
A Bytecode Interpreter for Secure Program
Execution in Untrusted Main Memory

Maximilian Seitzer, Michael Gruhn(B), and Tilo Müller

Department of Computer Science, Friedrich-Alexander University
Erlangen-Nürnberg, Erlangen, Germany

{maximilian.seitzer,michael.gruhn,tilo.mueller}@fau.de

Abstract. Physical access to a system allows attackers to read out RAM
through cold boot and DMA attacks. Thus far, counter measures protect
only against attacks targeting disk encryption keys, while the remaining
memory content is left vulnerable. We present a bytecode interpreter
that protects code and data of programs against memory attacks by
executing them without using RAM for sensitive content. Any program
content within memory is encrypted, for which the interpreter utilizes
TRESOR [1], a cold boot resistant implementation of the AES cipher.
The interpreter was developed as a Linux kernel module, taking advan-
tage of the CPU instruction sets AVX for additional registers, and AES-
NI for fast encryption. We show that the interpreter is secure against
memory attacks, and that the overall performance is only a factor of 4
times slower than the performance of Python. Moreover, the performance
penalty is mostly induced by the encryption.

Keywords: Coldboot · Secure computation · Encrypted bytecode

1 Introduction

Physical security has often been a weak point in the defense of computer
systems, especially mobile ones. Against physical access, software protection
methods are often no longer effective. Even though methods such as full disk
encryption can protect parts of the system, namely the hard disk, encryption
keys still reside in RAM. As it stands, encryption is not applied to RAM, which
makes memory attacks feasible today. A memory attack is a physical attack
that lets an adversary obtain a memory contents of the targeted running sys-
tem. One type of memory attack is known as the cold boot attack [2,3]. Cold boot
attacks exploit the data remanence effect [4] which says that data in RAM grad-
ually fades away and can be accessed for a short period of time after powering
off [5–7]. Another threat are DMA attacks. DMA attacks exploit the fact that
direct memory access allows external devices to directly interface with RAM,
without the operating system being involved [8,9].

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 376–395, 2015.
DOI: 10.1007/978-3-319-24177-7 19

A Bytecode Interpreter for Secure Execution 377

1.1 Motivation

As the spread of full disk encryption extends, and devices become more and
more mobile, the importance of memory attacks increases. Persons who use
encryption rely on their data to be protected against physical access, which hard
disk encryption alone cannot provide. Main memory can no longer be regarded
as a trusted resource because of cold boot and DMA attacks. Consequently, mul-
tiple counter measures have been developed to make disk encryption withstand
memory attacks. One approach is to run the encryption algorithm only on the
CPU without using memory [1,10,11]. Another solution are hard disks encrypt-
ing their data with a built-in crypto-module that stores keys securely in the disk
itself. However, all these solutions have in common that they protect only the
disk encryption key against main memory attacks. The memory contents of any
program currently executed rests unprotected in RAM. An attacker can exploit
this fact to obtain information about both, programs running on the target sys-
tem, and the data they are operating on. Therefore, solutions are required to
overcome the issue of sensitive data being openly accessible in RAM. Special
software solutions already exist to protect private keys [12,13] during computa-
tions. However, these solutions are limited to computations with private keys.
Hardware solutions such as Intel’s software guard extensions (SGX) [14] could
be used to protect RAM contents more generically. However, SGX has not been
released by Intel. Hence, we provide a software only solution to protecting RAM
contents during computations.

1.2 Contributions

To protect program code and data in RAM during computations, our contribu-
tions are as follows:

– We provide a Turing complete execution environment running on x86 com-
modity hardware, which allows program execution to treat RAM as untrusted.
To this end, we use a bytecode interpreter executing programs without directly
using RAM for code and data. This interpreter stores its state in CPU regis-
ters and uses RAM only to store encrypted data, effectively securing it against
memory attacks.

– We provide a proof-of-concept implementation of the interpreter targeting the
x86 architecture. It is delivered in form of a loadable kernel module compatible
with recent Linux kernels. The interpreter can be used as the central part of
a software-only trusted computing base.

– We evaluate the interpreter with regard to several attack types. Concerning
memory attacks, we show that the interpreter fulfills our goals and is fully
secure against those kind of attacks. Against attacks on the software level,
the interpreter provides a considerable security add-on that can protect the
confidentiality of executed programs even against attackers with root privi-
leges.

378 M. Seitzer et al.

– We benchmarked the interpreter against three other programming languages,
namely C, Java, and Python. The results show that C and Java are both
between one or two magnitudes faster than both Python and our interpreter,
which is not surprising considering that these languages utilize native code
execution. Between our interpreter and Python, the difference in performance
is much smaller, with Python being faster than the interpreter by an average
factor of 4.

1.3 Outline

In Sect. 2, the design and implementation of our interpreter is described. Sub-
sect. 2.1 introduces different parts the interpreter consists of, and how they inter-
act with each other. Subsect. 2.2 depicts where and how the interpreter manages
the state of an executed program. In Subsect. 2.3, we discuss how the encryption
algorithm of TRESOR [1] was adapted to fit our needs, and how encryption
is applied to the interpreter data. Subsect. 2.4 shows the steps the interpreter
goes through while executing a program. Our implementation is evaluated in
regards to several aspects of performance and security in Sect. 3. In chapter
Sect. 4 we review other solutions to protecting RAM contents during computa-
tion. Last, Sect. 5 contains a discussion about limitations and ideas for further
developments.

2 Implementation

In the following we describe the design and implementation of our interpreter.
While implementing the interpreter, we have to keep two security policies in
mind. First, we are not allowed to use main memory for any sensitive data,
as memory is considered untrusted. Second, we should not weaken the given
security of the system provided by TRESOR [1]. We solve the first challenge by
enforcing that any data is encrypted before it hits memory. The second task is
fulfilled by ensuring the confidentiality of the TRESOR key during interpreter
runtime.

2.1 General Interpreter Composition

In this section, we show what the different parts the interpreter consists of are,
what their purpose is, and how they interact. We do this by walking through
a program’s life cycle from being programmed over compilation and execution
to termination. The interpreter consists of three parts: the front-end, running
in user-mode, which takes encrypted binary programs as input and outputs the
results of the calculations, and the back-end, running in kernel mode, which
does the actual interpretation of the given encrypted program. Additionally, a
compiler tool is provided. It compiles programs from a simplified C dialect to
interpreter bytecode, and encrypts them afterwards. A general overview of the
layout is given by Fig. 1.

