
Accountable Authority Ciphertext-Policy
Attribute-Based Encryption with White-Box
Traceability and Public Auditing in the Cloud

Jianting Ning1, Xiaolei Dong2(B), Zhenfu Cao2(B), and Lifei Wei3

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China
jtning@sjtu.edu.cn

2 Shanghai Key Lab for Trustworthy Computing, East China Normal University,
Shanghai 200062, China

{dongxiaolei,zfcao}@sei.ecnu.edu.cn
3 College of Information Technology,

Shanghai Ocean University, Shanghai 201306, China
Lfwei@shou.edu.cn

Abstract. As a sophisticated mechanism for secure fine-grained access
control, ciphertext-policy attribute-based encryption (CP-ABE) is a
highly promising solution for commercial applications such as cloud com-
puting. However, there still exists one major issue awaiting to be solved,
that is, the prevention of key abuse. Most of the existing CP-ABE sys-
tems missed this critical functionality, hindering the wide utilization and
commercial application of CP-ABE systems to date. In this paper, we
address two practical problems about the key abuse of CP-ABE: (1)
The key escrow problem of the semi-trusted authority; and, (2) The mali-
cious key delegation problem of the users. For the semi-trusted authority,
its misbehavior (i.e., illegal key (re-)distribution) should be caught and
prosecuted. And for a user, his/her malicious behavior (i.e., illegal key
sharing) need be traced. We affirmatively solve these two key abuse prob-
lems by proposing the first accountable authority CP-ABE with white-
box traceability that supports policies expressed in any monotone access
structures. Moreover, we provide an auditor to judge publicly whether a
suspected user is guilty or is framed by the authority.

Keywords: Attribute-based encryption · Ciphertext-policy · Key abuse ·
White-box traceablity · Public auditing

1 Introduction

As a new commercial and exciting paradigm, cloud computing has attracted much
attention from both industrial and academic world. Due to the advantage of cloud
computing, plenty of enterprises and individuals can share and outsource their
data to cloud servers instead of building and maintaining data centers of their own,
and themselves or other authorized users can access the outsorced data anywhere
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 270–289, 2015.
DOI: 10.1007/978-3-319-24177-7 14

Accountable Authority CP-ABE with WT and PA in the Cloud 271

and anytime [1]. Despite lots of benefits provided by cloud computing, the con-
cerns on data security are probably the main obstacles hindering the wide usage of
cloud services. To address the data security concerns, encryption has been applied
on the data of enterprises and individuals before outsourcing. Nevertheless, in
some practical applications of cloud computing, data is often shared with some
potential users without knowing who will receive it, thus a fine-grained access con-
trol over data is desired. Attribute-Based Encryption (ABE, [13]) is a promising
approach to protect the confidentiality of sensitive data and express fine-grained
access control for cloud computing. In a CP-ABE system, enterprises and indi-
viduals can specify access policies over attributes that the potential users possess.
And the data customers whose attributes satisfy the specified access policy can
decrypt successfully and get access to the outsourced data.

A Motivating Story. Consider a company employs a cloud storage system to
outsource its data after encrypting the data under some access policies. Each
employee is assigned with several attributes (such as “manager”, “engineer”,
etc.). And those whose attributes satisfy the access policy over the outsourced
data could decrypt the ciphertext and get access to the sensitive data stored in
the cloud. As a versatile one-to-many encryption mechanism, CP-ABE system
is quite suitable in this cloud storage scenario. If it happens to exist an employee
from the company’s competitor who is not authorized but could get access to
the sensitive data stored in the cloud, as such, the company will suffer severe
financial loss. Then, who leaks the decryption key to him? In addition, if an
employee from the company named Bob is traced as the traitor (who leaks the
decryption key) but claims to be innocent and framed by the system, then how
to judge whether Bob is indeed innocent or not? Does Bob have an opportunity
to argue for himself?

The problems, as described above, are the main obstacles when CP-ABE is
implemented in cloud storage service. In a CP-ABE system, a user’s decryption
key is issued by a trusted authority according to the attributes the user possesses.
The authority is able to generate and (re-)distribute decryption keys for any user
without any risk of being caught and confronted in a court of law. Thus the secu-
rity of a CP-ABE system relies heavily on trusting the authority. It is actually
the key escrow problem in CP-ABE. One approach to reduce this trust is to
employ multiple authorities [8,16,19]. However, this approach inevitably causes
additional communication and infrastructure cost, and the problem of collusion
among collaborating authorities remains. It is better to adopt the accountable
authority approach to mitigate the key escrow problem in CP-ABE. The prob-
lem described above is the key abuse problem of authority. There exists another
kind of key abuse problem: the key abuse problem of users. In a CP-ABE system,
the decryption keys are defined over sets of attributes shared by multiple users.
The misbehavior users may illegally share their decryption keys with others for
profits without being detected. It is actually the malicious key delegation prob-
lem. It is necessary to trace the malicious users who leak their decryption keys
illegally. Moreover, if a user is traced to be malicious (for leaking the decryption
key) but claims to be innocent and framed by the system, it is necessary to

272 J. Ning et al.

enable an auditor to judge whether the user is indeed innocent or is framed by
the system.

1.1 Our Contribution

In this paper, we address the key abuse and the auditing problems of CP-ABE
and affirmatively solve these by proposing an accountable authority CP-ABE
system with white-box traceability and public auditing. To the best of our
knowledge, this is the first CP-ABE scheme that supports the following prop-
erties: traceability of malicious users, accountable authority, almost no storage
for tracing, public auditing and high expressiveness (i.e. supporting access poli-
cies expressed in any monotone access structures). Also, we prove that our new
system is fully secure in the standard model.

We solve the obstacles of CP-ABE implementation in cloud storage scenario
as follows:

1. Traceability of malicious users. Anyone who may leak their decryption keys
to others for profits can be traced.

2. Accountable authority. The semi-trusted authority could be caught if it ille-
gally generates and distributes legitimate keys to any unauthorized users.

3. Public auditing. We provide an auditor to judge whether a suspected user
(for leaking his/her decryption key) is guilty or is framed by the authority.
In addition, the auditability of our system is public, that is, anyone can run
the Audit algorithm to make a judgement with no additional secret needed.

4. Almost no storage for tracing. We use a Paillier-style encryption as an
extractable commitment in tracing the malicious users. And we do not need
to maintain an identity table of users for tracing as used in [21]. As a result,
we need almost no storage for tracing.

Table 1 gives the comparison between our work and some other related work.

Table 1. Comparison with other related work

[18] [17] [21] [20] [22] Ours

Traceability of malicious users × × × √ √ √

Accountable authority
√ × × × × √

Storage for tracinga none none linear none constant none

Supporting any monotone access structures × × √ √ √ √

Public auditing × × × × × √

Fully secure × × √ √ × √

Standard model × √ √ √ √ √
a In [17,18,20] and this paper, the systems need almost no storage for tracing, for

simplicity, we use none stands for almost no storage for tracing.

