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Abstract. Biometric identification has been incredibly useful in the law
enforcement to authenticate an individual’s identity and/or to figure
out who someone is, typically by scanning a database of records for a
close enough match. In this work, we investigate the privacy-preserving
biometric identification outsourcing problem, where the database owner
outsources both the large-scale encrypted database and the computation-
ally intensive identification job to the semi-honest cloud, relieving itself
from data storage and computation burden. We present new privacy-
preserving biometric identification protocols, which substantially reduce
the computation burden on the database owner. Our protocols build
on new biometric data encryption, distance-computation and match-
ing algorithms that novelly exploit inherent structures of biometric data
and properties of identification operations. A thorough security analysis
shows that our solutions are practically-secure, and the ultimate solu-
tion offers a higher level of privacy protection than the-state-of-the-art on
biometric identification outsourcing. We evaluate our protocols by imple-
menting an efficient privacy-preserving fingerprint-identification system,
showing that our protocols meet both the security and efficiency needs
well, and they are appropriate for use in various privacy-preserving bio-
metric identification applications.

Keywords: Biometric identification · Data outsourcing · Privacy ·
Cloud computing

1 Introduction

Biometric data, which include fingerprints, DNA, irises, voice patterns, palm-
prints, and facial patterns etc., are the measurable biological or behavioral char-
acteristics widely-used for identification of individuals [9]. Matching biometric
data or biometric identification has been incredibly useful in the law enforce-
ment to authenticate an individual’s identity and/or to figure out who someone
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is, typically by scanning a database of records for a good match. A typical bio-
metric identification system consists of a server-side database owner and users
who submit candidate biometric records to the database owner for profile iden-
tification. Formally, the database owner holds a large set of biometric records
D = 〈bi, pi〉mi=1, where bi denotes the biometric data corresponding to its iden-
tity profile pi. A user who has a candidate biometric record bc wants to learn the
target profile pi∗ for which bi∗ matches the query bc closely enough according
to a certain metric.

Nowadays with the increasing development and popularity of cloud comput-
ing, individuals, companies and governments are highly motivated to outsource
their data onto remote cloud servers to get rid of expensive local storage and
computation costs [14]. As far as the biometric identification system is concerned,
the database owner (e.g., the FBI is responsible for managing the national fin-
gerprint collection) may desire to outsource the extremely large size of biometric
data records to the cloud, readily enjoying the biometric data matching service
from the cloud service provider (e.g., Amazon). However, to protect the privacy
of sensitive biometric data, the database owner should encrypt the database
before outsourcing. Whenever a government agency (e.g., the FBI’s partner)
wants to authenticate an individual’s identity or to figure out who someone is
(by a fingerprint left on a murder weapon or a bomb, for example), he will turn
to the FBI and issue an identification query. After receiving the query from the
user, the FBI also generates the encrypted query, which allows the cloud server to
execute it over the encrypted database, i.e., scanning the encrypted database for
a close match. Now the challenging problem is how to enable privacy-preserving
biometric identification over the encrypted database while apparently relieving
the database owner of its high computation burden and relying on the cloud for
providing fast and reliable biometric identification service.

Privacy-preserving biometric identification has been extensively investigated
in the secure two-party computation model, where the database owner and the
user interactively execute the identification protocol without revealing the self-
biometric data information to each other [1,6,15,17]. These works, however,
either have efficiency issues (heavily rely on homomorphic encryption) [6] or
fail to support the computation of a global minimum [15], which limits their
applications. To enable efficient identification for a large-scale database, recently
Huang et al. [8] and Blanton et al. [3] proposed privacy-preserving biometric
identification protocols by combining both homomorphic encryption and garbled
circuits [12]. Still, the biometric identification problem is essentially formulated
as a secure two-party computation problem, their solutions cannot be directly
applied to the identification outsourcing model. This is because the semi-trusted
cloud server cannot know any private inputs/data except for the encrypted bio-
metric database in the outsourcing computation model. The direct extensions
of the above approaches, if applied to our model, (i) will lead to extremely high
communication overhead and (ii) cannot relieve the database owner of a high
computation burden, i.e., for each identification query, the database owner has
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to traverse the database to compute the Euclidean distances without taking
advantage of the cloud for undertaking heavy computations.

Recently, the biometric identification problem has been explored in the out-
sourced environment [2,4]. In [2], its single-server solution is far from practical
for a large database while its multi-server solution requires that the database is
shared among (at least three) servers in a split form. In [4], the authors devel-
oped a new outsourceable approach that secures the database and the candidate
biometric. But it is assumed that two non-colluding servers cooperate to run the
protocol and one of them knows the secret key. Moreover, its protocol requires
frequent interactions between two servers which will lead to too much communi-
cation overhead. Another line of work similar to privacy-preserving identification
is the kNN search problem over the encrypted database. Most of them, however,
such as [16], considered the kNN problem in the two-party computation model.
In [19], the authors proposed a new “encryption” scheme that achieves privacy-
preserving outsourcing, but the scheme can be cracked when there exist collu-
sions between the cloud server and the user. As a following work, [5] proposed a
secure kNN query protocol which achieves a higher security level than [19]. But
it also assumes the cloud to be two non-colluding servers and has the same draw-
backs (i.e., leakage of key secret and low efficiency) as [4], due to the use of the
same techniques to compute Euclidean distance. The most similar work to ours
is the biometric identification scheme proposed by Yuan et al. [20], which also
considered the cloud-based identification outsourcing model. It appears that very
high identification efficiency can be obtained as compared to [8]. They claimed
their scheme is secure under the known-plaintext attack (KPA) model or even
the chosen-plaintext attack (CPA) model. We show that, however, the security
arguments given for their work do not hold, and the scheme can be completely
broken once we manipulate the ciphertexts to remove the introduced randomness
in the presence of collusion.