A Bytecode Interpreter for Secure Execution 379

user space kernel space

source code compiler AES implementation

results front-end back-end

interpreter-kthread

sy
s-

in
te

rf
a
ce

encrypted executable

bytecode

encrypted bytecode

encrypted executable

results
start kthread()

interpreter loop()

Fig. 1. The interpreter is separated into a compiler and front-end in user space, and a
back-end with the AES implementation in kernel space. The different parts communi-
cate over the kernel’s sys-interface. On program execution, the back-end starts a kernel
thread running the interpreter loop.

At first, the Linux kernel has to be booted up. At this point, TRESOR
asks for a password which is used to derive the encryption key. During the
system’s life time, every program created will be encrypted with this key, and
every program the interpreter executes will be decrypted with this key. After a
password is entered, a program to be executed can be created. For this task, a
simple programming language was devised to avoid having to program directly
in bytecode. This programming language is called “secure C-like language”. Its
files are called .scll. It is based on a reduced subset of C that lacks features such
as arrays and global variables. The grammar of SCLL is given in AppendixA.1.

A finished program is passed to the compiler to translate into bytecode.
After compilation, the bytecode is not yet ready for execution; to meet our
goal of secure execution, it has to be encrypted first. Encryption needs the
key which is stored in debug registers by TRESOR. Therefore the interpreter
back-end runs in kernel space and provides the necessary encryption facili-
ties; these are made accessible to user space programs through the kernel sys-
interface /sys/kernel/bispe/crypto. The compiler utilizes this and sends the
unencrypted bytecode through the sys-interface to kernel space, where it gets
encrypted with the currently set key. After getting back the encrypted bytecode,
the program is outputted as an encrypted executable file, now with the extension
.scle (for “secure C-like executable”).

In order to execute our encrypted program, the interpreter front-end is used.
The front-end acts as a user mode wrapper to the functionalities exported by the
back-end. After its call, the front-end invokes interpretation of the program by
passing the program to the back-end, again through the sys-interface. The sys-
entry for this is /sys/kernel/bispe/invoke. Alongside the program, additional
information is passed to the back-end, e.g. command line arguments and buffers
providing space for execution results. The front-end then blocks until the back-
end has finished execution of the program.

380 M. Seitzer et al.

Before execution begins, the back-end first has to initialize the execution
environment. Most notably, this means allocating the different memory segments
the interpreter uses. These are the code segment, the operand stack, and the call
stack. The just allocated code segment gets pre-filled with the encrypted pro-
gram. The different segments and their usage are described in detail in Sect. 2.2.
After initialization, the back-end creates a new kernel thread which runs the
interpretation. There are two reasons to use a kernel thread instead of starting
the interpretation directly in the back-end thread. First, it allows for clean signal
handling. If the user gets impatient and stops the front-end before the execution
is fully done, for instance with a SIGINT signal, the back-end must ensure that
all kernel memory is freed before returning back to user space. With a kernel
thread running the interpretation, the back-end thread just sleeps until execu-
tion is done, and if the sleep is interrupted by a signal, the kernel thread is issued
to stop execution. The kernel thread notices that it should stop, and releases all
allocated kernel memory. The second reason are future extensions: Currently,
only one interpretation can be run at a time. If the interpretation is executed as
a separate thread, it is easier to extend the program to allow multiple concurrent
interpretations in the future.

To begin execution, the kernel thread repeats the interpreter loop. The inter-
preter loop is described in detail in Sect. 2.4. If the program is either finished,
an error occurred, or the interpreter is ordered to cancel by the user, the loop
is stopped. The kernel thread wakes up the sleeping back-end, reports the exe-
cution results, and finally terminates. Back in the main thread, the execution
results get copied back to the front-end. Last, all allocated kernel resources are
released, and control flow returns to user space. The front-end unblocks, reads
out the execution results and potential output data is presented to the user.

2.2 Interpreter Memory Layout

This section details how the interpreter organizes the executed program’s mem-
ory, and in which way the encryption interacts with the data. The interpreter
is simulating a simple stack machine. This means that arithmetic and logical
instructions always take their operands from top of a stack structure, on which
they also put their computation results. The reason why a stack based inter-
preter is chosen over a register based one is that the bytecode instruction set
is simplified, even though register based interpreters have been found to offer
better performance [15].

The interpreter uses a unified word size of four byte for every instruction
and every data element, which simplifies data accesses. An instruction consists
of a four byte opcode and a four byte argument, if the instruction specifies
one. The unit by which the interpreter accesses memory is per row consisting of
16 byte. Every time the interpreter reads from memory, it reads in a full row, even
though the requested data is only of word size, because in memory, there is only
encrypted data. The AES algorithm, by which this data is en- and decrypted,
uses a block size of 16 byte. A program uses three memory segments during
its execution: the code segment, the operand stack segment, and the call stack
segment. Each segment’s start address is aligned to 16 byte.

A Bytecode Interpreter for Secure Execution 381

The code segment stores the code of the program. Before execution starts,
the encrypted bytecode is relocated to this segment. The interpreters instruction
pointer pointing into the code segment can be padded with random data before
encryption so an adversary can not deduce program flow from it.

Intermediate data is stored in the operand stack segment, with a stack pointer
pointing to the top of the stack. Every instruction that works on data expects
its arguments and leaves its result on the operand stack. The only exceptions are
load and store instructions which can transfer data between the operand stack
and variables. Subroutines leave their result on this stack.

The call stack segment stores function related data. Every time a subroutine
is called, a new stack frame is generated on top of the call stack. This frame
contains subroutine arguments, local variables, and the return address, which
is the address where execution is resumed after the subroutine ends. Like the
operand stack, the call stack has a pointer pointing to its top.

We now take a look at how data from the segments can be used by the
interpreter, although it rests encrypted in memory. To this end, throughout
runtime, a decrypted 16 byte slice of each segment is held in a so-called row
register, that is one of the 16 byte SSE registers. In case of the code and operand
stack segments, this slice is always the row the instruction or stack pointer
currently points to. For the call stack segment, it is the row which contains the
data element currently processed. Instructions can now process their required
data, because this data is always present in decrypted form.

