
Should Cyber-Insurance Providers Invest
in Software Security?

Aron Laszka1(B) and Jens Grossklags2

1 Vanderbilt University, Nashville, TN, USA
laszka.aron@gmail.com

2 Pennsylvania State University, University Park, PA, USA

Abstract. Insurance is based on the diversifiability of individual risks:
if an insurance provider maintains a large portfolio of customers, the
probability of an event involving a large portion of the customers is neg-
ligible. However, in the case of cyber-insurance, not all risks are diversi-
fiable due to software monocultures. If a vulnerability is discovered in a
widely used software product, it can be used to compromise a multitude
of targets until it is eventually patched, leading to a catastrophic event
for the insurance provider. To lower their exposure to non-diversifiable
risks, insurance providers may try to influence the security of widely used
software products in their customer population, for example, through
vulnerability reward programs.

We explore the proposal that insurance providers should take a proac-
tive role in improving software security, and provide evidence that this
approach is viable for a monopolistic provider. We develop a model which
captures the supply and demand sides of insurance, provide computa-
tional complexity results on the provider’s investment decisions, and
propose different heuristic investment strategies. We demonstrate that
investments can reduce non-diversifiable risks and can lead to a more
profitable cyber-insurance market. Finally, we detail the relative merits
of the different heuristic strategies with numerical results.

Keywords: Economics of security · Cyber-insurance · Software secu-
rity · Vulnerability discovery

1 Introduction

Most software suffers from vulnerabilities. Partly, the reason is technical and
related to the inherent complexity of software development projects. In addi-
tion, economic factors play a significant role. For example, software companies
may find it undesirable to invest heavily in the security of their products because
customers may not immediately reward such actions (in particular, when they
impact the time-to-market, or create backwards-compatibility issues). However,
the quality of software critically impacts the security of most parts of an orga-
nization’s information system. Moreover, popular software products influence
the security of many organizations. Even though systems may be independently
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owned and administrated, they may often exhibit similar software configurations
leading to so-called monoculture risks [3,12].

It is a matter of considerable debate on how to address these monoculture
risks. For example, organizations may desire some security warranties for the
software they deploy, however these are not offered as part of software licenses for
commercial software which may even contain substantial warranty disclaimers.
In response, a number of public policy changes have been proposed. For example,
assigning loss liability for security breaches related to insecure software products
to software vendors has been argued to be beneficial [27] and can be welfare-
enhancing [2]. But such proposals have not found sufficient policy support.

Some organizations have partially taken matters into their own hands by
improving the security of software which is critical for their own operations. For
example, Samsung and Google have invested a significant amount of resources
into making key software products, such as the Linux kernel, more secure by
finding and patching vulnerabilities [8]. In addition, several large companies
are now running software and web vulnerability rewards programs to limit the
risks related to their own businesses. However, these isolated efforts cannot fully
address the security risks related to the diverse landscape of widely used software
products, such as popular web-based content-management systems etc.

As an alternative, companies of various sizes may wish to purchase cyber-
insurance to transfer risks related to the consequences of potentially insecure
software. This raises the question whether cyber-insurers would find the prospect
of offering such contracts attractive.

From an insurance provider’s perspective, the total risk related to each
insured company can be decomposed into two parts: diversifiable risk and non-
diversifiable risk (also known as systematic risk or market risk). Diversifiable risk
arises from vulnerabilities that pertain to a particular company. For example, the
possibility of insider attacks, hardware failures, weak passwords, configuration
errors, and human mistakes all contribute to the diversifiable risk of a company
(e.g., [22]). In contrast, monoculture risks associated with widely used software
products in its client base are a key contributor to non-diversifiable risk of a
cyber-insurer.

The existence of diversifiable risk is typically desirable from the perspective of
an insurance provider: it provides incentives for companies to purchase insurance,
and insurers can account for those risks by maintaining a large and diverse
portfolio. In contrast, non-diversifiable risk can cause significant fluctuations in
the arrival of cyber-insurance claims, which requires an insurer to set aside a
substantial safety capital and may provide a price-barrier impeding the growth
of the cyber-insurance market [6].

Insurance providers often incentivize companies to reduce risk with security
investments by offering premium reductions. However, typical security invest-
ments such as the purchase of security products (including firewalls, IDS, and
IPS) and the hiring of auditors who can point out and fix company-specific vul-
nerabilities do not address non-diversifiable risks. Further, most companies lack
both the resources and expertise to make valuable contributions to improving
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the security of widely used software products. Consequently, these incentives
lower the level of diversifiable risk without having a significant impact on the
level of non-diversifiable risk. An insurer would prefer the reverse outcome to
increase revenue and to limit its exposure to significant risks.

