due to the multi-path effect.

Because of the careful design of ranging signals, noise peaks due to back-
ground noises and interference signals are usually much lower than the desired
peaks due to real ranging signals. However, there are abnormal cases where noise
peaks suppress the true one when the strength of a ranging signal has become
very weak when it arrives at another peer. We show an example in Fig. 4(a). We
solve this problem by normalizing recorded signals before correlation. Specifi-
cally, when we compute the CC value of a recorded signal χ at time t with a
ranging beep, we first find the maximal signal power of χ within a window of
length 2d around t. Here, d is the length of the ranging beep. We then use this
maximum value to normalize the signal segment involved in computing the CC
value at t. Figure 4(b) shows the CC function after applying such normalization
for the abnormal case in Fig. 4(a). We see that its maximum peak now becomes
the one we desire.
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(a) Average time costs (b) Average detection
rates of peers who did
not cheat in the ranging

(c) Average rates of false
positives

Fig. 5. Performance of Algorithm 1 in experiments with real smartphones (φ is the
difference threshold to etermine whether two distance values between the same pair of
peers are consistent in the presence of measurement errors.)

Due to the existence of multi-path effects, the maximum peak we identify
now may still not correspond to the earliest time that a ranging signal touches
a phone. We deal with this problem with a simple method. We first locate the
maximum peak whose correlation value is Cm. We then compute all the correla-
tion values in a small window (500 samples) before the maximum peak and the
first one whose value is larger than 85%Cm is regarded as the earliest presence
point of the ranging signal.

5 Evaluation

We have performed extensive experiments to evaluate the effects of our proposed
countermeasures against the three attacks. We develop an Android application
responsible for the beep emission and recording, and deploy it on five different
Android smartphones: HTC G14, HTC G7, Motome 600 , HTC G12 and Coolpad
7260. All of them are equipped with two built-in speakers and one microphone
that support 44.1 kHz sampling rate. In all the experiments, we use the back
speaker and the microphone on every phone. We generate distinct beep signals
for each device based on the design in Sect. 4.1. Due to the space limit, we have
to put the detailed parameters for this process in the extended version.

To measure the distance between two phones, we make them emit their beep
signals at a random order. All their recorded files are then manually copied to a
desktop for analysis with a MatLab application that implements the automatic
beep detection and distance calculation. We do not implement the last step of
PAL because it depends on what WiFi localization technique that the peers use
and is also beyond the scope of this paper. We only aim to verify whether our
proposals can guarantee that all the distance measurements input into the last
step are true.
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(a) Average time costs (b) Average detection
rates of peers who did
not cheat in the ranging

(c) Average rates of false
positives

Fig. 6. Performance of Algorithm 1 in simulations with different numbers of dishonest
peers (the measurement error is uniformly distributed over [−ε, ε] and φ = 3ε)

(a) Average time costs (b) Average detection
rates of peers who did
not cheat in the ranging

(c) Average rates of false
positives

Fig. 7. Performance of Algorithm 1 (employing the patch in Appendix to filter false
positives) in simulations with different number of dishonest peers (The measurement
error is uniformly distributed over [−ε, ε] and φ = 3ε)

5.1 Evaluation of Algorithm1

We first evaluate the real performance of Algorithm1 against dishonest peers.
We conduct experiments in an empty room that is about 10m × 6m. We make
five students carrying smartphones stand inside a circle of 2 m radius. Their
topology is random but ensures line-of-sight between any two devices. Due to the
limitation of the penetrating power of the used ranging signal, we do not consider
the scenarios where some students stand in the corridor and some students stand
in the room. We make phones emit their assigned ranging signals in a random
order, and all their recorded data are uploaded to a desktop for analysis. We
repeat this process for five times and each time all the students change their
positions (i.e. topology). Therefore, we will obtain five groups of recorded signals.

Since we use Formula (1) to calculate distances, both emission and tampering
attacks are carried out by manipulating dishonest peers’ recorded signals, which
are collected earlier. For emission attacks, we move the signal window contain-
ing the dishonest peer’s ranging signal m samples ahead. For tampering attacks,
we simply insert a noise window of n samples immediately after the ranging
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signal. Here, both m and n are random values over [260, 780], which will produce
ranging errors over [1m, 3m]. Since the total number of peers is five, the maxi-
mum number of dishonest peer Algorithm1 can tolerate is one. For each group
of recorded data, we launch 100 emission attacks and 100 tampering attacks,
respectively. Each attack randomly selects one device as the dishonest peer and
another as the target peer. We perform the pairwise ranging with our matlab
application and can get 500 inputs for Algorithm1 for each kind of attack.