When an element is requested from memory, the base address of the con-
taining row is calculated from which 16 byte are copied from memory to the
corresponding row register. The register gets decrypted and the data is almost
ready to be accessed. Before a bytecode instruction can actually use it, the ele-
ment needs to be extracted from the register row to a general purpose register.

Let us suppose an instruction has altered an element in some way and wants
to push that element on top of the operand stack. The element now takes the
inverse way back to memory. First, the stack pointer gets increased by four bytes
to make space for the new element. Second, the element gets inserted in the stack
row register at the four byte offset specified by the stack pointer, relative to the
base address of the row. Further instructions are processed until eventually the
stack pointer is increased so far that it exceeds the current row and points into a
new row. To make space for the new stack row, the current row register must then
be moved away to memory. This happens by encrypting the stack row register,
and saving it to the corresponding memory location. New data elements can
then be inserted in the empty stack row register. This procedure is largely the
same for the code and the call stack segment.

2.3 Encryption Scheme

The interpreter utilizes the AES-256 encryption and decryption routines pro-
vided by TRESOR. TRESOR uses the SSE registers to store the AES round
keys. However, this leaves no space for the interpreter state inside the SSE reg-
isters. Fortunately, with the introduction of the Advanced Vector Extensions

382 M. Seitzer et al.

rstate

rhelp

round key 0, round key 14

round key 1

round key 2

round key 3

round key 4

round key 5

round key 6

round key 7

round key 8

round key 9

round key 10

round key 11

round key 12

round key 13

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

TRESOR:
SSE register usage

127 XMM 0

unused

unused

unused

unused

unused

unused

unused

unused

round key 0

round key 1

round key 2

round key 3

round key 4

round key 5

round key 6

round key 7

rstate

rhelp

rhelp2

rhelp3

rcall row

rstack row

rinstruction row

unused

round key 8

round key 9

round key 10

round key 11

round key 12

round key 13

round key 14

unused

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

AES

AES

AES

AES

AES

AES

AES

AES

AES

interpreter

interpreter

interpreter

AES/interpreter

AES/interpreter

AES/interpreter

interpreter:
AVX register usage

255 YMM 127 XMM 0

Fig. 2. Modification of TRESOR’s register allocation to host the interpreter state.

(AVX), the size of the SSE registers was increased from 128 bits to 256 bits [16].
This allows us to place two round keys in each of the 256 bit registers, cutting
the amount of registers needed for round keys in half. Figure 2 displays how the
register distribution was changed from TRESOR to the interpreter, and also
which registers are used for encryption, and which for the interpreter.

The interpreter uses cipher block chaining (CBC) [17] as its cipher mode.
For both stack segments, the IV is created at runtime, directly after the seg-
ments were allocated, before execution start. The interpreter writes 128 ran-
dom bits to the beginning of the segment, obtained from the kernel function
get random bytes, which uses the Linux kernel’s internal pseudo random num-
ber generator (PRNG). For the code segment, the IV is determined at compile
time, from /dev/urandom, and it stays the same for the executable until a recom-
pilation occurs.

The crypto-routines of the interpreter are in backend/bispe crypto asm.S.
Programmatically,most ofTRESOR’s code couldbe carriedover, buta fewchanges
were made. Those changes mostly address access to the AVX registers instead of
SSE for key material. Further, the crypto module of the interpreter was extended
with routines to encrypt memory in CBC mode (bispe encblk mem cbc), as well
as encrypting a register in place (bispe encblk).

The implementation of the CBC mode for memory segments during runtime
is, in all but one case, trivial. The non-trivial case occurs because the call stack
segment allows writing to arbitrary elements; a saving of the call stack row
register to memory triggers a re-encryption from the changed block up to the

A Bytecode Interpreter for Secure Execution 383

end of the segment. As writes to the stack segment only target the frame of the
current function, however, the chain to be encrypted is short.

2.4 The Interpreter Loop

When executing a program, the interpreter has to repeat the same set of steps for
every instruction. The instruction specified by the instruction pointer is fetched
from memory and the interpreter performs the appropriate actions to execute the
instructions, based on the fetched opcode. Afterwards, the instruction pointer is
changed to point to the next instruction. These steps basically get repeated in
a loop until the program is finished.

Figure 3 lists the individual steps taken during the interpreter loop in a tex-
tual manner. Figure 4 shows a flowchart version of the process. The interpreter
splits up this loop in individual cycles – which are not to be confused with the
above mentioned fetch-execute cycle.

1. Begin atomic CPU section by disabling scheduling and interrupts.
2. Generate AES round keys in AVX registers.
3. Load program state to registers.
4. Repeat until cycle has ended or halt flag is set:

4.1. Extract opcode of current instruction from instruction row.
4.2. Jump to instruction routine specified by opcode.
4.3. Execute instruction routine.
4.4. Increase instruction pointer. If new instruction is not present in current in-

struction row, load and decrypt next instruction row from memory.
5. Save program state encrypted to memory, clear AVX registers.
6. End atomic CPU section by enabling interrupts and scheduling.
7. If halt flag is set or execution was stopped by the user, break interpreter loop.

Otherwise, go back to step 1.

Fig. 3. Individual steps the interpreter repeats during a cycle.

A cycle consists of multiple instructions executed subsequently. The amount
of instructions executed in one cycle is not fixed but user configurable. From
the outside, a cycle represents an atomic unit. Therefore, one cycle always runs
uninterruptible and even the kernel is not able to interrupt execution. This is
necessary to protect the integrity of both the program and the cipher key, as
during the cycle, the AVX registers hold decrypted program- and encryption
state, and these registers are principally free to access for any process.

Since the interpreter runs in kernel mode, it has access to kernel functions
which can create an atomic section. Preemptive kernel scheduling can be disabled
with the function preempt disable. To provide true atomicity, local irq save
has to be called for disabling interrupts.