In this work, we, for the first time, identify the deficiencies and security
weaknesses of previous privacy-preserving biometric identification protocols in
the computation outsourcing model. We propose new schemes that support
privacy-preserving biometric identification outsourcing in cloud computing. Our
design is carefully tuned to meet the security and efficiency requirements under
a three-party outsourcing computation model, where one or two parties may
be semi-honest. We exploit inherent structures of biometric data and prop-
erties of biometric identification operations and use similarity transformation,
trace computation by eigenvalues, and triangular matrix to design effective bio-
metric data encryption algorithms (on the database owner side) while enabling
privacy-preserving and correct distance-computation and matching over
encrypted biometric data (on the cloud server side). Our main contributions
can be summarized as follows.

– We formulate the problem of privacy-preserving biometric data identification
outsourcing, establish a well-defined threat model by carefully characteriz-
ing attack-specific capabilities in various scenarios. We examine the state-of-
the-art solutions and show their insufficiencies and security weaknesses when
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Fig. 1. An overview of cloud-based biometric-matching system.

meeting the practical needs under the biometric identification outsourcing
model.

– We present a suite of privacy-preserving biometric identification protocols,
which achieve different levels of security strength and substantially reduce
the computation burden on the database owner side. Our protocols build
on new and secure biometric data encryption and matching algorithms that
novelly exploit inherent structures of biometric data and properties of biomet-
ric identification. A thorough security analysis shows that our solutions are
practically-secure in different attack models.

– We have implemented our protocols to build an efficient privacy-preserving
fingerprint-identification system. The system performance is carefully evalu-
ated for each phase of the protocol, in terms of preparation time, commu-
nication cost and identification time. Our protocols meet both the security
and efficiency needs well, and they are appropriate for use in various privacy-
preserving biometric identification applications.

2 Problem Formulation: Outsourcing Computation
of Biometric Identification

2.1 System Model and Assumptions

In our work, we consider a cloud-based biometric-matching system involving
three parties: the database owner, the user, the cloud server (as illustrated in
Fig. 1). In this application scenario, we assume a database owner holding a data-
base D that contains a collection of biometric data 〈bi〉mi=1 (e.g., fingerprints,
voice patterns, palmprints, and facial patterns etc.), which are associated with
certain profile information 〈pi〉mi=1 (e.g., name, age and criminal record etc.).
Before outsouring D to the remote cloud server, the database owner first pre-
processes D to generate its encrypted form C and sends it to the cloud for storage.
With a candidate biometric image, a user first locally derives its corresponding
feature vector and sends the identification query to the database owner. After
receiving the query, the database server generates an encrypted query and sends



190 Q. Wang et al.

it to the cloud server. Subsequently, the cloud server executes the encrypted
identification query over the encrypted database C and finally returns all the
candidate matching results (i.e., hitting encrypted FingerCodes and profiles)
to the database owner. Finally, the database owner filters the results based on
certain similarity threshold and compute the final output for the user.

More specifically, we assume that both the database owner’s biometric data
and the user’s candidate biometric reading (e.g., fingerprint images) have been
processed such that the representations are suitable for biometric matching, i.e.,
each raw biometric image is pre-processed by some widely-used feature extraction
algorithms. Without loss of generality, we follow [8,20] and target fingerprint
identification using FingerCodes [10] in our work. In our system, a FingerCode
of a fingerprint consists of n elements with size l-bit (typically n = 640 and
l = 8). For two FingerCodes x = (x1, . . . , xn) and y = (y1, . . . , yn), they are
considered a good match if the Euclidean distance between them is below a pre-
defined threshold ε, which means that the fingerprints can be considered good
candidates from the same person if

‖x − y‖ < ε. (1)

Therefore, the process of identifying a candidate (encrypted) fingerprint and
its corresponding profile from a (encrypted) database of fingerprints can be
divided into three steps: secure Euclidian-distance computation, top-matching
fingerprint determination and result filtering and retrieval. The first and the
second steps are executed on the cloud server side, and the third step is exe-
cuted on the database owner side.

In the cloud-based biometric identification system, the encrypted database
and the time-consuming biometric identification tasks are outsourced to the
cloud. The system is expected to provide privacy-preserving biometric identifi-
cation without disclosing any information about the database owner’s biometric
data to the cloud server and/or the user, and without disclosing any information
about the user’s biometric data (i.e., query feature vectors) to the cloud (if no
collusion exists between the cloud server and the user). We assume the cloud
server and the user are semi-trusted, i.e., they will execute the protocol as spec-
ified but may try to learn additional information from the encrypted biometric
data and all the intermediate results generated during the protocol execution.
In particular, under certain circumstances, we assume that the cloud server and
the user may collude with each other and try to uncover the encrypted database.

2.2 Threat Model

In our model, we assume that the adversary knows the encryption scheme except
the secret key. From a practical point of view, real-life adversaries have different
level of background information and capabilities. To this end, we carefully define
the threat model and characterize the attack-specific capabilities of adversary
in three different scenarios. The Attack Scenario 1 reflects the very practical
case. In the Attack Scenario 2, the cloud server knows a set of plaintexts of the
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database but he does not know the corresponding encrypted values. In the Attack
Scenario 3, the cloud server may collude with the user. Obviously, attackers in
Attack Scenario 2 and Attack Scenario 3 are more powerful than that in Attack
Scenario 1, but there is no higher or lower form of security level between Scenario
2 and Scenario 3.