Accountable Authority CP-ABE with WT and PA in the Cloud 273

1.2 Our Technique

In this subsection, we briefly introduce the main idea we utilize to realize the
properties of traceability of malicious users, accountable authority and public
auditing before giving the full details in Sect. 4.

To trace malicious users who may leak their decryption keys to others for
profits, we use a Paillier-style encryption as an extractable commitment to
achieve white-box traceability. Specifically, we use a Paillier-style extractable
commitment to make a commitment to a user’s identity when the user queries for
his decryption key. The commitment is further inserted into the user’s decryp-
tion key as a necessary part for successful decryption. Due to the hiding and
binding properties of the Paillier-style extractable commitment, the user does
not know what is inserted into his decryption key and even cannot change the
identity insert into his decryption key. When it comes to the Trace algorithm,
the algorithm uses a trapdoor for the commitment to recover the identity of
the user from his decryption key. Note that the decryption key needs to take a
key sanity check algorithm to see whether it is well-formed or not prior to the
tracing step. Take the advantage of the Paillier-style extractable commitment,
we do not have to maintain the identity table as used in [21], as a result, we
need almost no storage for tracing.

To achieve accountable authority, the main idea is to let the user’s decryp-
tion key be jointly determined by both of the authority and the user himself,
hence the authority does not have complete control over the decryption key. We
let a user get his decryption key sk corresponding to his attributes and iden-
tity from the authority using a secure key generation protocol. The protocol
allows the user to obtain a decryption key sk for his attributes and identity
without letting the authority know which key he obtained. Now if the authority
(re-)distribute a decryption key s̃k (corresponding to a user’s attributes and
identity) for malicious usage, with all but negligible probability, it will be dif-
ferent from the key sk which the user obtained. Hence the key pair (sk, s̃k) is a
cryptographic proof of malicious behavior of the authority.

Furthermore, the difference between the user’s decryption key sk and the
decryption key s̃k (re-)distributed by the authority allows the auditor to judge
publicly whether the malicious user is guilty or is framed by the system. And
note that the auditor is assumed to be fair and credible.

1.3 Related Work

Attribute-Based Encryption, first introduced by Sahai and Waters [27], gener-
alizes the notion of fuzzy Identity-Based Encryption (IBE) [6,28]. Goyal et al.
[13] formalized two complementary forms of Attribute-Based Encryption (ABE):
Key-Policy Attribute-Based Encryption (KP-ABE) and Ciphertext-Policy
Attribute-Based Encryption (CP-ABE). In a CP-ABE system, every user’s
decryption key is associated with a set of attributes she/he possesses, and every
ciphertext is associated with an access policy defined over attributes. KP-ABE is
reversed in that every ciphertext is associated with a set of attributes and every

274 J. Ning et al.

user’s decryption key is associated with an access policy. ABE (especially CP-
ABE) is envisioned as a highly promising public key primitive for implementing
scalable and fine-grained access control over encrypted data, and has attracted
much attention in the research community. A series of ABE (including CP-ABE
and KP-ABE) systems have been proposed [4,11,14,15,20–22,24–26,29], aiming
at better efficiency, expressiveness or security.

Li et al. first introduced the notion of accountable CP-ABE [18] to pre-
vent illegal key sharing among colluding users. Then a user accountable multi-
authority CP-ABE scheme was proposed in [17] which only supported AND
gates with wildcard. White-box [21] and black-box [20] traceability CP-ABE
systems which supported policies expressed in any monotone access structures
were later proposed by Liu et al. Recently, Ning et al. [22] proposed a practical
large universe CP-ABE system with white-box traceability. Deng et al. [9] pro-
vided a tracing mechanism of CP-ABE to find the leaked access credentials in
cloud storage systems. Unfortunately, the above work either only support less
expressive access policy, or do not consider the misbehavior of the authority, or
do not address the auditing issue.

1.4 Organization

Section 2 introduces the background, including the notation, the access pol-
icy, the linear secret sharing scheme, the composite order bilinear groups, the
assumptions and the zero-knowledge proof of knowledge of discrete log. Section 3
gives the formal definition of accountable authority CP-ABE with white-box
traceability and public auditing (AAT-CP-ABE) and its security
model. Section 4 presents the construction of our AAT-CP-ABE system as well
as the security proof. Finally, Sect. 5 presents a brief conclusion and foresees our
future work.

2 Background

2.1 Notation

We define [l] = {1, 2, ..., l} for l ∈ N. We denote by s
R← S the fact that s is picked

uniformly at random from the finite set S. By PPT we denote probabilistic
polynomial-time. We denote (v1, v2, ..., vn) be a row vector and (v1, v2, ..., vn)⊥

be a column vector. By vi we denote the i-th element in a vector v. And by Mv
we denote the product of matrix M with vector v . We denote Z

l×n
p be the set of

matrices of size l × n with elements in ZN . The set of column vectors of length
n (i.e. Zn×1

N) are the two special subsets and the set of row vectors of length n
(i.e. Z1×n

N).

2.2 Access Policy

Definition 1. (Access Structure [2]): Let S be the attribute universe. A collec-
tion (respectively, monotone collection) A ⊆ 2S of non-empty sets of attributes is

Accountable Authority CP-ABE with WT and PA in the Cloud 275

an access structure (respectively, monotone access structure) on S. A collection
A ⊆ 2S is called monotone if ∀B,C ∈ A : if B ∈ A and B ⊆ C, then C ∈ A.
The sets in A are called the authorized sets, and the sets not in A are called the
unauthorized sets.

For CP-ABE, if a user of the system possess an authorized set of attributes
then he can decrypt the ciphertext. Otherwise, the set he possed is unauthorized
and he can’t get any information from ciphertext. In our construction, we restrict
our attention to monotone access structure.

2.3 Linear Secret-Sharing Schemes

Definition 2. (Linear Secret-Sharing Schemes (LSSS) [2,22]). Let S denote
the attribute universe and p denote a prime. A secret-sharing scheme

∏
with

domain of secrets Zp realizing access structure on S in called linear (over Zp) if

1. The shares of a secret s ∈ Zp for each attribute form a vector over Zp.
2. For each access structure A on S, there exists a matrix M with l rows and n

columns called the share-generating matrix for
∏

. For i = 1, ..., l, we define a
function ρ labels row i of M with attribute ρ(i) from the attribute universe S.
When we consider the column vector v = (s, r2, ..., rn), where s ∈ Zp is the
secret to be shared and r2, ..., rn ∈ Zp are randomly chosen. Then Mv ∈ Z

l×1
p

is the vector of l shares of the secret s according to
∏

. The share (Mv)j

“belongs” to attribute ρ(j), where j ∈ [l].