At the beginning of a cycle, after an atomic section has been started, the
interpreter first derives the round keys from the cipher key and places them in
the round key registers. The next step is to load the program state into regis-
ters, so that the interpreter instructions can operate properly. This means that

384 M. Seitzer et al.

begin loop

begin
atomic
section

generate
AES

round keys

load
program

state

cycle end
or halt?

extract
opcode

execute
instruction

increase
instruction

pointer

decrypt
instruction

row

save
program

state

clear
registers

end atomic
section

stopped
by user
or halt?

end loop

false

if instruction
not present

true

false

true

Fig. 4. The different steps the interpreter repeats in the interpreter loop. One pass
represents an atomic cycle, in which program data and encryption state are protected
from leaking to memory.

for each segment, a row gets decrypted to the corresponding row register, as
described in Sect. 2.2. Internally, every segment pointer in memory is mapped
to a general purpose CPU register, e.g. the instruction pointer to register r11,
because these pointers have to be accessed often during program execution.
In the “load program state step”, the state pointers get loaded from memory
in their respective register. Then the interpreter is ready to process bytecode
instructions. The used technique is indirect threading ; each bytecode instruction
is represented by a single routine in backend/asm instructions.S. When one
of these routines gets executed, it simulates the bytecode instruction it repre-
sents on the programs state. The addresses of each of those routines are stored
in a jump table. To execute a bytecode instruction, the interpreter extracts the
opcode of the current instruction from the instruction row and calls the appro-
priate routine to process the instruction. In AppendixA.3, the functionality of
each bytecode instruction is explained.

After the instruction is finished, the instruction pointer gets updated to point
to the instruction to be executed next. Before a new instruction is executed,
however, it is checked if the amount of instructions executed in this cycle exceed
the specified maximum amount of instructions in one cycle or the halt flag was
set, e.g. by the special finish instruction, or due to the occurrence of a runtime
error, e.g. a division through zero, or a stack overflow. If either of this is the case,
the next instruction is not executed. Instead, the interpreter saves the current
program state to memory. This is done by encrypting the row registers and
saving them to memory. Additionally, the values of the state pointer registers
are written to their counterpart in memory again. Before the atomic section is
left again, it is important to reset the content of the AVX registers, before anyone
else can have access to them. At last, the atomic section is ended by activating
scheduling and interrupts again.

As the interpreter code itself is only executed during an atomic section, an
adversary has no way to observe and infer any knowledge from the rip instruc-
tion pointer pointing to interpreter code execution.

A Bytecode Interpreter for Secure Execution 385

However, when a subroutine within the interpreter code is called, the return
address is pushed on the stack. The leaked information about a single instruction
causes nearly no actual damage, but it is desirable to thwart even theoretical
attacks. The solution is to not use the call instruction directly but rather store
the current position in a register (%r9) and jump into the function. For return-
ing, instead of calling ret an indirect jump to an address stored in a register
(jmp *%r9) is used.

3 Evaluation

We evaluate our interpreter concept and its implementation with respect to two
criteria. In Subsect. 3.1, we discuss benchmarks comparing the performance of
the interpreter against other programming languages. And in Subsect. 3.2, we
deliver an analysis of the interpreter’s security against memory attacks, software
attacks, and hardware attacks.

3.1 Performance

In this section, we investigate the performance of our interpreter. Given the
interpreter’s design, a performance drop-off compared to other execution envi-
ronments must be expected due to encryption. The interesting question is how
big the difference in performance compared to other programming languages is.
To test this, benchmarks with four different language environments were per-
formed, one of them being our own bytecode interpreter. All benchmarks were
performed on an Intel Core i5-3570K CPU which supports AVX as well as AES-
NI. The operating system is Xubuntu Linux 14.04 with kernel version 3.8.2 and
TRESOR patch applied.

The other three languages (C, Java and Python) were selected to fit into
different kinds of execution types. As C compiles to machine code which can
be executed natively by the CPU, C should run the fastest among the tested
languages. The C programs have been compiled with GCC version 4.8.2. The
second language chosen is the Java language. Java represents the class of JIT-
compiled interpreted languages. Therefore, we expected Java to perform quite
well albeit a bit slower than C. The Java version used was OpenJDK 1.7.0 65.
The third and last language choice is the Python language, using the default
Python implementation in version 2.7.6. Python represents a simpler kind of
interpreter implementation. It uses no JIT compilation, and the source code
is parsed to bytecode just before execution. This makes Python a slower type
of interpreter, which makes its performance results closest to our interpreter’s
performance.

We benchmarked the following mathematical algorithms:

– the nth Fibonacci numbers
– the first n Prime numbers
– the Pascal triangle with n rows.

386 M. Seitzer et al.

0

2

4

6

8

10

SCLL Python Java C

se
co

n
d
s

Fibonacci, n = 35

SCLL Python C Java

Primes, n = 1000000

SCLL Python Java C

Pascal triangle, n = 23

w.o. encr.

8.775

1.953

0.079 0.048

1.394

9.829

3.406

0.1089 0.087

3.431

10.054

1.897

0.080 0.045

1.601

Fig. 5. The results of the language benchmark show that the interpreter is vastly
slower than C and Java, but still within performance reach of Python.

The implementation of the three algorithms in the interpreter’s language. It can
be found in AppendixA.2. The elapsed time of a program run has been measured
with the built-in time shell command of the Bash shell.

An additional property of the interpreter is that execution is divided in
atomic cycles. Each of these cycles creates a performance overhead. We tested
the exact influence of this setting on performance and have chosen the default
instructions per cycle value of the interpreter to be 2000. This was also the value
used for performance tests.

The benchmark results are listed in Fig. 5, with the results averaged out from
50 program runs. The column labeled “SCLL” contains the benchmark results
of our interpreter. A first overview shows roughly the same picture for all three
programs. As expected, the interpreter is slower than Python, and C and Java
perform both much faster than Python and SCLL. C and Java are between one
or two magnitudes faster – their bars in the figure are only barely visible. This
is owed to the power of native code execution, for Java enabled through JIT.
If we compare our interpreter to Python, we see that the interpreter performs
reasonably well. On average, SCLL is about a factor 4 slower than Python.