In this paper, we tackle two interrelated issues. First, we propose a model
about the insurability of monoculture risks. Second, we propose to lower these
risks by investigating a scenario which provides direct incentives to increase the
security of widely used software products.

More specifically, we explore the proposal that cyber-insurers should take
a proactive approach to improve the security of widely used software products
in its customer population and to reduce its aggregate non-diversifiable risk.
Specifically, we study whether an insurance provider would find it beneficial to
adhere to the following two propositions: (1) An insurer should not ask compa-
nies to individually invest in security in exchange for lower premiums, which is
the currently dominant practice. (2) An insurer should rather invest the surplus
from the resulting higher premiums into making widely used software products
more secure. Measures facilitated by the insurer could include: (1) targeted direct
investments in software companies (similar to economically targeted investments
of public funds which aim to provide positive collateral benefits [15]), (2) vulner-
ability reward programs which benefit the software used by its customers, and
(3) the hiring of external developer teams for popular open-source software.

For the case of a monopolistic cyber-insurer, we provide evidence that this
approach is viable. We develop a model which captures the supply and demand
sides for insurance when security outcomes are related to the software prod-
ucts chosen by the insured companies, and insurers can invest in the security of
the utilized software. We provide theoretical results highlighting the computa-
tional complexity of the insurer’s decision-making problem, and propose differ-
ent heuristic strategies to allocate an investment budget to software security. We
demonstrate how investments in software security reduce the occurrence of non-
diversifiable risk and lower the insurer’s required safety capital. We further detail
the relative merits of the different heuristic strategies with numerical analysis.

The proposed approach would constitute a paradigm change for insurance.
We argue that novel ways to overcome the currently existing impediments are
needed to make cyber-insurance viable for non-diversifiable risks. The approach
is feasible because insurance companies are strongly incentivized to lower the
magnitude of non-diversifiable risks to reduce their probability of ruin, and they
have access to privileged information which could guide their investment deci-
sions. Finally, the approach would have significant positive spillover effects on
home users and other typically uninsured entities.

The remainder of this paper is organized as follows. In Sect. 2, we sum-
marize relevant previous work from the areas of cyber-insurance and software-
security investments. In Sect. 3, we introduce our modeling framework for cyber-
insurance. Then, we present our theoretical and numerical results in Sects. 4
and 5, respectively. Finally, in Sect. 6, we provide concluding remarks and out-
line future work.
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2 Related Work

2.1 Cyber-Insurance

A key objective of our work is to improve the insurability of risks from an
insurer’s perspective. A functioning market for cyber-insurance and a good
understanding of the insurability of diversifiable and non-diversifiable risks both
matter, because they signal that stakeholders are able to manage modern threats
that cause widespread damage across many systems [1,5]. However, the market
for cyber-insurance is developing at a frustratingly slow pace due to several
complicating factors, which are discussed in the detailed review of the security
economics and cyber-insurance literature by Böhme and Schwartz [7].

In particular, from an attacker’s perspective, a group of defenders might
appear as a very appealing target because of a high correlation in the risk
profiles of the defended resources. For example, even though systems may be
independently owned and administrated, they may exhibit similar software con-
figurations leading to monoculture risks [3,12]. Böhme and Kataria study the
impact of correlation which is readily observable for an insurer and found that
the resulting insurance premiums to make the risks insurable would likely endan-
ger a market for cyber-insurance [6]. Similarly, Chen et al. study correlated risks
by endogenizing node failure distribution and node correlation distribution [9].
Lelarge and Bolot model interdependent security with insurance, but assume
that there is an insurance provider with an exogenously priced premium [23].
Johnson et al. study the viability of insurance in the presence of weakest-link
interdependencies [17].

Non-diversifiable risks may also be caused by interdependent security issues,
which have been thoroughly studied outside the context of cyber-insurance
(e.g., [13,28]). These works have been reviewed by Laszka et al. [20]. Recently,
Johnson et al. investigated interdependent security from an insurance provider’s
perspective [18,19,21]. They found that real-world networked systems can
exhibit substantial non-diversifiable risk, and that estimating the magnitude of
this risk is a complex problem due to both theoretical and practical challenges.

2.2 Software Security Investments

Potential improvements to software security frequently focus on finding vulner-
abilities in deployed code which is also most relevant to our context (since we
focus on widely used software). Public vulnerability disclosure programs (VDP),
such as the BugTraq mailing list that emerged more than 20 years ago, have
been an important source for companies and the public to receive vulnerability
reports from white hats. See also recent work on the Wooyun VDP [29]. However,
there has always been a debate on whether VDPs are beneficial to society [10].
On the one hand, Rescorla showed that the pool of vulnerabilities in a software
product is very deep with respect to the effort and potential impact of vulnera-
bility discovery efforts [26]. On the other hand, Ozment showed that the pool of
vulnerabilities in OpenBSD 2.2 is being depleted and vulnerability rediscovery
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is common. He concludes that vulnerability hunting by white hats is socially
beneficial [25].

