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Abstract. Many works in the literature have proposed information
security mechanisms relying on Paring Based Cryptography (PBC),
for example, Ciphertext Policy Attribute Based Encryption (CP-ABE).
However, a public set of software modules that allow integrating that
kind of encryption for data security of information systems in an easy
and transparent way is still missing. Available APIs like PBC (C-based)
or jPBC (Java-based) are focused on low level arithmetic operations and
several non trivial issues must still be addressed to integrate a functional
PBC/ABE scheme into end-user applications for implementing end-to-
end encryption. We present a novel and portable Java library (API) to
ensure confidentiality and access control of sensitive data accessed only
by authorized entities having as credentials a set of attributes. Novel
encryption and decryption processes are defined, using the digital enve-
lope technique (DET) under a client-server computing model. The new
DET-ABE scheme supports standard security levels (AES encryption)
and provides the user with an easy interface for transparent use of next
generation cryptography, hiding the complexity associated to PBC (field
and group arithmetic, curve selection) and ABE (setup, key manage-
ment, encryption/decryption details). Running times of main API’s mod-
ules at server (ABE setup and key generation) and client (DET-ABE
encryption/decryption) side are presented and discussed. From these
results, it is concluded that the proposed API is easy to use and viable
for providing confidentiality and access control mechanisms over data in
end-user applications.

Keywords: Pairings · Cryptographic API · Attribute based encryption

1 Introduction

Since ancient times, human beings have had the necessity to protect information
in a way that only authorized entities have access to it. Nowadays, cryptographic
schemes are vital to provide information security services to IT applications, such
as confidentiality, integrity, authentication and non-repudiation [19].
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Fig. 1. Layered view of secure end-user applications based on Pairing Based Cryptog-
raphy (PBC).

A relative novel field in cryptography is Pairing Based Cryptography
(PBC) [5]. It is based on mathematical mappings defined on algebraic struc-
tures of abstract algebra. PBC provides elegant solutions to open problems of
the past, such as Identity Based Encryption [6], where cryptographic operations
are performed in function of the public identity of participants. Thus, under this
approach digital certificates and their costly PKI (Public Key Infrastructure)
are not required [7].

Research on PBC has increased recently. Currently, there are academic
forums completely dedicated to it as the Pairings1 and ECC2 Conference series.
A useful web resource for PBC is The Pairing-Based Crypto Lounge Barreto’s
website3. Attribute Based Encryption (ABE) [14,25] is a kind of public key
encryption constructed over the foundation of PBC. ABE is a relatively new
research topic, ideal to provide a fine-grained and non-interactive access control
mechanism of encrypted data. Although several contributions on ABE exist at
theoretical level, there are very few on the practical side [21].

Secure end-user applications as e-mail, e-payment, e-government, etc., can be
seen as several layers, where the upper ones rely on the security and efficiency
of the lower ones. Using PBC, the layered view of a secure application can be
seen as shown in Figure 1.

In the past, some software modules have been published and made available
for the community to serve as building blocks in the construction of applica-
tions at upper layers. Two of the most known are PBC [18] and jPBC [9].
Others for example, have been proposed to target specifically computing con-
strained devices [1,17,22,26]. However, these APIs are mainly focused for layer
2 of Figure 1 and provide some specific implementations for layer 3, leading to
a gap for an easy incorporation of PBC and ABE in IT information systems

1 http://www.ieccr.net/2013/pairing2013/
2 http://www.eccworkshop.org
3 http://www.larc.usp.br/∼pbarreto/pblounge.html

http://www.ieccr.net/2013/pairing2013/
http://www.eccworkshop.org
http://www.larc.usp.br/~pbarreto/pblounge.html
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at layer 5. Unlike other public key cryptosystems, as RSA [23], the mathemati-
cal background of PBC (Cyclic Groups, Finite Fields, Elliptic Curves, modular
arithmetic, pairing computation,...) could be a complex subject for IT engineers
without a cryptography specialization that want to use and integrate PBC-based
protocols to enable security services in their applications. Going from layer 3 to
layer 5 implies several important issues related to security and efficiency when
using pairings in cryptography [13]. That decision taking could discourage IT
engineers to use PBC.