The influence of encryption on the interpreter’s performance is interesting,
and we decided to measure it explicitly. In Fig. 5, the results of this benchmark
are shown as striped bars within the SCLL bar. It is easy to see that encryption
takes up a major part of the interpreter’s runtime. On average, the interpreter
spends four fifth of the overall runtime with encryption.

If we contrast the individual programs, we can see that in respect to the
other languages, the interpreter performs best on the Primes program. Whereas
performance for Fibonacci and Pascal is similar, the ratio to the other languages
is the best for Primes. Looking for the reasons, we have to take a look at the
source codes of the programs (see Appendix A.2). We can see that Primes is
implemented purely iterative, Fibonacci recursive, and Pascal uses both itera-
tion and recursion. This indicates that recursive programs affect the interpreter’s
performance negatively. Recursion requires the repetitive use of function calls.

A Bytecode Interpreter for Secure Execution 387

Within each function call, a stack frame has to be allocated and freed which cre-
ates encryption overhead at the interpreter. In the Primes program, encryption
takes up two thirds of the running time, whereas for Fibonacci and Pascal, the
overall execution time is composed of five sixths of encryption time.

Summarizing, we have benchmarked the interpreter against three other pop-
ular programming languages: C, Java, and Python. The interpreter is slowed
down considerably by the overhead caused by encryption, and without it, the
performance of the implementation is on par with Python.

3.2 Security

The most important property of our interpreter is the security it can provide.
In Sect. 3.2, we show that the interpreter holds its designated goal and is secure
against attacks on memory such as cold boot attacks. We also discuss how far
the interpreter is protected against software attacks in Sect. 3.2 and investigate
possible weaknesses of the interpreter against hardware attacks in Sect. 3.2.

Protection Against Memory Attacks. As outlined in Sect. 2, great care has
been taken to ensure that no sensitive interpreter state or even encryption keys
are leaked into RAM. However, we now like to practically uphold this fact. To
this end, we perform memory scans of a system running the interpreter. We used
a Qemu/KVM virtual machine running Debian Linux with kernel version 3.8.2
(TRESOR patched) to obtain memory images.

Three memory dumps were taken at different times. The first without running
the interpreter at all, to compare if running the interpreter influenced the scan
results. Afterwards, the interpreter kernel module was loaded, and the inter-
preter ran the program calculating the Fibonacci numbers from the previous
section. The second memory dump was taken during the interpreter running the
program, and a third one after the Fibonacci program was executed a hundred
times. We searched the memory dump for both AES key schedule patterns as
well as cleartext patterns of bytecode programs that are decrypted by the inter-
preter. Only small matches could be found that can be attributed to coincidence,
because searching for any random pattern also yields matches of the same length.

These results indicate that neither debug registers nor AVX registers get
leaked to memory, which confirms the adherence of the interpreter’s security goal
to leak no sensitive data in memory. In sum, we can state that the interpreter’s
implementation protects executed programs against memory attacks.

Protection Against Software Attacks. Another interesting topic is the level
of protection the interpreter can provide for executed programs against attacks
on the software level. That is, the attacker model now switches from physical
access to logical access to the system the interpreter is running on.

One idea is to pick off the data during interpreter runtime when the inter-
preter is processing it in decrypted form. The interpreter holds decrypted data
in the segment row registers. If an attacker can continuously copy the content

388 M. Seitzer et al.

of those row registers, while the interpreter is running the program, a complete
picture of the program’s code can be reconstructed, as well as the data the pro-
gram is working with. This would, however, require outside access to the row
registers at the time they contain decrypted data. Since the row registers hold
decrypted data only within the atomic CPU section, this is not easily possible.
The atomic section prevents any other process that could read out the registers
from running on that CPU, and the atomic section can only be ended by the
interpreter itself – even the kernel can not interrupt it. Attackers with system
privileges can change the code of our kernel module such that no atomic section
is entered before interpretation.

Attackers with system privileges, however, also have another attack surface.
The encryption key is stored in the CPU debug registers at all times. Debug
registers are a privileged resource which means that ring 0, the kernel, can access
them. The debug registers are accessible for user space applications only through
the ptrace system call. TRESOR patches certain kernel code to make the debug
register inaccessible – the ptrace system call is patched to not return the debug
register content.

It is impossible for a non-privileged attacker to read out the debug registers.
Only an attacker with root privileges has more possibilities. By using a loadable
kernel module (LKM), or /dev/kmem, arbitrary code can be inserted into the
kernel and executed from within ring 0. In its current form, the interpreter is
vulnerable to attacks of this kind. To protect against this security flaw, the
TRESOR authors advise to compile the kernel without support for LKM and
/dev/kmem, as then even root attackers are unable to access the cipher key. For
now, the interpreter is designed as a LKM itself, but it would be possible to
change the module into a kernel patch, which would allow hard compiling the
interpreter into the kernel, while disabling support for LKMs. An attacker would
then be required to use some kind of kernel exploit that allows to execute code.
All in all, this would make the interpreter also resistant against most attacks on
the software level.

Protection Against Hardware Attacks. A simple hardware attack would
succeed if CPU registers keep their content after rebooting of the system. For-
tunately, according to the authors of TRESOR, this is not the case.

In our discussion of the interpreter’s resistance against attacks on memory,
we mostly had the cold boot scenario in mind. DMA attacks, however, are also
viable. Blass and Robertson [18] introduce an attack on CPU based encryption
systems, exploiting DMA to write malicious code to kernel memory. In fact,
the attack is named “TRESOR-Hunt” explicitly targeting TRESOR. Through
patching the interrupt descriptor table, the kernel is issued to execute a payload,
which is essentially a piece of code that dumps the debug registers to mem-
ory. After the cipher key is in memory, the attacker can obtain it via DMA.
This attack, however, can be defended by device whitelisting, to only allow
known devices to use DMA, or using a input/output memory management unit
(IOMMU) to block critical memory regions from DMA access.

A Bytecode Interpreter for Secure Execution 389

Physical access to the CPU also enables other kinds of attacks. The JTAG
interface of a microprocessor allows an engineer to debug the running processor
by connecting with the JTAG ports on the physical device. Some modern Intel
CPUs also expose JTAG ports on their surface, which can be used to read out
the debug registers. However, we are not aware of anyone successfully carrying
out such an attack.