Conceptual work has discussed different approaches to organize and design
vulnerability markets [4]. For example, Ozment proposed a vulnerability auction
mechanism that allows a software company to measure its software quality as well
as encourage vulnerability discovery at an acceptable cost [24]. In addition, some
companies such as Facebook, Google and Mozilla have established vulnerability
reward programs (VRP) that pay white hats to hack. A study based on the
Google VRP and Mozilla VRP has shown that harvesting vulnerabilities from
the white hat community is cost effective, and compares favorably to hiring
full-time vulnerability researchers [11].

3 Model

Now, we present our modeling framework for studying security investments for
cyber-insurance. First, in Sect. 3.1, we describe our model of software-security
investments and how software security determines the probability of a company
suffering an incident. Then, in Sect. 3.2, we discuss cumulative risks, that is, the
expected value and variability of the aggregate loss over all companies. Next,
in Sect. 3.3, we first describe the demand-side of the insurance model, which
is based on utility-maximizing risk-averse companies. Finally, in Sect. 3.4, we
discuss the supply-side and how the insurance provider’s profit is affected by
individual and cumulative risks. For a list of symbols used in this paper, see
Table 1.

3.1 Software Security and Individual Risks

We assume that there are N software products that the insurance provider might
invest into, and we let di denote the amount of resources that the provider invests
into the ith product. For every software product, there is a non-zero probability
that a new vulnerability is discovered and exploited before it is patched. We
call this probability the vulnerability level of software i and let Vi(di) denote
its value. We assume that the vulnerability level Vi decreases exponentially with
the value of the provider’s investment, that is,

Vi(di) = BV i · e−γidi , (1)

where BV i is the level of vulnerability when there is no security investment
from the provider, and γi is the efficiency of security investments into software
product i.

We assume that there are M companies that want to purchase insurance
from the provider. Each company j may use any subset Sj of all the N software
products in our model. We assume that each software product i ∈ Sj has a
vulnerability with Vi probability independently of the other software products,
and a company suffers an incident if any of its software products has a vulnera-
bility. Furthermore, a company may also suffer an incident due to an individual
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Table 1. List of Symbols

Symbol Description

Constants

BV i base vulnerability level of software i

γi efficiency of investing into software i

IRj individual risk of company j

Wj base wealth of company j

Lj loss of company j in case of an incident

I interest rate for the insurer

ε insurer’s probability of ruin

Variables and Functions

Vi vulnerability level of software i

Rj risk level of company j

di insurer’s investment into securing software i

D insurer’s sum investment into securing soft-
ware products (i.e., D =

∑
i di)

S insurer’s safety capital

vulnerability, such as a configuration error, which occurs with IRj probability.
Formally, the probability of company j suffering an incident, denoted by Rj , is

Rj = 1 − (1 − IRj)
∏

i∈Sj

(1 − Vi) . (2)

3.2 Cumulative Risk

In the previous subsection, we described a stochastic risk model that captures
security vulnerabilities and individual incidents. Now, consider an aggregate out-
come of this model:

1. each software product i had a vulnerability with probability Vi(di) (indepen-
dently of the other software products);

2. every company j that uses a vulnerable software had an incident;
3. each remaining company j had an incident with probability IRj (indepen-

dently of the other companies).

We are interested in the total amount of losses over all companies due to inci-
dents. Let Lj denote the loss suffered by company j when an incident happens,
and let TL denote the sum of the loss values Lj over all the companies j that
suffered incidents (either due to vulnerable software or due to individual vulner-
abilities).

First, notice that we can compute the expected total amount of losses E[TL]
easily as

E[TL] =
∑

j

LjRj , (3)



Should Cyber-Insurance Providers Invest in Software Security? 489

where each Rj can be computed efficiently (i.e., in polynomial time) using
Eq. (2).

On the other hand, measures of variability (e.g., variance) and quantiles can-
not be computed simply from the companies’ risk levels Rj , due to the correla-
tions between the incident events caused by the software products. For example,
consider two companies with R1 = R2 = 0.5 and L1 = L2 = 1. Then, from these
values only, we cannot determine the probability of both companies suffering an
incident (i.e., the probability Pr[TL = 2]): It is possible that the two companies
use completely different sets of software, which means that there are no correla-
tions between the incidents and Pr[TL = 2] = 0.25. However, it is also possible
that both companies use exactly the same set of software and IR1 = IR2 = 0,
which means that there is perfect correlation and Pr[TL = 2] = 0.5. In Sect. 4.1,
we will show that computing certain properties of TL, which are crucial to pro-
viding insurance, is in fact computationally hard.