This paper is mainly for IT engineers who are interested in using Pairing
Based Cryptography and Attribute Based Encryption to provide security infor-
mation services in IT systems. The aim of this work is to contribute to reduce
the gap between the pairing based cryptographic foundation and the practical
use of it. As main contribution, this work presents the design and implementa-
tion results of a set of classes written in Java that encapsulate the implementa-
tion details from layer 1 to layer 4 in Figure 1 (underlying algorithms, security
parameters, type and size of the elliptic curve) and provide an easy interface to
IT security implementers for using this type of next generation encryption at
layer 5 in Figure 1.

The novel security modules proposed in this work are based on the Digi-
tal Envelope Technique (DET) [24]. In this work, an AES-key k used for bulk
encryption [20] is protected by means of CP-ABE encryption [4], which is a spe-
cific type of ABE. Once encrypted, the encrypted data (with AES) together with
the encrypted AES-key (with CP-ABE) can be securely distributed over insecure
networks or stored in a honest but curious untrusted third party (i.e Cloud stor-
age provider). Thus, DET allows to achieve confidentiality and CP-ABE enable
fine-grained control access mechanisms. Only those authorized entities with a
valid set of attributes could decrypt and recover the AES-key k to launch the
AES decryption process over the encrypted data. Under this solution approach,
typical applications as securing digital medical records or storing and sharing of
digital documents in the Cloud could be easily implemented. As an application
example, in this paper we provide a performance evaluation of the proposed
security modules for encryption and decryption of digital documents (.doc and
.pdf files). Due to the layered and highly modular design of the publicly available
set of software modules, they can be further optimized to meet specific timing
requirements.

The rest of this paper is organized as follows. Section 2 presents main aspects
related to the use of pairings in cryptography as well as the general concept of
Attribute Based Encryption. Section 3 describes the proposed approach for new
DET-ABE encryption and decryption using pairings. Section 4 describes with
details the design of the proposed set of Java classes that implement DET-ABE
with PBC. Also, this section shows a practical use of the proposed API for
confidentiality and access control of digital documents. Section 5 presents and
discusses the running time of the main software modules for setup, encryption,
decryption and key generation. Finally, section 6 gives the concluding remarks
of this work and points out future work.
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2 Foundations of PBC and ABE

A cyclic group G is a set of elements S together with a binary operation � where
exists an element g ∈ S such that for all h ∈ S, h can be obtained by applying
the operation � over g d−1 times [11,15] (d is a positive integer number). This is
denoted as h = gd using a multiplicative notation or h = d× g using an additive
notation. The element g is named generator of G and written as G =< g >.
The most common cyclic group is Zr = {0, 1, ..., r − 1}, where r is a prime and
� is the addition modulo r operation, being r the order of Zr.

Let G0 =< g0 >, G1 =< g1 >, and GT be cyclic groups of prime order
r. A bilinear pairing or bilinear mapping is an efficient computable function
e : G0 × G1 → GT , such that:

1. ∀a, b ∈ Zr, e(ga1 , gb2) = e(g1, g2)ab
2. e(g0, g1) �= 1

The tuple (r, g0, g1,G0,G1,GT ) defines an asymmetric bilinear pairing. If
G0 = G1 = G, and G =< g >, the tuple (r, g,G,GT ) defines a symmetric
bilinear pairing [12].