Attack Scenario 1: The cloud server is semi-trusted and can be seen as the
adversary. It observes only the encrypted database C and all encrypted biometric
identification queries. This model is similar to the well-known ciphertext-only
attack (COA) model [11] used in the security evaluation of data encryption
protocols. In practice, there are applications only accessed by secluded users but
others can hardly observe any information other than the encrypted data.

Attack Scenario 2: On the basis of Attack Scenario 1, we assume that the adver-
sary has some samples of the database in plaintext but he does not know the
corresponding encrypted values. This corresponds to the known-sample attack in
database literature [13]. For example, the attacker observes the encrypted data-
base and some of his sources are clients who have been collected fingerprints
by the government, it then knows the values of several records in the plaintext
database.

Attack Scenario 3: On the basis of Attack Scenario 1, we assume that the
cloud server and the user may collude with each other. Thus, in addition to the
encrypted biometric database the adversary can arbitrarily choose the user’s bio-
metric identification query of interest for encryption and execute the encrypted
query over C. Considering this attack model is also necessary in some application
cases. For example, it is possible for the cloud service provider to act as a user
to submit fingerprint information for identification, so it can observe and even
control the content of users’ candidate FingerCode.

Definition 1. A biometric identification outsourcing scheme is secure under
Attack Scenario α (α ∈ {1, 2, 3}) if no adversary can learn any other information
from the encrypted biometric database C and the encrypted identification queries
besides what it has already known.

Remarks. The above security definition takes both collusion and no-collusion
cases into account. The cloud server can observe the encrypted biometric data-
base and the encrypted identification queries. It should be noted that if a scheme
is secure under both Attack Scenario 2 and Attack Scenario 3, it does not mean
that the cloud server can both collude with the user and simultaneously observe
some plaintexts of the database. This attack is too strong that as far as we
know there exist no effective schemes that can defend against this sophisticated
attack. In the following discussion, we show that our scheme achieves a well
balance between efficiency and security requirements.
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3 Privacy-Preserving Biometric Identification:
An Examination of the State-of-the-Art

In this section, we provide an examination of two most closely-related works,
which reflect the most recent progress and results in privacy-preserving biometric
identification. A careful analysis of these solutions (in terms of both the model
and the security strength) motivates us to seek new solutions.

3.1 The Biometric Identification Scheme of Huang et al.

Huang et al. [8] explored the privacy-preserving biometric identification problem
in the secure two-party computation model, where the database owner holds
the biometric database locally, and the database owner and the user carry the
burden of expensive identification jobs. This is completely different from our
outsourcing computation model, where we propose to take full advantage of cloud
to take away the burden of storing, maintaining and performing computations
over the extremely large database (e.g., billions of biometric data and profiles).
In particular, the biometric identification outsourcing model assumes the semi-
trusted cloud server and users, from which the privacy of biometric database
should be protected while enabling effective identification over the encrypted
database. This makes the privacy-preserving biometric identification approach
in [8] unsuitable for our application model.

Firstly, as reported from the experiment in [8], for a biometric database
with one million FingerCodes (a vector of 16 8-bit integers), the corresponding
profile size (including photos and other personal information) is around 2 TB
(assuming each profile is 2 MB approximately). By using a local machine with
an Intel Xeon CPU running at 2.0 GHz and a memory of 4 GB as the database
owner, it then requires 1.88 h to run the protocol for each identification query
(besides the preparation time of more than 100 h). When the database expands
to 1 billion FingerCodes with 2000 TB profiles (the setting is also practical in
the real world), the identification time that linearly increases with the database
size will be about 78 days. This is apparently unbearable for both the database
owner and the user.

Secondly, the entire encrypted biometric database should be transmitted to
the user for each identification query, which leads to extremely large communi-
cation overhead. For a database of size 5 GB (including the encrypted profiles),
according to the experimental results in [8], it will take about 3.5 GB band-
width to complete the transmission when 100 queries are arriving simultane-
ously. Finally, we show that even if there is a powerful semi-trusted cloud server
the database owner can cooperate with, Huang et al.’s [8] encryption method is
still not applicable in the outsourcing computation model due to its ineffective
use of cloud. Specifically speaking, in the Euclidean-Distance Protocol of [8], the
squared Euclidean distance di between vi (one of the vectors in the database)
and v′ (candidate vector) is computed as follows
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di =||vi − v′||2 =
N∑

j=1

(vi,j − v′
j)

2

=
N∑

j=1

v2
i,j +

N∑

j=1

(−2vi,jv
′
j) +

N∑

j=1

v′2
j .

Let Si,1 =
∑N

j=1 v2
i,j , Si,2 =

∑N
j=1(−2vi,jv

′
j) and Si,3 =

∑N
j=1 v′2

j . Obviously,
the encrypted Si,1, denoted by [Si,1], can be outsourced to the cloud server for
storage space savings and free of data maintenance. By homomorphic encryption,
we have

[Si,2] = [
N∑

j=1

(−2vi,jv
′
j)] =

N∏

j=1

[−2vi,j ]v
′
j . (2)

Then, the database owner can outsource [−2vi,j ] for 1 ≤ j ≤ N and 1 ≤ i ≤ M
to the cloud, where M denotes the database size. These are one-time executions
and can be done in the preparation phase. However, when the database owner
receives the plaintext identificatrion query v′ from the user, he has to download
all [−2vi,j ] from the cloud server because v′ appears in the plaintext form in
the computation of [Si,2] (as shown in Eq. (2)) and cannot be encrypted and
outsourced to the cloud. Then the database owner has to traverse the database
to compute [Si,2] for each 1 ≤ i ≤ M according to Eq. (2). It is obvious that the
cloud server cannot free the database owner from the burden of heavy computa-
tions. Therefore, we claim that Huang et al. scheme cannot be directly extended
to our biometric identification outsourcing model.