3.3 Demand-Side Model

For a functioning cyber-insurance market, we need both demand and supply:
companies that are willing to purchase insurance and insurers that are willing
to provide it.

Now, we introduce our demand-side model, which is based on utility-
maximizing risk-averse companies. As it is usual in the literature (see, e.g., [6]),
we assume that companies have Constant Relative Risk Aversion (CRRA) util-
ity functions. Furthermore, we also assume that the constant of the relative risk
aversion is equal to 1, which means that for a given amount of wealth w, a
company’s utility is ln(w). Finally, we let the initial wealth of company j (i.e.,
the amount of wealth when no incident occurs) be denoted by Wj . Then, the
expected utility of company j is

Rj ln(Wj − Lj) + (1 − Rj) ln(Wj) . (4)

In the above equation, the first term corresponds to the case when the company
suffers an incident and loses Lj , which happens with probability Rj , and the sec-
ond term corresponds to the case when the company does not suffer an incident,
which happens with probability 1 − Rj .

Since companies are risk averse, they are interested in trading off expected
wealth for decreased risks. In the case of purchasing insurance, this means that
the company pays a fixed premium pj to the provider, but in case of an incident,
the provider will pay the amount of loss Li suffered by the company. Hence, when
company j purchases insurance for premium pj , its expected utility is simply

ln(Wj − pj) . (5)

As companies are assumed to be utility maximizing, it is optimal for company
j to purchase insurance if and only if its utility with insurance is greater than
or equal to its expected utility without insurance. Building on Eqs. 5 and 4, we
can express the condition for purchasing insurance as
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ln(Wj − pj) ≥ Rj ln(Wj − Lj) + (1 − Rj) ln(Wj) (6)

Wj − pj ≥ eRj ln(Wj−Lj)+(1−Rj) ln(Wj) (7)

pj ≤ Wj − eRj ln(Wj−Lj)+(1−Rj) ln(Wj) . (8)

In our model, we assume that all companies purchase insurance from the
provider, who chooses the maximum premiums such that purchasing insurance
is the optimal choice for the companies.

3.4 Supply-Side Model

Next, we discuss the final piece in our model, the supply-side of insurance.
We assume a monopolist insurance provider who maximizes its expected profit,
where profit is defined as the difference between income and expenditure. Besides
maximizing its profit, the insurance provider is also risk-averse in the sense that
it keeps the probability of ruin below a certain threshold by setting aside a safety
capital, which we will discuss shortly.

First, the insurance provider’s income is the sum of all the premiums paid
by the companies, that is,

Income =
∑

j

pj . (9)

Since the provider is assumed to be a monopolist, it can ask for the maximal
premium (see Eq. 8); hence, we can compute the income as

Income =
∑

j

Wj − eRj ln(Wj−Lj)+(1−Rj) ln(Wj) . (10)

We assume that insurance premiums are flexible in the sense that the premium
values pj are affected by the provider’s investments di: higher investment values
di lead to lower vulnerability values Vi, which in turn lead to lower risk levels
Rj and lower premiums pj . The flexibility of premiums poses challenges to the
provider, which we will discuss in Sect. 5.3.

Second, the insurance provider’s expected expenditure is

Expenditure = E[TL] +
∑

i

di + A + I · S , (11)

where

– E[TL] is the expected total amount of claims (i.e., the sum of the losses suffered
by the companies),

–
∑

i di is the total amount of investments into software security,
– A is the sum of all administrative costs,
– I is the interest rate,
– and S is the safety capital required to keep the probability of ruin below a

given probability ε.
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The safety capital is set aside by the provider to ensure that it remains
solvent. To see why this capital is required, consider the total amount of losses
TL: On average, the insurance provider has to pay the expected value E[TL] of
these losses (hence the first term in the right-hand side of Eq. (11)). However, in
many outcomes, the realization of the total amount of losses TL exceeds E[TL];
hence, the provider has to set aside S to be able to pay all the claims. More
formally, the safety capital is the amount necessary to ensure that

Pr[TL > E[TL] + S] ≤ ε . (12)

Since this capital has to be set aside, the provider bears the opportunity cost I ·S.