We then run Algorithm1 for each input and each value of φ, which is the
threshold for determining whether two distances are consistent, from 20 cm to
40 cm in steps of 5 cm. We have applied the patches for reducing FPs and FNs.
To filter out FPs, we use 2.6 m as the upper bound for the average distance of
an honest peer. The average detection rate of peers who did not cheat in the
ranging, and the average rate of false positives are plotted in Fig. 5(b) and (c),
respectively. We can see that the average detection rate exceeds 90 % in both
two attacks when φ is larger than 30 cm. The false positive rates are always small
enough to ignore. In addition, the average time cost is below 0.15 s and increases
slightly in φ.

Due to the limited number of smartphones available for experiments, the
above experiments only consider the scenario with three honest peers and one
dishonest peer. To better evaluate the performance of Algorithm1 with more
peers, especially more dishonest ones, we do further simulations using Java lan-
guage programs. We assume that there are 10 peer phones within an area of
4m × 4m and one of them is the target phone. We think it is difficult and
also meaningless to employ more peers in the real world. The positions of each
node is selected uniformly over the 4 m × 4 m area. Since the total number of
nodes is fixed to ten, the maximum number of dishonest nodes this algorithm
can tolerate is three. These dishonest peers are uniformly selected, and they are
made to perform emission attacks and tampering attacks concurrently: bidirec-
tional distance measurements between dishonest and honest nodes are enlarged
by the same value δ, which is a random value over [1m, 3m]. We also assume
the measurement error is uniformly distributed over [−ε, ε], and two distances
measurements between the same pair of nodes are thought consistent if and only
if their difference is within [−3ε, 3ε]. We make Algorithm 1 try all the possible
coordinate combinations of nodes in S1 to reduce false negatives.

We run this algorithm 1000 times for each value of ε from 0 cm to 20 cm in
steps of 4 cm and each possible value of k. In each run, all the nodes are assigned
new positions. Figure 6(a) shows that the average simulation time increases in
both k and ε. The reason for the first observation is obvious: a larger number of
dishonest peers makes the algorithm harder to find enough number of nodes that
can be embedded into the same plane. The reason for the second observation,
however, is not so straightforward. According to our analysis, the increase is due
to the fact that larger ranging errors usually bring more ambiguous nodes as
Fig. 9(a) shows, which are extremely time consuming to deal with.
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Fig. 8. Comparing the errors of the existing acoustic ranging approach in PAL and
our proposal under different environments

We plot the average detection rate, and the average false positive rate in
Fig. 6(b) and (c), respectively. We can see that Algorithm 1 works exactly the
same as we expect in the cases without measurement errors: it can identify all
the nodes that did not cheat in the ranging without bringing about any false
positives. However, when we introduce measurement errors, Algorithm 1 pro-
duces both FNs and FPs. As we have applied our measure for avoiding FNs, the
detection rate exceeds 90 % for all the cases except the one with three dishonest
peers and ε = 20 cm. The rate of FPs, however, is a little bit too high.

We then apply the patch mentioned in Appendix to reduce false positives:
we consider a node to be malicious if its average distance to other nodes exceeds
3.7m. We determine this threshold with extensive experiments. The new result
is plotted in Fig. 7. The false positive rates are now confined below 4 %, which
are much smaller that those in Fig. 6(c).

5.2 Evaluation of Countermeasures Against Saturation Attacks

We next evaluate the real effects of our acoustic ranging mechanism against
saturation attacks. We conduct ranging between HTC G7 and Coolpad 7260 in
the three indoor environments: (1) quiet, (2) quiet with Saturation Attack and
(3) Noisy with Saturation Attack. Please find the detailed information about
these environments in the extended version.

In all the experiments, we place two phones parallel to each other and back
to back. For each environment, we vary the distance between two phones among
1 m, 2 m and 3 m, and repeat each experiment for four times. Besides our pro-
posed correlation-based acoustic ranging, we also implement the energy-based
method proposed in [13] as the reference. We present the average and the maxi-
mum ranging errors of these two methods in Fig. 8(b) and (a), respectively. We



432 J. Hua et al.

see that the ranging errors of the existing energy-based method could exceed 1 m
in the latter two cases when two phones are placed 3 m apart. For our proposal,
however, we do not observe any big difference in the ranging errors between the
environments with and without saturation attacks or noises. All the measure-
ment errors are below 20 cm. We obtain similar results among other smartphones.
This well demonstrates that our modulation-based acoustic ranging could well
defend against the saturation attack.