In practice, many cryptographic protocols based on pairings have used a sub-
set of points in an elliptic curve [13] as the cyclic group G . An elliptic curve
E(Fq) is a set of pairs (x, y), with x, y elements of a finite field Fq satisfying an
elliptic curve equation E(x, y). The properties of such equation categorize the
elliptic curve and determines its secure properties for practical use in crypto-
graphic applications. So, in practice, pairings G0 and G1 are subgroups of the
elliptic curve E(Fq) and GT is a subgroup of F ∗

qk (an extension field of Fq).
The number k is named the embedded degree. The security parameters to take
into account when defining a paring over elliptic curves are: the size q of the
finite field Fq, the embedding degree k, and the order l of G0, G1, and GT .
These security parameters must be chosen carefully to ensure that the discrete
logarithm problem is hard to compute in the three groups.

In our proposed set of security modules, the selection of this security param-
eters and the corresponding pairing is transparent to the programmers. The
parameters selection is in function of the security level chosen by the pro-
grammer, which is one of those recommended by international standards, as
the National Institute for Standards and Technology (NIST): 80-bit (low-term
security, not recommended anymore), 128-bit (minimum security level), 192-bit
(mid-term security), and 256-bit (long-term security) [2]. In our proposed DET-
ABE scheme, programmers only need to specify the security level to use, the
pairing security parameters will be selected internally.

2.1 Attribute Based Encryption

Firstly introduced by Sahai and Waters [25], Attribute-based Encryption (ABE) is
a mean for complex access control on encrypted data. In this kind of cryptography,
ciphertexts are not necessarily encrypted to one particular user as it occurs in tra-
ditional public key cryptography. Contrarily, ciphertexts and their corresponding
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private keys that decrypt them are associated with a set of attributes or a policy
over attributes. This way, if there is a match ciphertext-private key, the ciphertext
will be decrypted by that private key. In [4], Betancourt et al., present Ciphertext-
Policy Attribute-Based Encryption (CP-ABE), a method conceptually closer to
traditional access control techniques such as Role-Based Access Control (RBAC).
InCP-ABEattributes are used to describe users credentials, and an entity encrypt-
ing data determines a policy for who can decrypt. When an entity encrypts data, it
specifies an associated access structure over attributes. This case, any other entity
will only be able to decrypt a ciphertext if that entity’s attributes pass through the
ciphertexts access structure. What Betancourt et al proposed as access structure
is a tree structure where its nodes represent threshold gates (AND, OR) and the
leaves describe attributes. An AND gates is constructed as n-of-n threshold gate
and an OR gate is a 1-of-n threshold gate. Generalizing, threshold gates are of the
form m-of-n. Complex access controls including numeric ranges are also addressed
by converting them to small access trees.

Basic modules in CP-ABE are constituted by four fundamental algo-
rithms [4]:

1. ABE-Setup: Select an elliptic curve and the associated security parameters
to define a pairing. As it was stated previously, it is the tuple (r,g0,g1,G0,G1,
GT ). With the pairing and associated cyclic groups, this module produces
a public key PK and a secret master key MK.

2. ABE-Encrypt: The encryption algorithm uses PK to encrypt a message
M under an access structure A over the universe of attributes U . As a result,
the ciphertext is CT, which will be only decrypted by an entity possessing
a set of attributes S that satisfies the access structure A. It is assumed that
CT implicitly contains A.

3. ABE-KeyGen: The key generation algorithm uses MK to produce a private
key SK, related to a specific set of attributes S.

4. ABE-Decrypt: The decryption algorithm uses PK and SK associated to
a set of attributes S to decrypt a ciphertext CT, which contains an access
structure A. If S satisfies A, this module will decrypt CT and return the
original message M .

The main components of CP-ABE are described in Table 1, considering both
symmetric [4] and asymmetric pairings [16].