4 Theoretical Results and Heuristic Investment
Strategies

In this section, we study the computational problems faced by the insurance
provider. First, in Sect. 4.1, we show that determining whether a given safety
capital is sufficient is computationally hard. Then, in Sect. 4.2, we prove that
simulations can approximate the amount of necessary safety capital and, hence,
the provider’s profit. Finally, in Sect. 4.3, we propose efficient heuristic invest-
ment strategies.

4.1 Complexity of Computing the Optimal Safety Capital

Assume for the following analysis that the security-investment values di are
given and fixed for every software product i, and the insurance provider’s deci-
sion space is limited to choosing the amount of safety capital S. Recall from
Eq. (11) that higher amounts of safety capital lead to higher expenditures for
the provider. Consequently, a rational and profit-maximizing provider will try
choose the minimum amount of safety capital that will keep its probability of
ruin below a threshold ε. We show that this problem is computationally chal-
lenging by proving that its decision version, that is, determining whether a given
amount of safety capital keeps the probability of ruin below ε, is an NP-hard
problem.

Theorem 1. Given a safety capital S and a threshold probability of ruin ε,
determining whether the probability of the total amount of losses TL exceeding
S + E[TL] is greater than or equal to ε is NP-hard.

The proof of the theorem can be found in AppendixA.1.

4.2 Approximating the Loss Distribution

From Theorem 1, we have that it is computationally hard to find the minimal
amount of safety capital that keeps the provider’s probability of ruin below
a given threshold ε. Consequently, computing the provider’s profit for given
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security-investment values (d1, . . . , dN ) is also computationally hard, since the
provider’s expenditure is determined by the amount of safety capital.

However, we can approximate the minimal amount of safety capital using
simulations as follows. First, generate K outcomes of the risk model as described
in Sect. 3.2, and let tl1, tl2, . . . , tlK be the realizations of TL. Second, let the
approximate safety capital Ŝ be the �(1−ε)K�-th smallest realization (note that
if multiple realizations have the same value, they have to be counted separately).
The following theorem shows that the probability of ruin for the approximate
safety capital Ŝ converges quickly to the actual probability of ruin.

Theorem 2. Let TL1, TL2, . . . , TLK be K independent random variables having
the same distribution as TL, and let Ŝ be the �(1 − ε)K�-th smallest of these
random variables. Then,

Pr[TL > Ŝ] ≤ ε +
1
K

. (13)

The proof of the theorem can be found in AppendixA.2.

4.3 Investment Strategies

Since computing the provider’s profit is challenging, so is finding the investments
(d1, . . . , dN ) that maximize the profit. In this subsection, we propose heuristic
investment strategies, which we will evaluate numerically in Sect. 5.

First, suppose that we are given an aggregate investment amount D, and our
goal is to find the optimal investments (d1, . . . , dN ) satisfying

∑
i di = D, that

is, we have to divide the aggregate amount D among the N software products.
Here, we propose four heuristic strategies for dividing D: uniform, most-used,
proportional, and greedy. Then, we can find good investments (d1, . . . , dN ) using
these heuristics by searching for the best value of D, which is a simple scalar
optimization problem.

Uniform. The uniform strategy invests the same amount into all software prod-
ucts. Formally, for every software product i,

di =
D

N
. (14)

The rationale behind this heuristic is that the provider needs to mitigate all
common vulnerabilities in order to decrease non-diversifiable risks.

Most-Used. The most-used strategy invests only into the most popular soft-
ware product. Let Pi denote the number of companies that use software product
i, that is, Pi = |{j : i ∈ Sj}|. Then, for every software product i,

di =

{
D if Pi = maxl Pl

0 otherwise.
(15)
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The rationale behind this heuristic is that the provider needs to invest into the
most-used software only, since vulnerabilities in less popular software cannot
cause a large number of incidents.

Proportional. The proportional strategy invests into each software product an
amount that is proportional to the number of companies using that software.
Formally, for every software product i,

di =
Pi∑
l Pl

. (16)

This heuristic is a middle ground between the first two heuristics, combining
their advantages.

Greedy. The greedy strategy divides the aggregate investment amount D
according to the following greedy algorithm. First, let the investment into each
software be zero. Then, the investments are increased iteratively: in every itera-
tion, compute for each software product i how much would the profit increase if
we invested an additional δ into software i, and invest into the software product
for which the profit increase is maximal. Formally, the greedy strategy divides
the aggregate investment amount D as follows:

∀i : di ← 0
while

∑
i di < D do

for i = 1, . . . , N do
Profiti ← Profit(d1, . . . , di−1, di + δ, di+1, . . . , dN )

end for
i∗ ← argmaxiProfiti

di∗ ← di∗ + δ
end while

5 Numerical Results

In this section, we present numerical results on our insurance modeling frame-
work. With these results, we strive to answer two important questions:

– Can the insurance provider increase its expected profit by investing into soft-
ware security?