3.2 The Biometric Identification Scheme of Yuan et al.

Yuan et al. [20] investigated the biometric identification outsourcing problem
under the same system model as ours, and they claimed that their scheme is
highly efficient and secure under the chosen message attack model. Roughly, their
main idea is to encrypt each extended FingerCode by multiplying randomly-
selected matrices and exploit properties embedded in these matrices for Euclidian
distance computations. Yuan et al. claimed their scheme is resilient to the Attack
Scenario 3 when the unknowns (associated with the secret keys and data) are
less than the system of equations built by the adversary. However, we show that
this is not the case at all!

We first describe their scheme in further detail. Let the i-th (i ∈ [1,m])
fingerprint in the database be a n-dimensional feature vector, the database owner
generates its FingerCode as bi = [bi1, bi2, . . . , bin], where bik (k ∈ [1, n]) is an
8-bit integer. To facilitate identification, each feature vector is extended to Bi =
[bi1, bi2, . . . , bin, bi(n+1)], where bi(n+1) = − 1

2 (b2i1 + b2i2 + . . . + b2in). Then, Bi is
used to generate matrix B′

i as

B′
i =

⎛

⎜⎜⎜⎝

bi1 0 . . . 0
0 bi2 . . . 0
...

... · · · ...
0 . . . 0 bi(n+1)

⎞

⎟⎟⎟⎠ . (3)
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The database owner randomly generates two (n + 1)-dimensional vectors H =
[h1, h2, . . . , hn+1] and R = [r1, r2, . . . , rn+1], and it also randomly generates three
(n + 1) × (n + 1) invertible matrices M1,M2 and M3 as secret keys. For each
B′

i, a random (n + 1) × (n + 1) matrix Ai is generated to hide B′
i by

Di = AT
i B

′
i, (4)

where Aik = [aik1, aik2, . . . , aik(n+1)] is the row vector of Ai (k ∈ [1, n + 1]). It
has the property HAT

ik =
∑n+1

j=1 hjaikj = 1. This implies

HAT
i = (1, 1, . . . , 1). (5)

The database owner further encrypts H, R and Di with M1, M2 and M3 as

Ci = M1DiM2,

CH = HM−1
1 , (6)

CR = M−1
3 RT .

After encryption, a Index Ii is built for each FingerCode 〈bi,Ci〉. Finally,
(Ii,Ci,CH,CR) is uploaded to the cloud.

When the user has a candidate fingerprint to be identified, it extends its
corresponding FingerCode bc = [bc1, bc2, . . . , bcn] to a (n+1)-dimensional vector
Bc = [bc1, bc2, . . . , bcn, 1]. Then Bc is transferred to B′

c as in Eq. (3). Finally, the
database owner disguises B′

c by multiplying a (n+1)×(n+1) random matrix Ec

Fc = B′
cEc,

where Eck = [eck1, eck2, . . . , eck(n+1)] (k ∈ [1, n + 1]). Similar to Aik, it also
has the property EckRT =

∑n+1
j=1 rjeckj = 1, which implies that EcRT =

(1, 1, . . . , 1)T . The database owner further blinds Fc with secret keys M2 and
M3 to generate the encrypted identification query CF as

CF = M−1
2 FcM3.

Then, CF is submitted to the cloud for identification. Finally, on receiving CF,
the cloud server compares Euclidean distance between bi and bc by computing
Pi = CHCiCFCR (We eliminate other details since they are irrelevant for the
attacks we will describe).

In the following analysis, we show that there exist inherent flaws in the above
design. The cloud server can exploit these flaws to figure out M2, and further
to recover the database owner’s FingerCodes bi or Bi (i = 1, . . . ,m).

Our attacks rely on the knowledge of a set of plaintext-ciphertext pairs
(Bi,Ci), i.e., the known-plaintext attack model. Yuan et al. [20] even claimed
that a number of users can collude with the cloud server to choose arbitrary
plaintexts of candidate queries and obtain the corresponding ciphertexts (i.e.,
the known-candidate attack defined in [20]). However, we show this is not true.
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Attack on the Encrypted Biometric Database by Eliminating Ran-
domness. See AppendixA.

Attack on the Encrypted Biometric Database by Exploiting Euclidian
Distance Results. See AppendixB.

4 Our Construction: The New and Improved Solutions

In this work, our ultimate goal is to enable privacy-preserving biometric iden-
tification of the encrypted biometric database stored in the cloud, finding the
top matching identities for users. We have the following specifical goals. First,
correctness, i.e., the correctness of the identification results should be guaran-
teed. Second, privacy assurance, i.e., the privacy of biometric data should be
protected from the adversary. Third, efficiency, i.e., the computation efficiency
of the privacy-preserving biometric identification protocol should be practically
high.