The construction of the CP-ABE modules involve many computations over
groups and finite field (some of them are shown in Table 1). In the proposed set
of security modules, all these computations are encapsulated and hidden from
user. As part of CP-ABE encryption and decryption, main operations include
tree traversal, boolean function (policy) evaluation, hashing and creation of pri-
vate keys by computing several pairings, polynomials generation and evaluation,
and computation of Lagrange’s coefficients. All those operations as well as the
internal representation and the storing and recovery processes of main compo-
nents in CP-ABE (PK, SK, CT, MK) are not required to be understood by
CP-ABE users. In our proposal, these modules are treated as blackboxes.
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Table 1. Main components in Ciphertext Policy Attribute Based Encryption (CP-
ABE)

Component Definition on a Definition on an
symmetric pairing asymmetric pairing

Public key PK
{
g, h = gβ , e(g, g)α

} {
g0, g1, h = gβ

0 , e(g0, g1)
α
}

Master key MK {β, gα} {β, gα
1 }

Private key SK
{
D, dj , d

′
j

}
, where

{
D, dj , d

′
j

}
, where

D = g(α+r)/β , ∀j ∈ S: D = g
(α+r)/β
1 , ∀j ∈ S:

dj = gr × H(j)rj dj = gr
1 × H(j)rj

d′
j = grj

d′
j = grj

0

r, rj ∈ Zr (random) r, rj ∈ Zr (random)
H : {0, 1}∗ → G H : {0, 1}∗ → G1

CipherText CT {A, C′, C}, where {A, C′, C}, where
C′ = M × e(g, g)αs, C′ = M × e(g0, g1)

αs

C = hs C = hs

∀ leaf node y ∈ A, ∀ leaf node y ∈ A,
having j ∈ S, compute: having j ∈ S, compute:[
Cy, C′

y

]
, where

[
Cy, C′

y

]
, where

Cy = gqy(0) Cy = g
qy(0)
0

C′
y = H(j)qy(0) C′

y = H(j)qy(0)

H : {0, 1}∗ → G H : {0, 1}∗ → G1

Access Structure A Tree structure where each internal node represents
a k-of-n gate, and leaves represent attributes.

3 Security Services from the Digital Envelope Concept
with PBC and ABE

The digital envelope technique (DET) [24] is a method for key exchange, not used
by all key exchange protocols [10]. DET is used generally for secure transport-
ing of a session key, that is, a secret key to be used by a symmetric encryption
algorithm for protecting all traffic exchanged by a sender and receiver in a com-
munication session. In DET, the secret key is usually encrypted with public-key
cryptography (PKC).

One advantage of DET is that end-users may switch secret keys as frequently
as they would like. Switching keys often is beneficial because it is more difficult
for an adversary to find a key that is only used for a short period of time.
Another advantage of DET is the increase in performance which is obtained
by using symmetric ciphers to encrypt the large and variably sized amount of
message data, reserving PKC for encryption of short-length keys. In general,
symmetric ciphers are much faster than public key cryptosystems [19].

So, in this work, data (text, image, sound, video,...) is encrypted using as
symmetric cipher the Advanced Encryption Standard (AES) [20] in a way that
the AES session key is protected and securely embedded in the ciphertext by
using CP-ABE encryption. In this work, we re-define each main module in the
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original CP-ABE scheme by Betancourt et al. in [4], leading to new building
blocks for data encryption using the digital envelope technique with CP-ABE,
we name it DET-ABE.

3.1 DET-ABE Setup

Setup involves the selections and settings for PBC and ABE. This includes the
selection of the elliptic curve and the associated security parameters to define
a pairing. The setup is performed in a trusted third party, that is responsible of
generating and managing the public key PK and a secret master key MK.

In DET-ABE setup, the single parameter specified by the user is the security
level to use in the encryption process. That security level is one recommended
by the current standard for symmetric encryption, AES. According to NIST,
security can be either minimum (128 bits), medium (192) or high (256). The
elliptic curve and associated security parameters are internally selected to be
consistent with the security level required. Table 2 shows the association of
a given AES security level with a set of elliptic curves recommended for use
in PBC and ABE. As it has been demonstrated and well documented in the
literature [18], the best attacks over the groups with prime order r defining the
pairing require

√
r operations, so at least the order of G1,G2,GT is twice the

security level to achieve.