4 Related Work

Different solutions for CPU bound encryption on x86 exist such as TRESOR [1]
and LoopAmnesia [11]. Also for ARM, a cold boot resistant implementation
named ARMORED [19] has been developed. However, CPU bound encryption
alone can only protect single encryption keys, which are mostly used as disk
encryption keys as explained above. In contrast, we want to protect entire pro-
grams and their data against memory attacks. One solution which comes into
mind for supporting the execution of encrypted programs is Frozen cache [10].
Frozen cache, however, must reserve the entire CPU cache which renders this
approach unfeasible as it slows down the overall system performance too much.

In the past, encrypted program execution has already been worked at in
different ways: Brenner et al. [20] have shown that secure program execution
would be possible with a fully homomorphic encryption scheme [21]. They focus
on securing programs in an untrusted environment, e.g. in cloud computing,
which is not the primary goal of this work. Another approach is to use full mem-
ory encryption [22,23], which would indeed protect programs against memory
attacks. However, software-based full memory encryption suffers from consider-
able performance drawbacks, while hardware-based full memory encryption is
not available for end-users. Duc and Keryell [22], for example, rely on their own,
special hardware architecture. [23] is restricted to ARM processors equipped
with security hardware, while [22] relies on its own, special hardware architec-
ture. Another memory encryption solution explicitly designed to mitigate cold
boot attacks is Cryptkeeper [24]. Unfortunately, on its own, Cryptkeeper poses
no viable solution because the encryption key itself is stored in clear in RAM.

Working special solutions are PRIME [12] and Copker [13]. However, they
are restricted to computations with private keys.

A possible future technology to solve the issues surrounding secure program
execution is Intel’s Software Guard Extensions (SGX) [14]. SGX allows appli-
cations to run in so-called enclaves, which are secure memory containers inac-
cessible by anyone but the application itself. To achieve this, enclave memory is
encrypted in hardware, with the encryption key stored securely in hardware. The
system is explicitly designed to both protect programs against memory attacks
and to enable running them securely in an untrusted environment. While being
announced by Intel in 2013, it is still unknown when the first CPUs supporting
SGX are released to the public.

Last but not least, this work was partially inspired by Breuer and Bowen [25].
They propose a “crypto-processor unit” (KPU) which instructions and data enter

390 M. Seitzer et al.

and leave encrypted only. While the concept is not practically feasible yet, the
underlying idea was useful to us in providing a generic software only protection
mechanism for code and data during computations.

5 Conclusion and Future Work

In this chapter, we draw conclusions about our developed bytecode interpreter
for secure program execution. In the previous chapters, we evaluated the inter-
preter regarding performance and security. We summarize the found limitations
in Sect. 5.1. In Sect. 5.2, we present future tasks and investigations that can
be pursued to further extend the interpreter’s scope of applicability. Finally, in
Sect. 5.3, we summarize the work done in this thesis and draw a conclusion about
the overall applicability of our interpreter concept.

5.1 Limitations

Currently, the developed bytecode language supports only a narrow set of fea-
tures. However, we have not yet found any obstacles caused by the interpreter’s
design which will impede future integration of common programming language
features.

5.2 Future Work

In this section, we present some possible future developments. A certainly worth-
while goal is to extend the bytecode language to be fully compatible with the
C language. This would make encrypted program execution through the inter-
preter widely applicable, as many programs are written in C, and several other
programming languages can be compiled to C. The longterm goal is to be able
to securely run everyday software, like text editors, browsers, and mail-, or office
programs through the interpreter.

Usability must also be increased. Currently, a program can be executed and
encrypted only with a single key; and for changing the key, the system has to
be rebooted, which is quite inconvenient. It would be desirable, that the user
is able to specify a password to use for encryption at compilation, and to enter
that password again for execution. To implement this, the user password must
be scrambled with the master key set by TRESOR.

Advances in performance can be gained by Intel’s AVX-512 instruction set.
AVX-512 increases the amount of SIMD registers to 32, and the register width
to 512 bits, which yields four times more available register space than AVX has.
The interpreter can use the additional space for caching. AVX-512 also brings
many new assembler instructions, which may allow simplifying the code of the
current implementation, yielding performance gains as well.

There are further cipher modes that also guarantee authenticity of the
encrypted data, but that can be more complex to implement, so the interpreter
currently limits itself to CBC. If it turns out that other cipher modes are needed,
they can be integrated in the future.

A Bytecode Interpreter for Secure Execution 391

5.3 Conclusion

Physical security has always been a weak point in the defenses of computer sys-
tems, especially mobile systems. Regardless of software protection measures, the
data of a stolen laptop can easily be obtained by reading out the hard disk. As
full disk encryption became common and closed a simple attack vector, attacks
moved a level lower, targeting the disk encryption keys within the unencrypted
RAM instead. Several kind of attacks on memory have been shown viable. Exe-
cuting programs outside memory, using memory only for encrypted data, would
protect sensitive user data against memory attacks.

In this work, we have shown how encrypted program execution is feasible
when treating main memory as untrusted. The design consists of an interpreter
which executes encrypted bytecode programs without using RAM for sensitive
data. The program’s bytecode and data is held decrypted only within CPU
registers that are processed by the interpreter.

We provide a working proof-of-concept implementation for the x86 archi-
tecture, in form of a kernel module for the Linux kernel. Our proof-of-concept
implementation supports a simple bytecode language, but we have shown that
the concept can be extended to include more features soon.

To analyze the interpreter’s resistance against memory attacks, several mem-
ory dumps were taken and scanned for patterns of encryption keys, round keys
as well as code and data of executed programs. A significantly long byte pat-
tern, that would indicate the interpreter leaking to memory, could not be found
in any case. Furthermore, this result is strengthened by the fact that the inter-
preter uses the same protection approach as TRESOR which was thoroughly
controlled before. The interpreter resists attacks on the software level as long as
the attacker has no ring 0 privileges, as then the debug registers are no longer a
secure storage for cryptographic keys. Without further measures, the interpreter
is vulnerable to a special DMA attack [18], which inserts malicious code into
the kernel to obtain keys. This attack can be mitigated by restricting DMA, as
supported by recent Linux kernels.

Acknowledgement. This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Centre “Invasive Comput-
ing” (SFB/TR 89).