Keep the above design goals in mind, in this section we first present a cloud-
based privacy-preserving biometric matching scheme secure under the Attack
Scenario 2. We named this basic scheme as CloudBI-I. Then, we propose an
enhanced version named CloudBI-II, which achieves security under both the
Attack Scenario 2 and Attack Scenario 3 and show how it effectively avoids
flaws of [20].

4.1 CloudBI-I: The Basic Scheme

Database Encryption Phase. The database owner pre-processes each finger-
print image for which a feature vector FingerCode bi is generated. For each n-
dimensional FingerCode bi = [bi1, bi2, . . . , bin] (bi ∈ 〈bi〉mi=1 and typically n =
640), it is extended to a (n+2)-dimensional vectorBi = [bi1, bi2, . . . , bin, bi(n+1), 1],
where bi(n+1) = − 1

2 (b2i1+b2i2+. . .+b2in). ThenBi is transferred to a (n+2)×(n+2)
matrixB′

i with the similar form in Eq. (3). To encrypt the biometric data, the data-
base owner randomly generates two (n + 2) × (n + 2) invertible matrices M1 and
M2. Then for each B′

i, it computes

Ci = M1B′
iM2

Given a security parameter k, call sk ← SKE.KeyGen(1k, r), where r is a random
number and SKE is a PCPA-secure symmetric encryption scheme. Let cp ←
Enc(sk,p), where p = 〈pi〉mi=1 is the set of profiles.

After encryption, the tuple 〈Ci, cpi
〉mi=1 is uploaded to the cloud.

Biometric Data Matching Phase. The user has a candidate fingerprint
(image) to be identified. To this end, it sends the corresponding FingerCode
bc = [bc1, bc2, . . . , bcn] to the database owner, who will extend the FingerCode
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to Bc = [bc1, bc2, . . . , bcn, 1, rc], where rc is a random value generated by the
database owner. Note that rc is chosen independently for each bc. Similarly, Bc

is extended to the matrix B′
c with the form in Eq. (3). To encrypt the identifi-

cation query, the database server computes

CF = M−1
2 B′

cM
−1
1 .

The encrypted query CF is then sent to the cloud server for identification.
To compare the Euclidean distances between each encrypted FingerCode Ci

(i = 1, . . . ,m) and CF, the cloud server first computes

Pi = CiCF = M1B′
iB

′
cM

−1
1 .

Then the cloud server computes the eigenvalues of Pi, denoted by λj (j =
1, . . . , n + 2), by solving the equations |λI(n+2) − Pi| = 0, where I(n+2) is the
(n + 2) × (n + 2) identity matrix. Let Ti denote the trace of Pi, we have

Ti = tr(Pi) =
n+2∑

j=1

λj .

Finally, the cloud server only needs to rank Ti (i = 1, . . . ,m) to find out the
minimum k traces or the minimum one (i.e., k = 1). For ease of exposition,
we consider the k = 1 case in the following discussion. Assume Ci∗ is the
encrypted biometric data that achieves the minimum, and its corresponding
profile is denoted by pi∗ . Finally, the cloud server sends (Ci∗ , cpi∗ ) back to the
database owner.

Result Filtering and Retrieval Phase. After receiving (Ci∗ , cpi∗ ), the data-
base owner decrypts Ci∗ to have B′

i∗ = M−1
1 Ci∗M−1

2 . Then it transform B′
i∗ to

Bi∗ and the plaintext FingerCode bi∗ . Finally, it computes the actual Euclid-
ean distance between bi∗ and bc. By checking ‖bi∗ − bc‖ < ε, the database
owner decrypts cpi∗ to have pi∗ and sends it to the user if it holds. Otherwise,
it outputs ⊥.

Correctness Analysis. In linear algebra, the transformation B′
iB

′
c 	→ M1

(B′
iB

′
c)M

−1
1 is called a similarity transformation. Based on the properties of

similar matrices, the trace is similarity-invariant, which means that two similar
matrices have the same trace, i.e., tr(Pi) = tr(B′

iB
′
c). We now compute the trace

of B′
iB

′
c, denoted by tr(B′

iB
′
c). As can be seen, B′

iB
′
c has the following structure

B′
iB

′
c =

⎛

⎜⎝

bi1bc1 0 0 ... 0 0
0 bi2bc2 0 ... 0 0
... ... ... ... ... ...
0 ... 0 binbcn 0 0
0 0 ... 0 −0.5

∑n
j=1b

2
ij 0

0 0 ... 0 0 rc

⎞

⎟⎠ . (7)
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By the definition of trace and similarity-invariance property we have

Ti = tr(B′
iB

′
c) =

n∑

j=1

bijbcj − 0.5
n∑

j=1

b2ij + rc. (8)

Let distic and distzc denote the Euclidean distance between FingerCode bi and
query bc, the Euclidean distance between FingerCode bz and query bc, respec-
tively. Then we have

dist2ic − dist2zc =
n∑

j=1

(bij − bcj)2 −
n∑

j=1

(bzj − bcj)2.

We expand the above expression and re-arrange them to have

dist2ic − dist2zc = 2(
n∑

j=1

bzjbcj − 0.5
n∑

j=1

b2zj + rc)

− 2(
n∑

j=1

bijbcj − 0.5
n∑

j=1

b2ij + rc) (9)

= 2(tr(B′
zB

′
c) − tr(B′

iB
′
c))

= 2(Tz − Ti)

Based on Eq. (9), the cloud server can determine distic ≥ distzc if Tz ≥ Ti; oth-
erwise distzc < distic. After repeating this checking process for all the encrypted
FingerCode Ci’s, the cloud server is able to find out bi∗ (in encrypted form)
that has the minimum distance to bc (in encrypted form).