As shown in [2], every linear secret-sharing scheme according to the above
definition also enjoys the linear reconstruction property, defined as follows: we
suppose that

∏
is an LSSS for the access structure A, S′ ∈ A is an authorized

set and let I ⊂ {1, 2, ..., l} be defined as I = {i ∈ [l] ∧ ρ(i) ∈ S′}. Then, there
exist constants {ωi ∈ Zp}i∈I such that for any valid shares {λi = (Mv)i}i∈I of
a secret s according to

∏
, then

∑
i∈I ωiλi = s. Additionally, it is shown in [2]

that these constants {ωi}i∈I can be found in time polynomial in the size of the
share-generating matrix M . On the other hand, for any unauthorized set S′′, no
such constants {ωi} exist.

Note that if we encode the access structure as a monotonic Boolean formula
over attributes, there exists a generic algorithm by which we can generate the
corresponding access policy in polynomial time [2].

In our construction, an LSSS matrix (M,ρ) will be used to express an access
policy associated to a ciphertext.

2.4 Composite Order Bilinear Groups

Composite order bilinear groups are widely used in IBE and ABE systems, which
are first introduced in [7]. We let G denote a group generator, which takes a
security parameter λ as input and outputs a description of a bilinear group G.
We define the output of G as (p1, p2, p3, G,GT , e), where p1, p2, p3 are distinct
primes, G and GT are cyclic groups of order N = p1p2p3, and e : G2 → GT is a
map such that:

276 J. Ning et al.

1. Bilinearity: ∀u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: ∃g ∈ G such that e(g, g) has order N in GT .

We assume that group operations in G and GT as well as the bilinear map
e are computable in polynomial time with respect to λ. We refer to G as the
source group and GT as the target group, and assume the group descriptions
of G and GT include a generator of each group. Let Gp1 , Gp2 , and Gp3 be the
subgroups of order p1, p2, and p3 in G, respectively. Note that these subgroups
are “orthogonal” to each other under the bilinear map e: for any ui ∈ Gpi

and
uj ∈ Gpj

where i
= j, e(ui, uj) = 1. Any element EN ∈ G can (uniquely) be
expressed as gr1

1 gr2
2 gr3

3 for some values r1, r2, r3 ∈ ZN , where g1, g2, g3 are the
generators of Gp1 , Gp2 , Gp3 respectively. And we will refer to gr1

1 , gr2
2 , gr3

3 as the
“Gp1 part of EN”, “Gp2 part of EN” and “Gp3 part of EN”, respectively. Assume
Gp1p2 be the subgroups of order p1p2 in G. Similarly, any element Ep1p2 ∈ Gp1p2
can be expressed as the product of an element from Gp1 and an element from Gp2 .

2.5 Complexity Assumptions

Assumption 1. (Subgroup Decision Problem for 3 Primes): [14] Given a group
generator G, define the following distribution:

G = (N = p1p2p3, G,GT , e) R← G,
g

R← Gp1 ,X3
R← Gp3 ,

D = (G, g,X3),
T1

R← Gp1p2 , T2
R← Gp1 .

The advantage of an algorithm A in breaking this assumption is defined to
be: Adv1G,A(λ) = |Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1]|.
Definition 3. We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Assumption 2. [14] Given a group generator G, define the following distribu-
tion:

G = (N = p1p2p3, G,GT , e) R← G,
g,X1

R← Gp1 ,X2, Y2
R← Gp2 ,X3, Y3

R← Gp3

D = (G, g,X1X2,X3, Y2Y3),
T1

R← G,T2
R← Gp1p3 .

The advantage of an algorithm A in breaking this assumption is defined to
be: Adv2G,A(λ) = |Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1]|.
Definition 4. We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Accountable Authority CP-ABE with WT and PA in the Cloud 277

Assumption 3. [14] Given a group generator G, define the following distribu-
tion:

G = (N = p1p2p3, G,GT , e) R← G, α, s
R← ZN ,

g
R← Gp1 ,X2, Y2, Z2

R← Gp2 ,X3
R← Gp3

D = (G, g, gαX2,X3, g
sY2, Z2),

T1 = e(g, g)αs, T2
R← GT .

The advantage of an algorithm A in breaking this assumption is defined to
be: Adv3G,A(λ) = |Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1]|.
Definition 5. We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Assumption 4. (l-SDH assumption [5,10]): Let G be a bilinear group of prime
order p and g be a generator of G, the l-Strong Diffie-Hellman (l-SDH) problem
in G is defined as follows: given a (l+1)-tuple (g, gx, gx2

, ..., gxl

) as inputs, output
a pair (c, g1/(c+x)) ∈ Zp ×G. An algorithm A has advantage ε in solving l-SDH
in G if Pr[A(g, gx, gx2

, ..., gxl

) = (c, g1/(c+x))] ≥ ε, where the probability is over
the random choice of x in Z

∗
p and the random bits consumed by A.

Definition 6. We say that the (l, t, ε)-SDH assumption holds in G if no t-time
algorithm has advantage at least in solving the l-SDH problem in G.

2.6 Zero-Knowledge Proof of Knowledge of Discrete Log

Informally, a zero-knowledge proof of knowledge (ZK-POK) of discrete log pro-
tocol enables a prover to prove that it possesses the discrete log t of a given
group element T in question to a verifier.

A ZK-POK protocol has two distinct properties: the zero-knowledge property
and the proof of knowledge property. The property of zero-knowledge implies
that there exists a simulator S which is able to simulate the view of a verifier in
the protocol without being given the witness as input. The proof of knowledge
property implies there exists a knowledge-extractor Ext which interacts with
the prover and extracts the witness using rewinding techniques [10]. We refer
the reader to [3] for more details about ZK-POK.

3 Accountable Authority CP-ABE with White-Box
Traceability and Public Auditing

3.1 Definition

An Accountable Authority CP-ABE with White-Box Traceability and Public
Auditing (AAT-CP-ABE) is a CP-ABE system which could hold the misbehaved
authority accountable, trace the malicious user by his/her decryption key and
judge whether the suspected a user is indeed innocent or not. An AAT-CP-ABE
system consists of seven algorithms as follows:

278 J. Ning et al.

– Setup(1λ,U) → (pp,msk): The algorithm takes as input a security parameter
λ ∈ N encoded in unary and the attribute universe description U . It outputs
the public parameters pp and the master secret key msk.

– KeyGen(pp,msk, id, S) → skid,S : This is an interactive protocol between the
authority AT and a user U . The public parameters pp and a set of attributes
S for a user with identity id are the common input to the AT and U . The
master secret key msk is the private input to the AT . Additionally, the AT
and U may use a sequence of random coin tosses as private input. At the end
of the protocol, U is issued a secret key skid,S corresponding to S.

– Encrypt(pp,m,A) → ct: The encryption algorithm takes as input the public
parameters pp, a plaintext message m, and an access structure A over the
universe of attributes. It outputs the ciphertext ct1.