– Which heuristic investment strategy leads to the highest expected profit?

First, in Sect. 5.1, we describe how we instantiate our model. Then, in Sect. 5.2,
we present the resulting loss distributions both in the case of no software-security
investments and in the case of substantial investments. Finally, in Sect. 5.3, we
compare the various investment strategies in terms of expected profit to answer
the above questions.
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5.1 Setup

We instantiated the model with exemplary values to illustrate the relative effect
of the investment strategies. First, we generated a set of 15 software products
such that, for each software i,

– base vulnerability BV i was randomly drawn from [0.09, 0.11],
– investment efficiency γi was randomly drawn from [0.9, 1.1].

Second, we generated a set of 1500 companies such that, for each company j,

– individual risk IRj was randomly drawn from [0.4, 0.6],
– base wealth Wj was randomly drawn from [10, 20],
– loss in case of an incident Lj was randomly drawn from [0.25 · Wj , 0.75 · Wj ].

For each company, we choose 3 software products to be used by the company
using a popularity-based preferential-attachment model as follows. For the first
few companies, the set of software products used by the company was chosen
uniformly at random. For the remaining companies, the probability of choosing
each software was proportional to the number of companies already using the
software. This process models the widely-observed phenomena in which busi-
nesses and people tend to choose more popular software products with higher
probability, leading to a long-tailed usage distribution [14,16].

Finally, we let the insurance provider’s probability of ruin ε be 0.1%, the
interest rate I be 5%, and the administrative costs A be 0 (i.e., negligible). Note
that the value of administrative costs does not affect our analysis, since it is a
constant term in the provider’s profit, which does not depend on the investment
strategy.

5.2 Distribution of the Total Amount of Losses

Figure 1a shows the distribution of the total amount of losses (or, equivalently,
the total amount of claims) without any security investments from the provider.
We can see that the distribution has a very heavy tail with multiple local max-
ima, each of which corresponds to vulnerabilities being discovered in one or
more widely used software products. Due to this heavy tail, the provider has to
set aside a substantial safety capital to avoid ruin: even though the expected
amount of claims to be paid is only E[TL] = 7 032 (marked by dotted blue
line on the plot), the amount exceeds 10 510 with probability 0.1%, that is,
Pr[TL > 10 510] = 0.1% (marked by dashed red line on the plot). Consequently,
in order to keep the probability of ruin below 0.1%, the provider has to set aside
a safety capital of 10 510 − 7 032 = 3 478.

Figure 1b shows the distribution of the total amount of losses with uniform
security investments di = 7.5 into every software product i. As expected, we can
see that the investments decrease both the expected value of the total amount of
losses (i.e., total amount of claims) and the necessary safety capital. The expected
amount of claims to be paid is E[TL] = 5 536 (marked by dotted blue line on
the plot), while the 0.999% quantile is 6 051, that is, Pr[TL > 6 051] = 0.1%
(marked by dashed red line on the plot). Hence, the amount of safety capital
that the provider needs to set aside is only 6 051 − 5 536 = 515.
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Fig. 1. Probability distribution of the total amount of losses with and without invest-
ments. The dotted blue lines mark the expected values, while the dashed red lines mark
the 99.9 % quantiles QTL(0.999) of the distributions (Color figure online).

5.3 Security Investment Strategies

Now, we compare the various investment strategies that we have introduced
in Sect. 4.3. For each investment strategy, we compute the insurance provider’s
income (see Eq. (10)), expenditure (see Eq. (11)), and profit for aggregate invest-
ment amounts D =

∑
i di ranging from 0 to 200. In each case, we divide the

aggregate investment amount D among the software products according to the
investment strategy (e.g., with uniform strategy, we let di = D

N ), and approxi-
mate the resulting expenditure value using 500 000 simulations of the risk-model
outcome.

Recall from Sect. 3.4 that insurance premiums are flexible, that is, the pre-
mium values take into account the reductions in risk levels due to the provider’s
security investments. Consequently, as we increase the value of security invest-
ments, we will see a decrease not only in the provider’s expenditure, but also in
its income due to the decreasing premium values. If we assumed fixed premiums,
that is, if the premium values were determined by the base vulnerability levels,
then the provider’s profit would be strictly higher. Hence, by assuming flexible
premiums, we study the conservative scenario, where investments are less bene-
ficial for the insurer (or where the benefits of the security investments are shared
between the insurer and the insured companies).