Security Analysis

Theorem 1. Our CloudBI-I scheme is secure under the Attack Scenario 2.

Proof. Due to the space limitation, please refer to our technical report [18] for
the full proof.

4.2 CloudBI-II: The Enhanced Scheme

In the previous section, we have proved that CloudBI-I is secure under the Attack
Scenario 2. However, it can be broken under the Attack Scenario 3. Specifically,
in the equation Pi = CiCF = M1B′

iB
′
cM

−1
1 , as B′

iB
′
c is a diagonal matrix and

the eigenvalues of a diagonal matrix is equal to its main diagonal elements, the
cloud server can establish equation λj = bijbcj . When there exists the collusion
between the cloud server and the user, which means bcj can be obtained by the
cloud server, it then can work out bij and thus get all Bi’s. Therefore CloudBI-I is
not secure under Attack Scenario 3. Besides, some approximate information may
be leaked to the adversary. For example, an attacker may formulate a system of
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equations as a simultaneous Diophantine approximate problem [7] and will find
some approximate values corresponding to q′

11 and p′
1k (k = 1, . . . , n+2). To solve

the above problems and achieve higher security strength, we further propose an
improved privacy-preserving biometric identification outsourcing scheme. The
main idea of the enhanced scheme is to introduce more randomness in the encryp-
tions of the biometric data and the biometric identification query. Consequently,
it is impossible to derive any information about M1 and M2.

The key difference between CloudBI-II and CloudBI-I is that the database
owner will multiply B′

i and B′
c each by an additional random triangular matrix

during the encryption process. In the database encryption phase, for each B′
i

(i = 1, . . . ,m), the database owner encrypts it as

Ci = M1QiB
′
iM2,

where Qi is a randomly-generated lower triangular matrix with diagonal entries
set to 1.

In the biometric data matching phase, for each identification query Bc the
database owner randomly generates a lower triangular matrix Qc with diagonal
entries set to 1, and it encrypts the plaintext query as

CF = M−1
2 B′

cQcM
−1
1 .

The remaining operations for the result filtering and retrieval phase are the same
as the basic scheme.

Correctness Analysis. We show that the new probabilistic encryption algo-
rithm will not affect the correctness of the final results. After receiving Ci and
CF, the cloud server computes

Pi = CiCF = M1QiB
′
iM2M−1

2 B′
cQcM

−1
1

= M1QiB
′
iB

′
cQcM

−1
1 .

Due to the property of similarity transformation, Ti = tr(Pi) = tr(QiB
′
iB

′
cQc).

In linear algebra, the product of a diagonal matrix and a lower triangular matrix
is also lower triangular. Thus, we have

QiB
′
i =

⎛

⎜⎜⎝

bi1 0 0 ... 0 0
t21 bi2 0 ... 0 0
... ... ... ... ... ...
tn1 ... tn(n−1) bin 0 0

t(n+1)1 t(n+1)2 ... t(n+1)n − 1
2

∑n
j=1b

2
ij 0

t(n+2)1 t(n+2)2 ... t(n+2)n t(n+2)(n+1) 1

⎞

⎟⎟⎠ , (10)

where tij are random values. It shows that the multiplication of B′
i by Qi does

not change its main diagonal entries.
Following the same reason, the multiplication of B′

iB
′
c by Qi and Qc respec-

tively will not change the main diagonal entries of B′
iB

′
c (as shown in Eq. (7)).

It indicates that tr(QiB
′
iB

′
cQc) is also equal to

∑n
j=1 bijbcj − 0.5

∑n
j=1 b2ij + rc.

Thus, Eq. (9) still holds. So, the cloud server can return the target (Ci∗ , cpi∗ )
to the database owner.
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Table 1. A summary of complexity costs. Here, m denotes the number of
〈FingerCode, profile〉 pairs in the database; k denotes the number of closest finger-
prints required to be returned, e.g., k = 1 if the closest one is returned; n � m.

Phases Yuan et al.
scheme [20]

CloudBI-I CloudBI-II

Comp. Database owner Prep. O(mn3) O(mn3) O(mn3)

Iden. O(n3) O(n3) O(n3)

Retr. O(n) O(n) O(n)

User Iden.

Cloud server Iden. O(mn2 +
m logm)

O(mn3 +
m logm)

O(mn3 +
m logm)

Comm. Database owner Prep. O(mn2) O(mn2) O(mn2)

Iden. O(n2) O(n2) O(n2)

Retr. O(k) O(k) O(k)

User Iden. O(1) O(1) O(1)

Cloud server Iden. / / /

Retr. O(k) O(k) O(k)

Security Attack Scenario 2 Yes Yes Yes

Attack Scenario 3 No No Yes

Security Analysis. Apparently, the multiplication of random matrices will not
compromise the security of CloudBI-I, thus the enhanced scheme CloudBI-II is
also secure under the Attack Scenario 2. For the Attack Scenario 3, we have the
following theorem.

Theorem 2. Our CloudBI-II scheme is secure under the Attack Scenario 3.

Proof. Due to the space limitation, please refer to our technical report [18] for
the full proof.