– Decrypt(pp, skid,S , ct) → m or ⊥: The decryption algorithm takes as input
the public parameters pp, a secret key skid,S , and a ciphertext ct. If the set
of attributes of the private key satisfies the access structure of the ciphertext,
the algorithm outputs the plaintext m. Otherwise, it outputs ⊥.

– KeySanityCheck(pp, sk) → 1 or 0: The key sanity check algorithm takes as
input the public parameters pp and a secret key sk. If sk passes the key
sanity check, it outputs 1. Otherwise, it outputs 0. The key sanity check is a
deterministic algorithm [10,12], which is used to guarantee the secret key to
be well-formed in the decryption process.

– Trace(pp,msk, sk) → id or ᵀ: The tracing algorithm takes as input the public
parameters pp, the master secret key msk and a secret key sk. The algorithm
first checks whether sk is well-formed or not so as to determine whether sk
needs to be traced. A secret key sk is defined as well-formed which means
that KeySanityCheck(pp, sk) → 1. If sk is well-formed, the system extracts
the identity id from sk. Then it outputs an identity id with which the sk
associates. Otherwise, it outputs a special symbol ᵀ indicates that sk does
not need to be traced.

– Audit(pp, skid, sk
∗
id) → guilty or innocent. This is an interactive protocol

between a user U and a public auditor PA. It judges whether a user is guilty
or innocent.

3.2 Security

An AAT-CP-ABE system is deemed secure if the following three requirements
are satisfied. First, it must satisfy the standard semantic security notion for
CP-ABE system: ciphertext indistinguishability under chosen plaintext attacks
(IND-CPA). Second, it is intractable for the authority to create a decryption key
such that the Trace algorithm outputs a user and the Audit algorithm outputs
the user is guilty. Finally, it is infeasible for a user to create a decryption key
such that the Audit algorithm implicates the user is innocent. To define security
for AAT-CP-ABE system satisfies the above three requirements, we define the
following three games, respectively.
1 We assume that A is implicitly in the ciphertext ct.

Accountable Authority CP-ABE with WT and PA in the Cloud 279

The IND-CPA game. The IND-CPA game for AAT-CP-ABE system is similar
to that of the CP-ABE system [15], excepting every key query is companied with
an explicit identity. The game proceeds as follows:

– Setup: The challenger runs the Setup(1λ,U) algorithm and sends the public
parameters pp to the attacker.

– Query Phase 1: In this phase the attacker can adaptively query the chal-
lenger for secret keys corresponding to sets of attributes (id1, S1), (id2, S2), ...,
(idQ1 , SQ1). For each (idi, Si) the challenger calls KeyGen(pp,msk, id, Si) →
skid,Si

and sends skid,Si
to the attacker.

– Challenge: The attacker declares two equal length messages m0 and m1 and
an access structure A

∗. Note that this access structure cannot be satisfied
by any of the queried attributes sets (id1, S1), (id2, S2), ..., (idQ1 , SQ1). The
challenge flips a random coin δ ∈ {0, 1} and calls Encrypt(pp,mδ,A

∗) → ct.
It sends ct to the attacker.

– Query Phase 2: The attacker adaptively queries the challenger for the secret
keys corresponding to sets of attributes (idQ1+1, SQ1+1), ..., (idQ, SQ) with the
added restriction that none of these satisfy A

∗. For each (idi, Si) the challenger
calls KeyGen(pp,msk, id, Si) → skid,Si

and sends skid,Si
to the attacker.

– Guess: The attacker outputs a guess δ′ ∈ {0, 1} for δ.

An attacker’s advantage in this game is defined to be Adv = |Pr[δ′ = δ]−1/2|.
Definition 7. An AAT-CP-ABE system is fully secure if all probabilistic poly-
nomial time (PPT) attackers have at most a negligible advantage in the above
game.

The DishonestAuthority Game. The DishonestAuthority game for the AAT-
CP-ABE system is defined as follows. The intuition behind this game is that an
adversarial authority attempts to create a decryption key which will frame a
user. It is described by a game between a challenger and an attacker.

– Setup: The attacker (acting as a malicious authority) generates public para-
meters pp, and sends pp, a user’s (id, S) to the challenger. The challenger runs
a sanity check on pp and (id, S) aborts if the check fails.

– Key Generation: The attacker and the challenger engage in the key gen-
eration protocol KeyGen to generate a decryption key sk∗

id corresponding to
the user’s id and S. The challenger gets the decryption key sk∗

id as input and
runs a sanity check on it to ensure that it is well-formed. It aborts if the check
fails.

– Output: The attacker outputs a decryption key sk∗
id and succeeds if

Trace(pp,msk, sk∗
id) → id, and Audit(pp, skid, sk

∗
id) → guilty.

The attacker’s advantage in this game is defined to be Adv = |Pr[A succeeds]|
where the probability is taken over the random coins of Trace, Audit, the
attacker and the challenger.

Definition 8. An AAT-CP-ABE system is DishonestAuthority secure if all
PPT attackers have at most a negligible advantage in the above security game.

280 J. Ning et al.

The DishonestUser Game. The DishonestUser game for the AAT-CP-ABE
system is defined as follows. The intuition behind this game is that a malicious
user attempts to create new decryption key which will frame the authority. It is
described by a game between a challenger and an attacker.

– Setup: The challenger runs the Setup(1λ,U) algorithm and sends the public
parameters pp to the attacker.

– Key Query: The attacker submits the sets of attributes (id1, S1), ..., (idq, Sq)
to request the corresponding decryption keys. The challenger calls KeyGen(pp,
msk, id, Si) → skid,Si

and returns skid,Si
to the attacker.

– Key Forgery: The attacker will output a decryption key sk∗. If {Trace
(pp,msk, sk∗)
= ᵀ and Trace(pp,msk, sk∗) /∈ {id1, ..., idq}} or {Trace(pp,
msk, sk∗) = id and Audit(pp, skid, sk

∗
id) → innocent}, the attacker wins the

game.

An attacker’s advantage in this game is defined to be Adv = |Pr[A succeeds]|
where the probability is taken over the random coins of Trace, Audit, the
attacker and the challenger.

Definition 9. An AAT-CP-ABE system is fully traceable if all PPT attackers
have at most a negligible advantage in the above security game.

The Key Sanity Check Game. According to [23], the Key Sanity Check
game for the AAT-CP-ABE system is defined as follows. It is described by the
following game between an attacker and a simulator. On input a security para-
meter 1λ (λ ∈ N), a simulator invokes an attacker A on 1λ. A returns the public
parameters pp, a ciphertext ct and two different secret keys skid,S and s̃kid,S

corresponding to the same set of attributes S for a user with identity id. A wins
the game if

(1) KeySanityCheck(pp, skid,S) → 1.
(2) KeySanityCheck(pp, s̃kid,S) → 1.
(3) Decrypt(pp, skid,S , ct)
=⊥.
(4) Decrypt(pp, s̃kid,S , ct)
=⊥.
(5) Decrypt(pp, skid,S , ct)
= Decrypt(pp, s̃kid,S , ct).