First, Fig. 2a shows the provider’s income, expenditure, and profit for the uni-
form investment strategy. We observe that, as expected, the provider’s expen-
diture drops sharply at first as we increase the investments, due to the rapid
decrease in the non-diversifiable risks caused by software vulnerabilities and,
hence, in the necessary safety capital. However, once the aggregate investment
amount reaches around 110, further investments cannot significantly decrease
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(a) uniform investment strategy
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(b) most-used investment strategy

Fig. 2. Income (green), expenditure (red), and profit (blue) of the uniform and the
most-used investment strategies for various aggregate security investments. Please note
that the scale of the vertical axis for the most-used strategy differs from that for the
other strategies (Color figure online).

the necessary safety capital; hence, the expenditure starts increasing due to the
increasing cost of investments. The provider’s income also drops sharply at first
as we increase the investments, due to the rapid decrease in risk levels and,
hence, in premium values. Even though the income decreases monotonically for
all investment values, once the aggregate investment reaches around 70, the
decrease becomes negligible.

On the other hand, the insurance provider’s profit is a highly irregular func-
tion of the aggregate investment amount, with many local maxima. These irreg-
ularities are caused by the combined effects of decreases in expenditure and
income, which make finding the optimal investment amount non-trivial. In this
example, the maximum profit for the uniform investment strategy is 962, and
the maximizing aggregate investment is 107.5. Note that this is substantially
better than the case of zero investments, where the profit is only 810.

Second, Fig. 2b shows the provider’s income, expenditure, and profit for the
most-used investment strategy. Similarly to what we observed for the uniform
strategy, we see that the provider’s expenditure and income drop sharply at first
as we increase the investment, while the profit increases rapidly. However, the
profit quickly reaches its maximum value 840 at the investment value 5; and after
this point, it decreases monotonically. The explanation for this is the following:
securing the most used software eliminates the non-diversifiable risk caused by
it, which has a substantial impact due to the large number of companies that are
affected; however, once this software product is secure, any further investments
will only increase the insurance provider’s investment costs without eliminating
the non-diversifiable risks caused by the other software. Compared to the other
investment strategies, the most used strategy is clearly inferior.

Third, Fig. 3a shows the provider’s income, expenditure, and profit for the
proportional investment strategy. Again, we see that the income and expenditure
take a sharp drop at first, after which the income decreases slowly but monoton-
ically, while the expenditure starts increasing after reaching its minimum at the
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(a) proportional investment strategy
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(b) greedy investment strategy

Fig. 3. Income (green), expenditure (red), and profit (blue) of the proportional and the
greedy investment strategies for various aggregate security investments (Color figure
online).
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Fig. 4. Profits of the proportional (solid line), uniform (dashed line), most-used (dotted
line), and greedy (red line) investment strategies for various investment values. Please
note that the profit of the most-used strategy is outside of the plotted vertical range
for investment values 50 and above (Color figure online).

aggregate investment 90. However, the profit is a surprisingly smooth function
of the investment: it is approximately concave with only a few local maxima,
none of which deviate from the general trend substantially.1 For this strategy,
the maximum profit is 967 and the maximizing investment value is 77.5, which
means that this strategy is slightly better than the uniform strategy, but the
difference is not significant.

Fourth, Fig. 3b shows the provider’s income, expenditure, and profit for the
greedy investment strategy with increment size δ = 2. We see that the income,
expenditure, and profit functions are all very similar to the ones plotted for

1 Note that these deviations do not diminish as we increase the number of iterations.
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the proportional strategy. However, both the maximal profit value 972 and the
maximizing investment value 96 are greater than those of the proportional strat-
egy, which shows that this strategy is superior. Furthermore, compared to not
investing in security, the maximum profit of the greedy strategy is 20% higher.

Finally, Fig. 4 compares the proportional (solid line), uniform (dashed line),
most-used (dotted line) and greedy (red line) investment strategies for various
aggregate investment amounts. This comparison shows how the greedy strategy
outperforms the other strategies: For lower investment amounts, where the pro-
portional strategy is optimal (among the considered strategies), the profit of the
greedy strategy is almost indistinguishable from that of the proportional strat-
egy. After the proportional strategy reaches its maximum at 77.5, the greedy
strategy keeps increasing, until it reaches its maximum at 96. Then, the profit
of the greedy strategy decreases until it reaches the maximum of the uniform
strategy at 96, after which the profits of the uniform and greedy strategies are
almost indistinguishable.

6 Conclusion

In this paper, we have introduced a model for cyber-insurance which incorpo-
rates software-security investments. Based on this model, we have shown that the
insurance provider’s decision-making involves computationally hard problems,
and we have proposed different heuristics for security investments. Using numer-
ical results, we have demonstrated that security investments can substantially
decrease non-diversifiable risks and increase the profitability of cyber-insurance.
Our results show that the viability of the cyber-insurance market, which has been
growing very slowly, could be increased through software-security investments.
Even though this approach requires a paradigm shift for insurance providers, we
believe that they are strongly incentivized to take such a more proactive role.