Remarks. By the introduction of random matrices Qi and Qc, CloudBI-II makes
it impossible for the adversary to apply simultaneous Diophantine approxima-
tion attack. Specifically, according to CloudBI-II, all the relevant equations that
involves p11 can be listed by the adversary are

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p11q11 + t21p12q11, . . . + t(n+2)1p1(n+2)q11 = Ci1(11)

p11q12 + t21p12q12, . . . + t(n+2)1p1(n+2)q12 = Ci1(12)

. . .

p11q1(n+2) + t21p12q1(n+2), . . . + t(n+2)1p1(n+2)q1(n+2)

= Ci1(1(n+2)).

(11)

However, in Eq. (11), there are n + 2 equations with 3n + 5 unknowns in total
such that p11 cannot be determined or even approximately solved.
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5 Implementation and Evaluation

We evaluate the performance of our protocols by implementing a privacy-
preserving fingerprint identification system. We set up the cloud with 1000 nodes,
each with an Intel Core i5-4440M 2.80 GHz CPU and 16 GB memory. We set up
the database owner on a separate machine with the same hardware configuration.
We randomly generate 640-entry vectors to construct the FingerCode database
following [8,20], and the database size ranges from one million to ten million
〈FingerCode, profile〉 pairs. We also randomly select a sequence of feature vec-
tors as the query FingerCodes.

5.1 Complexity Analysis

Before delveing into the experimental results, we first provide an overview of the
complexity of the privacy-preserving fingerprint identification execution on all
three participating parties, in terms of computation and communication over-
heads. Table 1 summarizes the complexities for our system (including CloudBI-I
and CloudBI-II) and for the biometric identification system proposed in [20].
Here, we eliminate the discussion of Huang et al. [8], who essentially consid-
ered the two-party secure computation model (see Sect. 3.1 for further details of
its extension to the computation outsourcing model). The preparation phase, the
identification phase and the retrieval phase are corresponding to the three phases
(as described before) during the protocol execution. Note that, we assume each
matrix multiplication has time complexity of O(n3), where n is the dimension
of a FingerCode. O(m log m) is the sorting cost of fuzzy Euclidian distances.
It is worth noting that although the computation and communication complex-
ities grow linearly with the database size, these are one-time costs that will
not influence the real-time performance of the biometric identification process.
Our system focuses on outsourcing of the storage and computation workloads
to the cloud for utilizing its high storage and computation capacity. In practice,
our privacy-preserving fingerprint identification protocol allows the identifica-
tion process to be performed in parallel on multiple cloud instances, which can
ensure the efficiency of the identification process even with a very large-scale
fingerprint database.

5.2 Experimental Evaluation

Preparation Phase. Figure 2 shows the time cost and the bandwidth cost in the
preparation phase. Note that, both costs are one-time startup costs. Not surpris-
ingly, the database encryption time and the communication cost for outsourcing
to the cloud increase linearly with the database size (i.e., the number of Fin-
gerCodes contained in the database). The experimental results conform to the
theoretical results in Table 1, which shows that CloudBI-I and CloudBI-II have
the same computation complexity with [20]. As CloudBI-I has less matrix mul-
tiplication operations than [20], it can save about 33 % time cost for biometric
database encryption. The bandwidth consumptions of three schemes, as shown
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Fig. 2. Preparation phase: (a) Time costs for different sizes of database; (b) Bandwidth
costs for different sizes of database.

in Fig. 2(b), are almost the same. As suggested in practical applications, hard
disks can be used to drive the outsourced encrypted data transmission services
offered by cloud service provider (e.g., Amazon) to save bandwidth consumption.

Identification Phase. Figure 3 shows the time cost and the bandwidth cost
in the identification phase. As demonstrated in Fig. 3(a), for a single query,
with the increase of database size, the biometric data matching time of our
schemes and [20] are linear functions of the database size. In the identification
phase, the computation cost of [20] are far less than CloudBI-II (i.e., mn2 vs.
mn3). However, we emphasize that Yuan et al. [20] have not noticed that sub-
stantial security is sacrificed for achieving such fast computation of Pi in [20],
where matrix multiplications are transformed to vector-matrix multiplications.
As discussed in Sect. 3.2, we launch successful attacks on [20] by leveraging this
weakness (see Eq. (12)). For bandwidth consumption of a single query, the cost
is constant (e.g., 400 KB in our experimental setting) as shown in Fig. 3(b). In
our system, a query request can be processed in parallel on the cloud side. A
set of computing instances in the cloud can be used to handle biometric data
matching on distinct small portions of database in parallel, and each of them
can find out a candidate result. Finally, by comparing these candidate results,
a cloud instance can figure out the final result. If simultaneous queries come,
as shown in Fig. 4(a), the identification time increases linearly with the num-
ber of queries without putting additional workload. The above results clearly
validate the scalability of our cloud-based privacy-preserving biometric identifi-
cation system. To demonstrate the computation savings on the database owner,
we show the comparison of time costs of biometric identification on the data-
base owner with and without identification outsourcing in Fig. 4(b). As can be
seen, our schemes achieves constant time cost on the database owner, while the
time cost of performing identification locally (over plaintext biometric database
without outsourcing) increases linearly with the database size. The larger the
database size (e.g., with 10 million FingerCodes) is, the higher efficiency gain
can be achieved.
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Fig. 3. Identification phase: (a) Time costs for different sizes of database; (b) Band-
width costs for different sizes of database.
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Fig. 4. a) Time costs under different number of simultaneous identification queries;
(b) Comparison of time costs of biometric identification on the database owner.