A’s advantage in the above game is defined as Pr[A wins]. And it is easy to
see that the intuition of “Key Sanity Check” is captured combining the notion
captured in the above game and the related algorithms (KeySanityCheck and
Decrypt) defined in this section [23].

4 Our System

4.1 Construction

– Setup(λ,U) → (pp,msk): The algorithm calls the group generator G with λ
as input and gets a bilinear group G of order N = p1p2p3 (3 distinct primes),
Gpi

the subgroup of order pi in G, and g, g3 the generator of the subgroup

Accountable Authority CP-ABE with WT and PA in the Cloud 281

Gp1 , Gp3 respectively. It then chooses exponents α, a, κ, μ ∈ ZN and a group
element v ∈ Gp1 randomly. For each attribute i ∈ U , the algorithm chooses a
random value ui ∈ ZN . Also, the algorithm chooses two random primes p and
q for which it holds p
= q, |p| = |q| and gcd(pq, (p − 1)(q − 1)) = 1, and then
let n = pq, π = lcm(p−1, q−1), Q = π−1 mod n and g1 = (1+n). The public
parameters are set to pp = (N,n, g1, v, g, ga, gκ, gμ, e(g, g)α, {Ui = gui}i∈U).
And the master secret key msk is set to msk = (p, q, α, g3).

– KeyGen(pp,msk, id, S) → skid,S : The authority AT and a user U (with the
identity id2) interact in the key generation protocol as follows.
1. U first chooses t ∈ ZN randomly and computes RU = gt. Next, it sends gt,

the identity id and a set of attributes S to AT . Then, it runs an interactive
ZK-POK of the discrete log of RU with respect to g with AT .

2. AT first checks whether the ZK-POK is valid or not. If the check fails, AT
aborts the interaction. Otherwise, it chooses a random c ∈ ZN , a random
r ∈ Z

∗
n and random elements R,R0, R

′
0, {Ri}i∈S ∈ Gp3 . Then, it computes

the primary secret key skpri as follows:

〈S, K = g
α

a+T (gt)
κ

a+T vcR, T = gid
1 rn mod n2,

L = gcR0, L′ = gacR′
0, {Ki = U (a+T)c

i Ri}i∈S〉.
And it sends (c, skpri) to U .

3. U checks whether the following equalities hold or not:
(1) e(L′, g) = e(L, ga) = e(ga, (g)c).
(2) e(K, gagT) = e(g, g)αe(L′(L)T , v)e(RU , gκ).
(3) ∃x ∈ S s.t. e(Ux, L′(L)T) = e(Kx, g).
If no, U aborts the interaction. Otherwise, U computes tid = c

t and sets
his decryption key skid,S as follows:

〈S, K = K(gμ)tid , T = T , L = L, L′ = L′, RU , tid, {Ki = Ki}i∈S〉.

– Encrypt(pp,m, (A, ρ)) → ct: The algorithm takes the access structure encoded
in an LSSS policy3, the public parameters pp and a plaintext message m. The
algorithm chooses −→y = (s, y2, ..., yn)⊥ ∈ Z

n×1
N randomly, where s is the ran-

dom secret to be shared among the shares according to Subsect. 2.3. Then it
chooses rj ∈ ZN for each row Aj of A randomly. The ciphertext ct is set as
follows:

〈C = m · e(g, g)αs, C0 = gs, C1 = (ga)s, C2 = (gκ)s, C3 = (gμ)s,

{Cj,1 = vAj
−→y U−rj

ρ(j) , Cj,2 = grj }j∈[l], (A, ρ)〉.
2 We assume that the identity id is an element in Zn. One can extend the construction

to arbitrary identities in {0, 1}∗ easily by adopting a collision-resistant hash H :
{0, 1}∗ → Zn.

3 where A is an l × n matrix and ρ is a map from each row Aj of A to an attribute
ρ(j).

282 J. Ning et al.

– Decrypt(pp, skid,S , ct) → m or ⊥: The algorithm first parses the skid,S to
(S,K, T, L, L′, RU , tid, {Ki}i∈S) and ct to (C,C0, C1, C2, C3, {Cj,1, Cj,2}j∈[l],
(A, ρ)). The algorithm will output ⊥ if the attribute set S cannot satisfy the
access structure (A, ρ) of ct. Otherwise, the algorithm first computes constants
ωj ∈ ZN such that

∑
ρ(j)∈S ωjAj = (1, 0, ..., 0). It then computes:

D = e((C0)T C1,K)(e(C2, Ru)e(C3, (gT ga)tid))−1

E = Πρ(j)∈S(e(Cj,1, (L)T L′)e(Cj,2,Kρ(j)))ωj

F = D/E = e(g, g)αs,m = C/F

– KeySanityCheck(pp, sk) → 1 or 0: The algorithm takes as input the public
parameters pp and a secret key sk. The secret key sk passes the key sanity
check if
(1) sk is in the form of (S,K, T, L, L′, RU , tid, {Ki}i∈S) and T ∈ Z

∗
n2 ,

K, L, L′, RU , {Ki}i∈S ∈ G.
(2) e(L′, g) = e(L, ga).
(3) e(K, gagT) = e(g, g)αe(L′(L)T , v)e(RU , gκ)e((gagT)tid , gμ).
(4) ∃x ∈ S s.t. e(Ux, L′(L)T) = e(Kx, g).
If sk passes the key sanity check, the algorithm outputs 1. Otherwise, it
outputs 0.

– Trace(pp,msk, sk) → id or ᵀ: If KeySanityCheck(pp, sk) → 0, the algorithm
outputs ᵀ. Otherwise, it is a well-formed decryption key4, and the algorithm
will extract the identity id from T = gid

1 rn mod n2 in sk as follows: note that
Q = π−1 mod n and observe that TπQ = gid·πQ

1 ·rn·πQ = gid
1 = 1+id·n mod n2.

Thus, it recovers id = ((T)πQ mod n2)−1
n mod n and outputs the identity id.

– Audit(pp, skid, sk
∗
id) → guilty or innocent: Suppose a user U (with identity

id and decryption key skid) is identified as a malicious user by the system
(through the traced key sk∗

id), but claims to be innocent and framed by the
system. U will interact with the public auditor PA in the following protocol.
(1) U sends its decryption key skid to PA. If KeySanityCheck(pp, sk) → 0,

PA aborts. Otherwise, go to (2).
(2) PA tests whether the equality tid = t∗id hold or not. If no, it outputs

innocent indicates that U is innocent and is framed by the system. Oth-
erwise, it outputs guilty indicates that U is malicious and sk∗

id is leaked
by U .