Table 2. Security settings

AES Curve log2 r Embedding
Security(bits) type degree

128 (minimum) A (symmetric pairing) 256 2
192 (medium) F (asymmetric pairing) 384 12

256 (high) F (asymmetric pairing) 512 12

Pairing-based cryptographic settings given in Table 2 ensure that the dis-
crete logarithm problem will be intractable in each group G0,G1,GT . In our
construction, we have selected type A curves with embedding degree k = 2 for the
security level of 128. This curve defines a symmetric pairings (G0 = G1 = G).
Also, the type F curves also known as Barreto-Naering (BN) curves [3] having
embedding degree of 12 are used for the security levels 192 and 256 bits.

In this work, the generation of PK and MK are based on the definition given
in [4] when using type A elliptic curves. For the case of type F curves defining
an asymmetric pairing, PK and MK are derived as previously defined in [16].

As in CP-ABE, the DET-ABE setup module is executed in the trusted third
party (server). As part of the DET-ABE setup process, a set of attributes U
containing N distinct strings must be defined and administrated in the trusted
entity.
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3.2 DET-ABE Encryption

DET-ABE encryption is a client module of the trusted entity that encrypts a
sequence of bytes (data) specified in a binary file. Main tasks in this module
include:

1. Internally, an AES-key (k) is generated from a security level s given by the
user.

2. With k, AES is used to encrypt data producing the ciphertext CTAES.
3. Then, CP-ABE is used to encrypt k, given a policy P over a set of valid

attributes S. Being P a boolean expression over S, it is evaluated to be
logically well formed and the corresponding access structure A is generated.
With A, k is encrypted using CP-ABE and the resulting ciphertext CT is
stored together with CTAES and the policy A in a binary file.

4. For CP-ABE encryption, the client connects to the trusted third party
(server) to retrieve the public key PK created during the DET-ABE setup
module and associated to the security level s.

5. The policy P is specified by the client, and the attributes are retrieved and
validated from the server.

6. The result is the tuple TE = {CTAES, CT,A, s}.

The client executing the DET-ABE encryption module requires three ele-
ments: the data to encrypt, the security level s (see Table 2), and the policy P
as a boolean expression of valid attributes S. The tuple TE resulting from the
DET-ABE encryption process can be either stored locally in the client side or
uploaded to a public repository.

3.3 DET-ABE Decryption

The DET-ABE decryption module is used to decrypt previously encrypted data
represented by the tuple TE = {CTAES, CT,A, s}. The following tasks are per-
formed during the execution of DET-ABE decryption:

1. The decryption client process requires TE and the list L of user’s attributes.
2. The decryption client starts a connection with the trusted third party

(server), asking a private key from L. The client sends L to the server and
the security level s ∈ TE .

3. The server (trust party) validates the user’s attributes L. The pairing param-
eters (curve type) associated to s are selected in the server side and the cor-
responding private key SK is computed by the server using those settings.
SK is send back to the client together with the public key PK associated
to s.

4. With SK, the client executes CP-ABE to decrypt CT ∈ TE , and recovers
the session AES-key k, which is used to decrypt CTAES ∈ TE .
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Fig. 2. a) Layered view of components for building secure applications using the digital
envelope technique (DET) with AES and CP-ABE. b) Main components in the pro-
posed API, executing the main tasks for DET-ABE data encryption/decryption under
a client-server architecture.

4 Proposed API for DET-ABE

Our proposal is to integrate the concept of DET and CP-ABE in a set of soft-
ware modules as a kind of middleware that allows programmers to build secure
applications by mean of data encryption over a policy and a set of attributes.
Figure 2 shows the layered view of modules needed to construct and execute
secure applications based on the DET-ABE scheme proposed in this paper. The
proposed set of security modules are written in Java and built on top of the jPBC
library [9] that performs low level finite field, group and pairing computations.
The use of Java allows a broader range of applications as the security scheme is
able to be used over different platforms (server, desktop, mobile).