6 Concluding Remarks

In this work, we investigated the privacy-preserving biometric identification
outsourcing problem by developing new privacy-preserving biometric identifica-
tion protocols. Our approaches enable efficient and privacy-preserving biometric
matching with minimum database owner’s involvement. Our experimental results
show that the cloud-based biometric identification system is appropriate for use
in various privacy-preserving biometric identification applications.
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A Attack on Yuan et al. [20] by Eliminating Randomness

We begin by describing an attack on the scheme as described above to recover
Bi by eliminating the randomness in the encrypted biometric database.

Based on (Ci,CH), the server can eliminate the random matrix Ai and then
derive the secret matrix M2 by computing

CHCi = (HM−1
1 )(M1DiM2)

= HDiM2 = H(AT
i B

′
i)M2 = (HAT

i )B′
iM2 (12)

= (1, 1, . . . , 1) · B′
iM2 = BiM2.

Here, note that (1, 1, . . . , 1) ·B′
i = Bi. In Eq. (12), since M2 is a (n+1)× (n+1)

constant matrix, if the cloud server possesses (n + 1) linearly independent Bi

and constructs (n+1) equations, then M2 can be recovered. Once M2 is known,
the cloud server can recover all Bi’s (i = 1, . . . ,m) according to Eq. (12). Next
we give an illustrating example of this attack.

Assume that n = 2 and the database owner has Bi (i = 1, . . . ,m), H =
[1, 2, 3] and R = [1, 1, 2]. The three randomly-generated secret matrices M1,M2,
M3 are

M1 =
(

1 2 0
1 1 0
0 0 1

)
,M2 =

(
1 0 1
0 2 1
0 3 1

)
,M3 =

(
2 0 0
1 0 1
0 1 2

)
.

Correspondingly, A1,A2 and A3 are generated to satisfy HAT
i = (1, 1, . . . , 1) as

A1 =
(

1 0 0−1 1 0
0 −1 1

)
,A2 =

(
0 2 −1
1 0 0−1 1 0

)
,

A3 =
( −1 −2 2

1 0 0
0 −1 1

)
.

Then we have

CH = HM−1
1 = [1, 0, 3], where M−1

1 =
( −1 2 0

1 −1 0
0 0 1

)

Without loss of generality, we assume B1 = [1, 3,−5],B2 = [0, 2,−2] and B3 =
[2, 2,−4]. According to Eq. (4), we can compute Di. Based on Eq. (6), we have
Ci (i = 1, 2, 3)

C1 =
(

1 36 14
1 15 6
0 −15 −5

)
,C2 =

(
0 −2 0
0 4 2
0 0 0

)
,

C3 =
( −10 28 0

−6 16 0
4 −12 0

)
.

Then (C1,C2,C3,CH) are sent to the cloud server (i.e., the adversary in our
model), who can construct the following equations using Eq. (12)

B1M′
2 = CHC1 = (1,−9,−1),

B2M′
2 = CHC2 = (0,−2, 0),

B3M′
2 = CHC3 = (2,−8, 0).
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According to the known-plaintext attack model (or the extension to the chosen-
plaintext attack model) defined in [20], if we let the adversary (i.e., the cloud
server) observe B1,B2,B3, it can solve for

M′
2 =

(
1 0 1
0 2 1
0 3 1

)
= M2.

By plugging M2 into Eq. (12), then the cloud server can solve for all unknown
Bi (i = 4, . . . ,m)!

Remarks. The above attack works due to the elimination of the randomness
introduced by Ai. When applying the property Eq. (5) in Eq. (12), the number
of secret unknowns will be equal to the number of equations. In fact, we can also
show that by knowing a set of (Bc,CF)’s, any plaintext query can be recovered
by eliminating the random matrix Ec with the property EcRT = (1, 1, . . . , 1)T .
This implies that by knowing a sequence of users’ queries and their encrypted
versions, the cloud can reveal any other plaintext queries (submitted by other
users) even if they have been encrypted. So, the biometric identification scheme
in [20] is also insecure under the Attack Scenario 3. Due to the space limitation,
we omit the analysis here.

B Attack on Yuan et al. [20] by Exploiting Euclidian
Distance Results

We next describe another attack on the scheme to recover Bi by exploiting the
Euclidian distance results.

In the scheme of Yuan et al. [20], the cloud server compares Euclidean dis-
tance between bi and bc by computing

Pi = CHCiCFCR =
n+1∑

j=1

bijbcj =
n∑

j=1

bijbcj − 1
2

n∑

j=1

b2ij . (13)

We show that it is easy to construct enough equations to recover Bi. Similarly,
we give an illustrating example. Assume that n = 2 and Bi = [0, 2,−2] (i ∈
[1,m]). Yuan et al. [20] claimed that their scheme allows the collusion between
the cloud server and a number of users. Based on this fact, the adversary can
select query plaintexts of his interest for encryption. Therefore, assume that two
linear independent FingerCodes Bc1 = [7, 8, 1] and Bc2 = [1, 2, 1] are chosen for
query, and their corresponding encrypted queries CF1 and CF2 are also known
by the cloud server. After performing the Euclidian distance comparison using
Eq. (13), the cloud server has P1 = 14 and P2 = 2. By using two equations
Pi =

∑2
j=1 bi′jbcj − 1

2

∑2
j=1 b2i′j (i = 1, 2), the cloud server can solve Bi′ =

[0, 2,−2] = Bi. The success of this attack further demonstrates that Yuan’s
scheme is vulnerable in the Attack Scenario 3. This attack works due to the
lack of randomness in the Euclidian distance results Pi. It tells us that besides
the biometric data, Pi should also be well-protected while not affecting result
correctness.
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