4.2 IND-CPA Security

Since our construction of accountable authority traceable CP-ABE system is
based on the CP-ABE system in [14], for simplicity, we will reduce the IND-
CPA security proof of our construction to that of the system in [14]. We denote
by Σcpabe, Σaatcpabe the CP-ABE system in [14] and our system respectively.

4 i.e. the decryption privilege of the key is described by attribute set Sτ = {x|x ∈
S ∧ e(Kx, g) = e(Ux, L′(L)T) �= 1}.

Accountable Authority CP-ABE with WT and PA in the Cloud 283

The security model of Σcpabe in [14] is almost the same with the IND-CPA
security model of our system Σaatcpabe in Subsection in 3.2, excepting every key
query is companied with an identity and the decryption key is jointly determined
by a user and the authority.

Lemma 1. [14] If Assumptions 1,2,3 hold, then the CP-ABE system Σcpabe in
[14] is secure.

(2) IND-CPA Security of our AAT-CP-ABE system:

Lemma 2. [14] If the CP-ABE system Σcpabe in [14] is secure, then our AAT-
CP-ABE system Σaatcpabe in is secure in the IND-CPA security game of Sub-
sect. 3.2.

Due to space, we refer the reader to Appendix A for the proof of this lemma.

Theorem 1. If Assumptions 1,2,3 hold, then our AAT-CP-ABE system
Σaatcpabe is secure.

Proof. It follows directly from Lemmas 1 and 2.

4.3 DishonestAuthority Security

Theorem 2. If computing discrete log is hard in Gp1 , the advantage of an adver-
sary in the DishonestAuthority game is negligible for our AAT-CP-ABE system.

Due to space, we refer the reader to Appendix B for the proof of this theorem.

4.4 DishonestUser Security

In this subsection, we prove the DishonestUser secure of our AAT-CP-ABE
system based on q-SDH assumption and Assumption 2. We adopt a similar
method from [5] and [21].

Theorem 3. If q-SDH assumption and Assumption 2 hold, then our AAT-CP-
ABE system is DishonestUser secure provided that q′ < q.

Due to space, we refer the reader to Appendix C for the proof of this theorem.

4.5 Key Sanity Check Proof

In this subsection, we will give the key sanity check proof of our AAT-CP-ABE
system. We use the proof method from [23].

Theorem 4. The advantage of an attacker in the key sanity check game (in
Subsect. 3.2) is negligible for our AAT-CP-ABE system.

Due to space, we refer the reader to Appendix D for the proof of this theorem.

284 J. Ning et al.

5 Conclusion and Future Work

In this work, we addressed two practical problems about the key abuse of CP-
ABE in the cloud, and have presented an accountable authority CP-ABE system
supporting white-box traceability and public auditing. Specifically, the proposed
system could trace the malicious users for illegal key sharing. And for the semi-
trusted authority, its illegal key (re-)distributing misbehavior could be caught
and prosecuted. Furthermore, we have provided an auditor to judge whether a
malicious user is innocent or framed by the authority. As far as we known, this
is the first CP-ABE system that simultaneously supports white-box traceability,
accountable authority and public auditing. We have also proved that the new
system is fully secure in the standard model.

Note that there exists a stronger notion for traceability called black-box
traceability. In black-box scenario, the malicious user could hide the decryption
algorithm by tweaking it, as well as the decryption key. And in this case, the
proposed system with white-box traceability in this paper will fail since both
the decryption key and decryption algorithm are not well-formed. In our future
work, we will focus on constructing an accountable authority CP-ABE system
which is black-box traceability and public auditing.

Acknowledgements. We are grateful to the anonymous reviewers for their invaluable
suggestions. This work is supported in part by the National Natural Science Foundation
of China under Grant 61321064, Grant 61371083, Grant 61373154, Grant 61402282, and
Grant 61411146001, in part by the Specialized Research Fund for the Doctoral Program
of Higher Education of China through the Prioritized Development Projects under
Grant 20130073130004, and in part by the Natural Science Foundation of Shanghai of
Yang-Fan Plan under Grant 14YF1410400.

A Proof of Lemma 2

Proof. Suppose there exists a PPT attacker A that has advantage AdvAΣaatcpabe

in breaking Σaatcpabe. We construct a PPT algorithm B that has advantage
AdvBΣcpabe in breaking the underlying CP-ABE system Σcpabe, which equals to
AdvAΣaatcpabe.

– Setup: Σcpabe gives B the public parameters ppcpabe = (N, g, gβ , e(g, g)α,
{Ui = gui}i∈U). B randomly chooses a, κ ∈ ZN , it also chooses two random
primes p and q for which it holds p
= q, |p| = |q| and gcd(pq, (p−1)(q−1)) = 1,
and then let n = pq, π = lcm(p − 1, q − 1), Q = π−1 mod n and g1 = (1 + n).
B gives A the public parameters (N,n, g1, v = gβ , g, ga, gκ, gμ, e(g, g)α, {Ui =
gui}i∈U).

– Query Phase 1: The attacker A will submit (id, S) to B to query a decryp-
tion key, then B submits S to Σcpabe and gets the corresponding decryption
key in the form of s̃k = 〈K̃ = gαgβc̃R, L̃ = gc̃R0, {K̃i = U c̃

i Ri}i∈S〉. Note that
in the proof of [14], the authority is free to choose a decryption key on its own
and passes it on to the user. In our setting, however, the authority and the user

Accountable Authority CP-ABE with WT and PA in the Cloud 285

engage in a key generation protocol where the decryption key is jointly deter-
mined by both of them (via the choice of numbers t and c). Hence the authority
does not have complete control over the decryption key. The problem can be
solved as follows. The authority generates a primary secret key skpri on its own
and then “forces” the output of a user during key generation. Recall that dur-
ing the key generation protocol, a user first chooses a random t ∈ ZN and sends
RU = gt to the authority. The user gives to the authority a zero-knowledge
proof of knowledge of the discrete log of RU . The proof of knowledge property
of the proof system implies the existence of a knowledge extractor Extr (see
Sect. 2.6). Using Extr on the user during the proof of knowledge protocol,
the authority can extract the discrete log t (by rewinding the user during
protocol execution) with all but negligible probability. Thus, in the IND-CPA
security game, B could extract the discrete log t of RU (which was sent by
the attacker A). Then B chooses a random r ∈ Z