A Appendix

A.1 SCLL Grammar

Listing 1.1. Grammar of SCLL in Extended Backus-Naur Form.

i n t e g e r = d ig i t , { d i g i t } ;
i d e n t i f i e r = (l e t t e r | ’ ’) , { (l e t t e r | d i g i t | ’ ’) } ;
type = ’ void ’ | ’ int ’ ;
num op = ’+ ’ | ’− ’ | ’∗ ’ | ’/ ’ | ’% ’;
boo l op = ’==’ | ’ != ’ | ’> ’ | ’< ’ | ’<=’ | ’>=’ ;
f c a l l a r g l i s t = [express ion , ’ , ’ , [f c a l l a r g l i s t]] ;
f c a l l = i d e n t i f i e r , ’ (’ , f c a l l a r g a r g l i s t , ’) ’ ;

392 M. Seitzer et al.

expre s s i on = (f c a l l
| i d e n t i f i e r
| [’ − ’] , i n t e g e r
| ’ (’ , express ion , ’) ’) , [num op , expre s s i on] ;

va r de f = type , i d e n t i f i e r , [’= ’ , expre s s i on] ;
v a r a s s i gn = i d e n t i f i e r ’= ’ expre s s i on ;
p r in t = ’ pr int ’ , expre s s i on ;
return = ’ return ’ , [expre s s i on] ;
cond = express ion , bool op , expre s s i on ;
branch = ’ i f ’ , ’ (’ , cond , ’) ’ , ’{ ’ , sequence , ’} ’ ,

[’ e l s e ’ , ’{ ’ , sequence , ’} ’] ;
loop head = (va r de f | va r a s s i gn) , cond , va r a s s i gn ;
loop = ’ while ’ , ’ (’ , cond , ’) ’ , ’{ ’ , sequence , ’} ’

| ’ for ’ , ’ (’ , loop head , ’) ’ , ’{ ’ , sequence , ’} ’
| ’ do ’ , ’{ ’ , sequence , ’} ’ , ’ while ’ , ’ (’ , cond , ’) ’ , ’ ; ’ ;

statement = (va r de f | va r a s s i gn | f c a l l | pr in t | return) ’ ; ’ ;
sequence = (statement | branch | loop) , [sequence] ;
a rgde fnce = type | i d e n t i f i e r ;
a r g l i s t = argdef , [’ , ’ , a r g l i s t] | ’ void ’ ;
func = type , i d e n t i f i e r , ’ (’ , a r g l i s t , ’) ’ , (’{ ’ , sequence , ’} ’ | ’ ; ’) ;
program = [func , program] ;

A.2 Source Codes

In this section, the SCLL source codes of programs that were used to evaluate
our work are listed. In particular, the programs 1.2, 1.3, and 1.4 were used in
benchmarking (Fig. 6).

Listing 1.2. Program calculating the n’th Fibonacci number.

i n t f i b (i n t i) ;

i n t f i b (i n t i) {
i f (i == 1) return 1 ;
i f (i == 2) return 1 ;
return f i b (i −1) + f i b (i −2);

}

void main (in t n) {
pr in t f i b (n) ;

}

Listing 1.3. Program calculating the primes to primes.

void pr int pr ime (in t p) {
i f (p % 2 == 0) return ;

f o r (i n t i = 3 ; i ∗ i <= p ; i = i + 2) {
i f (p % i == 0) return ;

}
pr in t p ;

}

void main (in t primes) {
f o r (i n t i = 2 ; i <= primes ; i = i + 1)

pr int pr ime (i) ;
}

Listing 1.4. Program calculating the pascal triangle with max row rows.

i n t binom(in t n , i n t k) ;

i n t binom(in t n , i n t k) {
i f (k == 0) return 1 ;
i f (n == k) return 1 ;
return binom(n−1, k−1) + binom(n−1, k) ;

}

void main (in t max row) {
f o r (i n t n = 0 ; n < max row ; n = n + 1) {

f o r (i n t k = 0 ; k < n+1; k = k + 1)
pr in t binom(n , k) ;

}
}

A Bytecode Interpreter for Secure Execution 393

A.3 Bytecode Language

opcode mnemonic argument operand stack: before →
after

description

0 nop perform no operation

1 finish halt execution

2 push value
→ value

push integer value on the stack

3 print value → write value to output buffer

4 load index
→ value

load value from local variable at index

5 store index value → save value to local variable at index
6 add value1, value2 → result add two integers, r = v2 + v1

7 sub value1, value2 → result subtract two integers, r = v2 - v1

8 mul value1, value2 → result multiply two integers, r = v2 * v1

9 div value1, value2 → result divide two integers, r = v2 / v1

10 mod value1, value2 → result remainder of two integers, r = v2 % v1

11 jmp address jump to instruction at address
12 jeq address value1, value2 → if value2 is equal to value1, jump to instruction at address
13 jne address value1, value2 → if value2 is not equal to value1, jump to instruction at address
14 jl address value1, value2 → if value2 is less than value1, jump to instruction at address
15 jle address value1, value2 → if value2 is less than or equal to value1, jump to instruction at address
16 jg address value1, value2 → if value2 is greater than value1, jump to instruction at address
17 jge address value1, value2 → if value2 is greater or equal to value1, jump to instruction at address
18 call address call subroutine at address
19 ret return from subroutine

20 prolog amount allocate space for amount elements on the call stack (subroutine prolog)

21 epilog amount free space of amount elements on the call stack (subroutine epilog)

22 argload index save command line argument index to local variable at index

Fig. 6. Complete listing of all bytecode instructions.