Our proposal would have significant positive spillover effects on home users
and other typically uninsured entities. In future work, we aim to quantify this
effect and to also explore the viability of the approach in competitive insurance
markets when multiple insurers have to make decisions about which software
products to improve.

Acknowledgments. We thank the reviewers for their comments. We gratefully
acknowledge the support by the National Science Foundation under Award CNS-
1238959, and by the Penn State Institute for CyberScience.

A Proofs

A.1 Proof of Theorem1

Proof. We prove NP-hardness by showing that a well-known NP-hard problem,
the Set Cover Problem, can be reduced to the above decision problem in polyno-
mial time. Given an instance of the Set Cover Problem, that is, a base set U , a
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set of subsets F , and limit k on the number of subsets, we construct an instance
of our problem as follows:

– For every element of the base set U , there exists a corresponding company.
– For every set in F , there exists a corresponding software product.
– Let the vulnerability level Vi of every software be 1

|F|! .
– Let the individual risk IRj and loss Lj of every company be 0 and 1, respec-

tively.
– Let company j use software i if and only if the corresponding element j is a

member of the corresponding set i.
– Let the safety capital S be |U | − 1 − E[TL].
– Finally, let the probability ε be 1

|F|!k .

Firstly, observe that the above reduction can be performed out in polynomial
time.

Next, observe that, in the above instance of our problem, the safety capital S
is insufficient to cover all claims if and only if TL =

∑
j Lj = |U |, that is, if and

only if all companies suffer an incident. Since the individual risk IRj of every
company is 0, this can happen iff, for every company i, there is a vulnerable
software product j that is used by i. In other words, it can happen iff the sets
in F corresponding to the compromised software form a cover of the base set
U . Hence, it remains to show that the probability of the compromised software
forming a set cover is greater than or equal to ε if and only if there exists a set
cover of size at most k.

First, suppose that there exists a set cover C such that |C| ≤ k. Then, the
probability of all the software products corresponding to the sets in C being
vulnerable is 1

|F|!k . Since C is a set cover, for every company j, there exists a
software product i such that j uses i. Thus, with probability at least 1

|F|!k , every
company will suffer an incident and the total amount claims TL will exceed
S + E[TL].

Second, suppose that, for every set cover C, |C| > k. Then, the probability of
every company suffering an incident is

Pr[TL > S + E[TL]] = Pr
[

some collection C of software
forming a cover of U is vulnerable

]
(17)

= Pr
[

some collection C of software
such that |C| > k is vulnerable

]
(18)

=
|F|∑

l=k+1

(|F|
l

)(
1

|F|!
)l

(19)

< |F|!
(

1
|F|!

)k+1

(20)

=
(

1
|F|!

)k

= ε . (21)
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Since the inequality is strict, we have that the probability of ruin is less than ε
if there is no set cover size at most k, which concludes our proof. 	


A.2 Proof of Theorem2

Proof. Let A1, A2, . . . , AK , AK+1 be K + 1 independent random variables hav-
ing the same distributions as TL. Then, since all the random variables in
A1, . . . , AK+1 are independent, it follows readily from the definition of Ŝ
that Pr[TL > Ŝ] is equal to the probability of a randomly chosen vari-
able in A1, . . . , AK+1 being greater than �(1 − ε)K� of the other variables in
A1, . . . , AK+1.

Now, we introduce an upper bound for the latter probability as follows.
Suppose that we order the realizations a1, . . . , aK+1 of the random variables
A1, . . . , AK+1 according to their values, with equal realizations being ordered in
an arbitrary way. Then, the probability of a randomly chosen variable Ai being
greater than �(1−ε)K� other variables is less than or equal to the probability of
choosing a random variable whose realization is not among of the first �(1−ε)K�
realizations, that is, choosing a random variable whose realization is among the
last K + 1 − �(1 − ε)K� realizations. Note that the two probabilities are not
necessarily equal because multiple realizations may have the same value. Since
we choose a variable from A1, . . . , AK+1 at random, the probability of picking
one whose realization is among the last K + 1 − �(1 − ε)K� realizations is

K+1−�(1−ε)K�
K+1 (22)

= K+1−(K−�εK�)
K+1 (23)

= 1+�εK�
K+1 (24)

≤ 1+εK
K (25)

= ε + 1
K . (26)

Consequently, Pr[TL > Ŝ] has to be less than or equal to ε + 1
K . 	
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