∗
N . It computes T = T̄ =

gid
1 rn mod n2 and 1/(a + T) modulo N . Then B sets c = c̃/(a + T), tid = c/t

implicitly and randomly chooses R′
0 ∈ Gp3 by using g3, then computes K̄ =

(K̃)
1

a+T (gt)
κ

a+T = (gαgβc̃R)
1

a+T g
κt

a+T = g
α

a+T vcg
κt

a+T R
1

a+T ,K = K̄(gμ)tid ,

L̄ = (L̃)
1

a+T = (gc̃R0)
1

a+T = gcR
1

a+T

0 , L = L̄, L̄′ = (L̃)
a

a+T = (gc̃R0)
a

a+T =
gacR

a
a+T

0 R′
0, L

′ = L̄′, {K̄i = K̃i = U c̃
i Ri = U (a+T)c

i Ri}i∈S , {Ki = K̃i}i∈S . B
gives A the decryption key skid,S = 〈S,K, T, L, L′, RU , tid, {Ki}i∈S〉.5

– Challenge: The attacker A submits to B two equal length messages (m0,m1)
and an LSSS matrix (A∗, ρ). Then B submits (m0,m1) and (A∗, ρ) to Σcpabe,
and obtains the challenge ciphertext as follows: c̃t = 〈C̃ = mδ · e(g, g)αs, C̃0 =
gs, { ˜Cj,1 = gβAj

−→y U−rj

ρ(j) ,
˜Cj,2 = grj }j∈[l], (A∗, ρ)〉. B sets C = C̃, C0 = C̃0, C1 =

(C̃0)a = gas, C2 = (C̃0)κ = gκs, C3 = (C̃0)μ = gμs, Cj,1 = ˜Cj,1 = vAj
−→y U−rj

ρ(j) ,

Cj,2 = ˜Cj,2. Then, B gives the challenge ciphertext ct = 〈C,C0, C1, C2, C3,
{Cj,1, Cj,2}j∈[l], (A∗, ρ)〉 to A.

– Query Phase 2: This phase is the same with Phase 1.
– Guess: A outputs and gives his guess δ′ to B. Then B gives δ′ to Σcpabe.

Since the distributions of the public parameters, decryption keys and challenge
ciphertext in the above game are the same as that in the real system, we have
AdvBΣcpabe=AdvAΣaatcpabe.

B Proof of Theorem 2

Proof. Suppose there exists a PPT attacker A that has non-negligible advantage
in winning the DishonestAuthority game for our AAT-CP-ABE system. We con-
struct a PPT algorithm B that has non-negligible advantage in solving discrete
log in Gp1 .

B proceeds as follows. B runs the algorithm A and gets the public parameters
pp = (N,n, g1, v, g, ga, gκ, gμ, e(g, g)α, {Ui = gui}i∈U) and a user’s (id, S) from

5 Note that R′
0 makes the Gp3 part of L′ uncorrelated to the Gp3 part of L, this is

why our simulator needs g3.

286 J. Ning et al.

A. It then invokes the challenger and passes on g to it, and gets a challenge
RU = gt. The goal of B is to makes use of A to get the discrete log t of RU with
respect to g.

B will engage in the key generation protocol with A to get a decryption
key for the user with (id, S) as follows. It sends RU to the attacker A and
has to give a zero-knowledge proof of knowledge of the discrete log of RU . The
zero-knowledge property of the proof system implies the existence of a simu-
lator S which is able to successfully simulate the view of A in the protocol
(by rewinding A) with all but negligible probability. B will use the simulator S
to simulate the required proof even without of knowledge of t. And B receives
c and the primary secret key skpri as follows: 〈S, K = g

α
a+T g

κt
a+T vcR, T =

gid
1 rn mod n2, L = gcR0, L′ = gacR′

0, {Ki = U (a+T)c
i Ri}i∈S〉. As before, B

checks whether the following equalities hold or not: (1)e(L′, g) = e(L, ga) =
e(ga, (g)c); (2) e(K, gagT) = e(g, g)αe(L′(L)T , v)e(RU , gκ); (3) ∃x ∈ S s.t.

e(Ux, L′(L)T) = e(Kx, g).
If any of these checks fail, B aborts as would an honest user in the key

generation protocol.
Now with non-negligible advantage, the attacker A outputs a decryption key

sk∗
id such that Trace(pp,msk, sk∗

id) → id, Audit(pp, skid, sk
∗
id) → guilty and t∗id

equals tid (which is unknown to B). The decryption key sk∗
id is set as follows:

〈S, K = K(gμ)tid , T = T , L = L, L′ = L′, RU , t∗id, {Ki = Ki}i∈S〉. Then B
computes t = c/t∗id and outputs t as the discrete log (with respect to g) of the
challenge RU and halts.

C Proof Sketch of Theorem 3

Proof Sketch. Suppose there exists a PPT attacker A that has non-negligible
advantage ε in winning the traceability game after making q′ key queries, w.l.o.g.,
assuming q = q′ + 1, we construct a PPT algorithm that has non-negligible
advantage in breaking q-SDH assumption or Assumption 2. B is given an instance
of q-SDH problem and an instance of Assumption 2 problem as follows6.

– B is given an instance of q-SDH problem: Let G be a bilinear group of
order N = p1p2p3 (three distinct primes), Gi be the subgroup of order
pi in G (where 1 ≤ i ≤ 3), e : G × G → GT be a bilinear map, a ∈
Z

∗
p1

and g̃ ∈ Gp1 . B is given an instance of q-SDH problem INSSDH =
(G,GT , N, e, g̃, g̃a, ..., g̃aq

, p1, p2, p3).
– B is given an instance of Assumption 2 problem: Let G be a bilinear group

of order N = p1p2p3 (three distinct primes), Gi be the subgroup of order pi

in G (where 1 ≤ i ≤ 3), e : G × G → GT be a bilinear map, g̃, X1 ∈ Gp1 ,
X2, Y2 ∈ Gp2 , X3, Y3 ∈ Gp3 , δ ∈ {0, 1} and if δ = 0, T ′ ∈ G, if δ = 1,
T ′ ∈ Gp1p3 . B is given an instance of Assumption 2 problem INSAss2 =
(G,GT , N, e, g̃,X1X2,X3, Y2Y3, T

′).

6 Note that this two instances are independent from each other.

Accountable Authority CP-ABE with WT and PA in the Cloud 287

The goal of B is to output a bit δ′ ∈ {0, 1} to determine T ′ ∈ G or T ′ ∈ Gp1p3 for
solving the Assumption 2 problem, and a tuple (Ti, wi) ∈ Zp1 × Gp1 satisfying
wi = g̃1/(a+Ti) for solving the q-SDH problem. B will make use of A to break at
least one of the above assumptions.

Note that the structure of our system is similar to that of [21], and both of
the two systems use a Boneh-Boyen-style signature to achieve the unforgeability
property of decryption key. Correspondingly, the proof of the DishonestUser
game in our system is also similar to the proof of white-box traceability in [21].
And using a similar proof method from [21], it is easy to give a proof that B will
make use of A to break at least one of the above assumptions in our system.
Due to space limitations, we refer the interested reader to the full version of this
paper for the proof of this theorem.