References

1. Müller, T., Freiling, F.C., Dewald, A.: Tresor runs encryption securely outside
ram. In: Proceedings of the 20th USENIX Conference on Security (SEC 2011), pp.
17–17. USENIX Association, Berkeley (2011)

2. Alex Halderman, J., Schoen, S.D., Clarkson, W., Heninger, N., Paul, W.,
Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remem-
ber: cold-boot attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009).
doi:10.1145/1506409.1506429

3. Gruhn, M., Müller, T.: On the practicability of cold boot attacks. In IEEE Con-
ference Publications, editor, Eighth International Conference on Availability, Reli-
ability and Security (ARES), pp. 390–397 (2013)

4. A Guide to Understanding Data Remanence in Automated Information Systems.
NCSC-TG-025, National Computer Security Centre, Sep 1991

5. Gutmann, P.: Data remanence in semiconductor devices. In: Proceedings of the
10th Conference on USENIX Security Symposium, SSYM 2001, vol. 10. USENIX
Association, Berkeley (2001)

6. Skorobogatov, S.: Low temperature data remanence in static RAM. Technical
report UCAM-CL-TR-536, University of Cambridge, Computer Laboratory, Jun
2002

http://dx.doi.org/10.1145/1506409.1506429

394 M. Seitzer et al.

7. Wyns, P., Anderson, R.L.: Low-temperature operation of silicon dynamic random-
access memories. IEEE Trans. Electron. Devices 36(8), 1423–1428 (1989). doi:10.
1109/16.30954, ISSN 0018–9383

8. Becher, M., Dornseif, M., Klein, C.N.: FireWire: all your memory are belong to us.
In: Proceedings of CanSecWest Applied Security Conference, Vancouver, British
Columbia, Canada (2005)

9. Carrier, B.D., Grand, J.: A hardware-based memory acquisition procedure for dig-
ital investigations. Digital Invest. 1(1), 50–60 (2004)

10. Pabel, J.: Frozen cache, Jan 2009. http://frozenchache.blogspot.com
11. Simmons, P.: Security through amnesia: a software-based solution to the cold boot

attack on disk encryption. In: Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC 2011, pp. 73–82. ACM, New York (2011). ISBN
978-1-4503-0672-0

12. Garmany, B., Müller, T.: PRIME: private RSA infrastructure for memory-less
encryption (best paper award). In: Applied Computer Security Associates (ACSA)
and ACM (eds.) Proceedings of the 29th Annual Computer Security Applications
Conference (2013)

13. Guan, L., Lin, J., Luo, B., Jing, J.: Copker: Computing with private keys without
ram. In: Network and Distributed System Security Symposium (NDSS) (2014)

14. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated
execution. In: Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, HASP 2013, pp. 10:1–10:1. ACM,
New York (2013). doi:10.1145/2487726.2488368, ISBN 978-1-4503-2118-1

15. Shi, Y., Casey, K., Anton Ertl, M., Gregg, D.: Virtual machine showdown: stack
versus registers. ACM Trans. Archit. Code Optim. 4(4), 2:1–2:36 (2008). doi:10.
1145/1328195.1328197, ISSN 1544–3566

16. Lomont, C.: Introduction to Intel Advanced Vector Extensions. Intel Corporation,
Jun 2011

17. National Institute for Standards and Technology. Recommendation for Block
Cipher Modes of Operation, NIST Special Publication 800–38A edition, Dec 2001

18. Blass, E.-O., Robertson, W.: TRESOR-HUNT: attacking CPU-bound encryption.
In: Proceedings of the 28th Annual Computer Security Applications Conference,
ACSAC 2012, pp. 71–78. ACM, New York (2012). doi:10.1145/2420950.2420961,
ISBN 978-1-4503-1312-4

19. Götzfried, J., Müller, T.: ARMORED: CPU-bound encryption for android-driven
ARM devices. In: Proceedings of the 2013 International Conference on Availabil-
ity, Reliability and Security, ARES 2013, pp. 161–168. IEEE Computer Society,
Washington, DC (2013). doi:10.1109/ARES.2013.23, ISBN 978-0-7695-5008-4

20. Brenner, M., Wiebelitz, J., von Voigt, G., Smith, M.: Secret program execution
in the cloud applying homomorphic encryption. In: 2011 Proceedings of the 5th
IEEE International Conference on Digital Ecosystems and Technologies Conference
(DEST), pp. 114–119, May 2011. doi:10.1109/DEST.2011.5936608

21. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

22. Duc, G., Keryell, R.: CryptoPage: an efficient secure architecture with memory
encryption, integrity and information leakage protection. In: 22nd Annual Com-
puter Security Applications Conference, ACSAC 2006, pp. 483–492, Dec 2006.
doi:10.1109/ACSAC.2006.21

http://dx.doi.org/10.1109/16.30954
http://dx.doi.org/10.1109/16.30954
http://frozenchache.blogspot.com
http://dx.doi.org/10.1145/2487726.2488368
http://dx.doi.org/10.1145/1328195.1328197
http://dx.doi.org/10.1145/1328195.1328197
http://dx.doi.org/10.1145/2420950.2420961
http://dx.doi.org/10.1109/ARES.2013.23
http://dx.doi.org/10.1109/DEST.2011.5936608
http://crypto.stanford.edu/craig
http://dx.doi.org/10.1109/ACSAC.2006.21

A Bytecode Interpreter for Secure Execution 395

23. Henson, M., Taylor, S.: Beyond full disk encryption: protection on security-
enhanced commodity processors. In: Jacobson, M., Locasto, M., Mohassel, P.,
Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 307–321. Springer,
Heidelberg (2013)

24. Peterson, P.A.H.: Cryptkeeper: Improving security with encrypted RAM. In: 2010
IEEE International Conference on Technologies for Homeland Security (HST), pp.
120–126, Nov 2010. doi:10.1109/THS.2010.5655081

25. Breuer, P.T., Bowen, J.P.: A fully homomorphic crypto-processor design: correct-
ness of a secret computer. In: Jürjens, J., Livshits, B., Scandariato, R. (eds.) ESSoS
2013. LNCS, vol. 7781, pp. 123–138. Springer, Heidelberg (2013)

http://dx.doi.org/10.1109/THS.2010.5655081

	A Bytecode Interpreter for Secure Program Execution in Untrusted Main Memory
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline
	2 Implementation
	2.1 General Interpreter Composition
	2.2 Interpreter Memory Layout
	2.3 Encryption Scheme
	2.4 The Interpreter Loop

	3 Evaluation
	3.1 Performance
	3.2 Security

	4 Related Work

	5 Conclusion and Future Work
	5.1 Limitations
	5.2 Future Work
	5.3 Conclusion

	A Appendix
	A.1 SCLL Grammar
	A.2 Source Codes
	A.3 Bytecode Language
	References