In addition, the total signal processing time (i.e., compute the TOAs of the
two ranging signals within the two recorded signals) in our proposal is 0.73 s
on average. Although this value is much higher than 0.24 s in the energy-based
approach, it is still acceptable. According to our analysis, most of the time is
spent on the computations of the cross-correlation values. We may leverage the
emission time of each ranging signal to reduce this time.

6 Related Work

Our work is towards robust peer-assisted indoor localization by defending against
different kinds of attacks. Although PAL is novel, robust localization and ranging
are not new. Related theory and systems have been developed for a long time,
especially in the context of wireless sensor networks.

Most of current robust localization algorithms are designed for beacon-based
localization systems. These systems require the presence of special nodes, so-
called beacons or anchors, that know their own locations. Other nodes estimate
their locations by measuring their distances to a set of beacons. Robust local-
ization algorithms [10–12,18,25] then aims to enable a node to locate himself
precisely even if some beacons are malicious. However, these algorithms have a
premise that most of the beacons are still honest. For instance, Misra et al. [14]
prove that the minimum number of honest beacons required for exact localiza-
tion of the target in the presence of dishonest beacons is �n/2� + 2, where n is
the total number beacons. In our work, if we regard peer nodes as beacons, since
the errors of their rough locations from WiFi localization reach 4 m on average,
all of them can be regarded to have lied about their locations considering the
strict requirement of indoor localization on the accuracy. As a result, we cannot
directly use robust localization algorithms in this area. Compared with beacon-
based localization, the scenario of beacon-less localization [5,9,19] is much closer
to our problem. However, few of them consider security issues.

The last attack that we focus on is due to vulnerabilities in acoustic ranging.
Girod et al. [6,7] propose a robust acoustic ranging mechanism that cleverly
exploits signal modulation. Specially, the system is composed by a transmitter
and a receiver. The transmitter produces a distinct sound by modulating a sine
sound-wave with some special PN code. After the transmitter plays this sound,
the receiver detects the arrival time of this sound by searching for the first sharp
peak in the cross-correlation function between this sound and the recorded signal.
Using a known sound speed and the emission time, the distance travelling from
the transmitter and the receiver can be computed. While their work can work
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very well even in very obstructed or noisy environments, they only consider
the interference from background noises and reflections, and do not consider
intentional interference from attackers.

7 Conclusion

Peer-assisted localization (PAL) through acoustic ranging could significantly
improve the accuracy of WiFi localization. In this paper, we have studied the
problem of robust PAL in the presence of dishonest peers and outside attackers.
We first show that so long as the number of peers that can be embedded in the
same plane according to their distance measurements exceeds some threshold,
we can guarantee that none of them lies on these distances. We then present
an algorithm based on this principle to identify peers having not cheated in
the current localization, which can finish in polynomial time even in the worst
case. We also present a robust acoustic ranging mechanism that leverages signal
modulation to resist saturating interference from outside attackers. Extensive
experiment on real smartphones have demonstrated that our countermeasures
can greatly improve the robustness of peer-assisted localization.

Appendix

Practical Consideration of Measurement Errors

Our discussion has assumed that there is no measurement error in acoustic rang-
ing, which is obviously too ideal for the real world. Thus, to apply Algorithm1
into the real world, we consider how to tolerate measurement errors in this sub-
section.

Our solution is straightforward: facing measurement errors, Algorithm1
regards two different distance measurements between the same pair of peers,
or a distance measurement and its expected value, as consistent so long as their
difference is below some pre-defined threshold φ. We empirically set φ = 3ε,
where ε is the upper bound of the measurement error. Nevertheless, this mecha-
nism has a side effect that it can produce both false negatives and false positives.