4.1 Attributes Management

Attributes management and how policies are constructed are dependent on the
end-user application. Although attributes can be administrated in the trusted
authority responsible for DET-ABE setup and key management, another trusted
entity could be used specifically for attributes management. This entity (AA
authority) should be responsible for registering and authenticating users in DET-
ABE, either those that encrypt data (producers) or those that access encrypted
data (consumers). When a user registers itself with the AA entity, a set of
attributes are assigned to it, depending on the application specifications. For
an authenticated producer Up, it is the AA entity that authorizes the encryp-
tion operation by providing it the attributes required to construct the policy
needed by DET-ABE encryption. In the case of an authenticated consumer Uc,
the AA entity authorizes the decryption process by giving Uc its corresponding
attributes, assigned according to the user application restrictions. Communica-
tion between the AA entity and the user must be secured for example using
TLS/SSL.
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4.2 The Server Side

The server modules run in a trusted central authority as specified in the CP-ABE
scheme. Communication between the server and clients is secured by means of
the SSL/TLS protocol. The server is able to manage the three security levels
in Table 2, having a specific set of curve parameters for each of those. That
selection is based on recommended elliptic curves in [9] and [18]. The server
executes the DET-ABE setup module and generates CP-ABE private keys for
clients executing DET-ABE decryption. The server keeps a pair {PK, MK} for
each security level supported. When clients connect to the server, they inform the
security level to use and the server uses the correct curve parameters and keys.
If keys are not already created for the demanded security level, the DET-ABE
setup for that specific security level is launched.

4.3 The Client Side

A client properly authenticated in the AA entity can execute the DET-ABE
encryption or decryption modules. In any case, a secure connection is established
with the server at a specific port. During an encryption operation over a tuple
TE , the client asks the server for the public key PK associated to the security
level s ∈ TE . Also, the client constructs and validates the policy P . As PK is
public, it is cached in the client side for future encryption operations using the
same security level s. All the encryption operations (AES and CP-ABE) are
executed in the client side. During a decryption operation, the client sends to
the server the security level and its set of attributes, previously retrieved in a
secure manner from the AA entity. The server constructs the private key from
the client’s attributes and returns that key to the client. All the main decryption
operations are performed in the client side. Exceptions could be thrown during
a DET-ABE encryption or decryption process due to connectivity problems. On
success, during an encryption operation a file with extension .detabe is created
containing the serialized version of tuple TE . In a decryption operation, the
.detabe extension is removed from the input file, which contains the decrypted
data of CTAES ∈ TE .

4.4 Keys Management

The PK and MK keys are generated in the server side according to the arithmetic
operations shown in Table 1. All the resulting values that characterize these keys
are stored in server (trusted authority) only. The random numbers α and β used
for their creation are local variables that are destroyed after the keys are created.
While PK can be read by the server and sent to clients performing an encryption
operation, MK is used exclusively in the server side. The private keys for clients
used in CP-ABE are created only in the server side and securely sent to clients.
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Fig. 3. Proposed set of Java classes for DET-ABE.

4.5 The Proposed Java Library for DET-ABE

The new set of classes comprising the new DET-ABE library are shown in
Figure 3. The set of software modules in the client comprises classes for AES,
CP-ABE encryption/decryption, and DET-ABE encryption/decryption. The set
of software modules in the server side are classes for DET-ABE setup, CP-
ABE setup, CP-ABE private key generation and DET-ABE key management.
As explained in section 5, the AES class in Figure 3 is actually a wrapper for
the AES implementation provided by Java SE. This wrapper adds the required
methods to interface the symmetric cipher with CP-ABE for implementing the
DET technique.

4.6 Using the Proposed API

In this section we show how the proposed API for DET-ABE can be used. We
target the application of encryption and decryption of digital documents (.doc,
.pdf). After encrypting these files they can be either locally saved in the client
or stored at a cloud storage provider. The DET-ABE encryption of a digital
document is shown in Listing 1.1.