D Proof of Theorem 4

Proof. Let the output of an attacker A be the public parameters pp, two differ-
ent secret keys skid,S = 〈S,K, T, L, L′, RU , tid, {Ki}i∈S〉 and s̃kid,S = 〈S, K̃, T̃ ,

L̃, L̃′, R̃U , t̃id, {K̃i}i∈S〉, and a ciphertext ct = 〈C,C0, C1, C2, C3, {Cj,1, Cj,2}j∈[l],
(A, ρ)〉. A wins implies that the following conditions (as defined in the key sanity
check game in Subsect. 3.2) are all fulfilled.

Conditions (1) − (5):
(1) KeySanityCheck(pp, skid,S) → 1; (2) KeySanityCheck(pp, s̃kid,S) → 1;
(3) Decrypt(pp, skid,S , ct)
=⊥; (4) Decrypt(pp, s̃kid,S , ct)
=⊥;
(5) Decrypt(pp, skid,S , ct)
= Decrypt(pp, s̃kid,S , ct).
Condition (1) implies

(1) sk is in the form of (S,K, T, L, L′, RU , tid, {Ki}i∈S) and T ∈ Z
∗
n2 ,K, L, L′,

RU , {Ki}i∈S ∈ G.
(2) e(L′, g) = e(L, ga).
(3) e(K, gagT) = e(g, g)αe(L′(L)T , v)e(RU , gκ)e((gagT)tid , gμ).
(4) ∃x ∈ S s.t. e(Ux, L′(L)T) = e(Kx, g).

Similarly, condition (2) implies

(1) sk is in the form of (S, K̃, T̃ , L̃, L̃′, R̃U , t̃id, {K̃i}i∈S) and T̃ ∈ Z
∗
n2 ,

K̃, L̃, L̃′, R̃U , {K̃i}i∈S ∈ G.
(2) e(L̃′, g) = e(L̃, ga).
(3) e(K̃, gagT̃) = e(g, g)αe(L̃′(L̃)T̃ , v)e(R̃U , gκ)e((gagT̃)t̃id , gμ).
(4) ∃x ∈ S s.t. e(Ux, L̃′(L̃)T̃) = e(K̃x, g).

From conditions (1) and (3), we have D = e((C0)T C1,K)(e(C2, Ru)e(C3,
(gT ga)tid))−1, E = Πρ(j)∈S(e(Cj,1, (L)T L′)e(Cj,2,Kρ(j)))ωj , F = D/E =
e(g, g)αs,m = C/F . And from conditions (2) and (4), we have D̃ = e((C0)T̃

C1, K̃)(e(C2, R̃u)e(C3, (gT̃ ga)t̃id))−1, Ẽ = Πρ(j)∈S(e(Cj,1, (L̃)T̃ L̃′)e(Cj,2,

K̃ρ(j)))ωj , F̃ = D̃/Ẽ = e(g, g)αs,m = C/F̃ .

288 J. Ning et al.

From conditions (1) − (4), we have F = D/E = e(g, g)αs = F̃ = D̃/Ẽ,m =
C/F = C/F̃ (∗). However, condition (5) implies that C/F
= C/F̃ , where
F = D/E, F̃ = D̃/Ẽ, which contradicts to (∗). Thus A wins the game only with
negligible probability.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

2. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

3. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy. SP 2007, pp. 321–334. IEEE
(2007)

5. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

6. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 213. Springer, Heidelberg (2001)

7. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

8. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

9. Deng, H., Wu, Q., Qin, B., Mao, J., Liu, X., Zhang, L., Shi, W.: Who Is touching
my cloud. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014, Part I. LNCS, vol.
8712, pp. 362–379. Springer, Heidelberg (2014)

10. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg (2007)

11. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

12. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-
based encryption. In: Proceedings of the 15th ACM Conference on Computer and
Communications Security, pp. 427–436. ACM (2008)

13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

14. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

15. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

Accountable Authority CP-ABE with WT and PA in the Cloud 289

16. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

17. Li, J., Huang, Q., Chen, X., Chow, S.S.M., Wong, D.S., Xie, D.: Multi-authority
ciphertext-policy attribute-based encryption with accountability. In: Proceedings
of the 6th ACM Symposium on Information, Computer and Communications Secu-
rity, pp. 386–390. ACM (2011)

18. Li, J., Ren, K., Kim, K.: A2be: Accountable attribute-based encryption for abuse
free access control. IACR Cryptology ePrint Arch. 2009, 118 (2009)

19. Liu, Z., Cao, Z., Huang, Q., Wong, D.S., Yuen, T.H.: Fully secure multi-authority
ciphertext-policy attribute-based encryption without random oracles. In: Atluri,
V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 278–297. Springer,
Heidelberg (2011)

20. Liu, Z., Cao, Z., Wong, D.S.: Blackbox traceable cp-abe: how to catch people
leaking their keys by selling decryption devices on ebay. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security, pp.
475–486. ACM (2013)

21. Liu, Z., Cao, Z., Wong, D.S.: White-box traceable ciphertext-policy attribute-based
encryption supporting any monotone access structures. IEEE Trans. Inf. Forensics
Secur. 8(1), 76–88 (2013)

22. Ning, J., Cao, Z., Dong, X., Wei, L., Lin, X.: Large universe ciphertext-policy
attribute-based encryption with white-box traceability. In: Kuty�lowski, M., Vaidya,
J. (eds.) ESORICS 2014, Part II. LNCS, vol. 8713, pp. 55–72. Springer, Heidelberg
(2014)

23. Ning, J., Dong, X., Cao, Z., Wei, L., Lin, X.: White-box traceable ciphertext-
policy attribute-based encryption supporting flexible attributes. IEEE Trans. Inf.
Forensics Secur. 10(6), 1274–1288 (2015)

24. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

25. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, pp. 195–203. ACM (2007)

26. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012)

27. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

28. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

29. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

	Accountable Authority Ciphertext-Policy Attribute-Based Encryption with White-Box Traceability and Public Auditing in the Cloud
	1 Introduction
	1.1 Our Contribution
	1.2 Our Technique
	1.3 Related Work
	1.4 Organization

	2 Background
	2.1 Notation
	2.2 Access Policy
	2.3 Linear Secret-Sharing Schemes
	2.4 Composite Order Bilinear Groups
	2.5 Complexity Assumptions
	2.6 Zero-Knowledge Proof of Knowledge of Discrete Log

	3 Accountable Authority CP-ABE with White-Box Traceability and Public Auditing
	3.1 Definition
	3.2 Security

	4 Our System
	4.1 Construction
	4.2 IND-CPA Security
	4.3 DishonestAuthority Security
	4.4 DishonestUser Security
	4.5 Key Sanity Check Proof

	5 Conclusion and Future Work
	A Proof of Lemma 2
	B Proof of Theorem 2
	C Proof Sketch of Theorem 3
	D Proof of Theorem 4
	References