(a) Source of false negatives (b) Source of false positives

Fig. 9. False positives and negatives of Algorithm 1

False negatives (FNs) refer to that some peers which did not cheat in the
ranging are falsely classified as dishonest by Algorithm1. They mainly occur
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Input: P1,2,··· ,n: n peer points
Pt: the target point
{dij |i, j ∈ {1, · · · , n, t}}: dij is the distance between Pi and Pj based on the
recorded data of Pj

1 for i = 0, · · · , n do
2 if dit is conflicting with dti then continue;
3 for j = i + 1, · · · , n do
4 if j − i > Malicousmax + 1 then break ;
5 if djt is conflicting with dtj or dij is conflicting with dji then continue;
6 Assign Pt, Pi and Pj two-dimension coordinates that meet their

side-length requirements ;
7 failCount = 0;
8 Define an empty set S1;
9 foreach Pk(k /∈ {i, j}) do

10 if Pk can be embedded in the plane of �PtPiPj then
11 compute the coordinates of Pk;
12 S1 = S1 ∪ {Pk};

13 end
14 else
15 failCount + +;
16 if failCount > n − 2 − Maliciousmax then break;

17 end

18 end
19 if Size(S1) < Maliciousmax then continue;
20 Define another empty set S2;
21 foreach Pa ∈ S1 do
22 if S2 is empty then
23 S2 ∪ {Pa};
24 Continue;

25 end
26 foreach Pb ∈ S2 do

27 Compute d′
ab =

√
(Pa.x − Pb.x)2 + (Pa.y − Pb.y)2;

28 if dba is consistent with d′
ab then S2 ∪ {Pa};

29 if dab is conflicting with d′
ab then S2 − {Pb};

30 end

31 end
32 if Size(S2) >= Maliciousmax then
33 Output S2 ∪ {Pi, Pj};
34 Stop the Algorithm;

35 end

36 end

37 end

Algorithm 1. Algorithm to identify true distances in the presence of emis-
sion attacks and tampering attacks
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in the special cases that the three vertices of the winning triangle ΔPiPjPt

in Algorithm 1 are either too close to each other or approximately in the same
straight line, which makes the algorithm determine false positions for some nodes
in the presence of measurement errors. We show an example in Fig. 9(a). Suppose
ΔP1P2P3 is the winning triangle and the algorithm is computing the coordinates
of P4 at line 11. We also assume that another node P ′

4 satisfies the condition:
dP4P1 = dP ′

4P1 and dP4P2 = dP ′
4P2 . Then, since P1, P2, P3 are almost collinear,

the distance measurement between P ′
4 and P3 can be even closer to dP4P3 than

the measurement between P4 and P3 in the presence of measurement errors. As
a result, the algorithm may assign the coordinates of P ′

4 to P4, which will lead to
contradictories at line 25 or 26 and then falsely classify P4 as a dishonest node.
We can solve this problem by recording both coordinates of such special nodes,
and then executing Line 21–31 for each possible coordinate combination of the
nodes in S1.

False positives (FPs) refer to that some dishonest peers which launched
attacks are falsely reported as honest by Algorithm 1. They are mainly caused
by dishonest nodes that are located on one side of the other nodes (i.e., not sur-
rounded by any triangles formed by other nodes), launching emission attacks.
We show a typical example in Fig. 9(b). Suppose P1, P2 and P3 are honest, while
P4 is dishonest and delayed his emission for some time. So, the three distance
measurements between P4 and the other three nodes are increased by the same
value, which is impossible in theory. However, when we move P4 further from
ΔP1P2P3, for example to the new position of P ′

4, the real increments of the three
distances are very close even if their absolute values are very large. Thus, in the
presence of measurement errors, these different changes may be approximated to
be equal, which leads to the fact that P4 can be accepted to be at some position
in the same plane of ΔP1P2P3.

We find that dishonest nodes causing FPs usually do not choose to shorten
their distance measurements. This is because the peer phones in PAL should be
in the vicinity in order to receive each other’s ranging signals. If the dishonest
peers not surrounded by other nodes shorten their distance measurements, they
are very likely to be falsely positioned at a place surrounded by some honest
peers, and so they can be captured. In addition, some distance measurements in
this case may even become minus, which is obviously ridiculous. Therefore, these
dishonest peers usually choose to enlarge their distance measurements. However,
since they are located on one side of the other nodes, their real average distances
to other nodes are already larger than those of normal nodes. If they further
enlarge their distance measurements, they will expose a larger anomaly. We
leverage this observation to add a patch to Algorithm1 to reduce false positives:
before we check the size of S2 at Line 32, we first remove each node whose
average distance measurement to other nodes exceeds some threshold.
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