1 import com . detabe . c l i e n t . encrypt ion . ∗ ;

3 pub l i c s t a t i c void main ( St r ing args [ ] ) {
St r ing po l i c y = ” ( d i r e c t i v e AND l e v e l = 7) OR (

accountant AND l e v e l >= 3) ” ;
5

DETABECipher c iphe r = new DETABECipher ( ) ;
7 c iphe r . encrypt ( ” cont rac t . pdf ” , 128 , p o l i c y ) ;

}

Listing 1.1. Encrypting a digital document using DET-ABE
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The encrypt() method of objetc cipher at line five in listing 1.1 implements
all the logic specified in section 3.2. What is only specified by the programmer
is the file to be encrypted (contract.pdf), the security level (128 bits) and
the policy ((directive AND level = 7) OR (accountant AND level >= 3),
with four attributes). An exception can be thrown at line five in the following
cases: i) the given security level is not supported, ii) the policy is a bad boolean
equation, and iii) the attributes are not previously registered in the server. The
result of encrypt() method is the encrypted file contract.pdf.detabe.

The DET-ABE decryption of the file privateLetter.doc.detabe is shown
in Listing 1.2.

1 import com . detabe . c l i e n t . c iphe r . ∗ ;

3 pub l i c s t a t i c void main ( St r ing args [ ] ) {
List<Str ing> a t t r i b u t e s = new LinkedList<Str ing >() ;

5 a t t r i b u t e s . add ( ” d i r e c t i v e ” ) ;
a t t r i b u t e s . add ( ” l e v e l = 5” ) ;

7 a t t r i b u t e s . add ( ” accountant ” ) ;
a t t r i b u t e s . add ( ” l e v e l = 4” ) ;

9

DETABECipher c iphe r = new DETABECipher ( ) ;
11 c iphe r . decrypt ( ” p r i v a t eLe t t e r . doc . detabe ” , a t t r i b u t e s )

;
}

Listing 1.2. Decrypting a ciphertext with DET-ABE

For decryption, the client only provides to the server its set of attributes.
The server validates them and generates the corresponding private key for the
client. The input encrypted file privateLetter.doc.detabe contains the ABE
ciphertext, the the access structure, and pairing parameters. With all these ele-
ments together with the received private key from the server, the client recovers
the original file privateLetter.doc performing all the steps described for DET-
ABE decryption in section 3.3.

Before running the client programs the server must be launched, for exam-
ple, by executing java com.detabe.server.ABETrustedAuthority. Also, in
the client side the configuration file configuration.cfgt must have the cor-
rect IP or host name where the server (trusted authority ) is running.

5 Implementation and Performance Results

In this section we present the running times of the main modules in the proposed
API. The experimentation was carried out on a desktop machine 32-bit Intel
Core2 Quad 2.40GHz, 4GB RAM with Windows7 as operative system. The
main objective to present the execution time of DET-ABE scheme is to show
the feasibility of using the proposed API in IT end-user applications. Further
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optimizations could be done over specific modules in order to get the API running
faster. The implementation of classes described in Figure 3 were built on top of
jPBC, a Java API [9] that provides specialized modules for pairing computations
and is defined over PBC[18].

All classes shown in Figure 3 except AES were implemented and vali-
dated. For AES, we use the implementation provided by Java in the packages
javax.crypto and javax.crypto.spec. To support security levels above 128-
bit, we use the Java Cryptography Extension (JCE) Unlimited Strength Juris-
diction Policy Files. All modules were integrated and the execution paths of
DET-ABE main modules were validated performing unit and functional tests,
ensuring that the result of each cryptographic function was correct.

In all tests, the client and server run on the same machine. Table 3 shows
timing result of the DET-ABE setup module, that comprises the generation of
pairing parameters, the master and the public keys. That module is executed
once, and the previously generated keys are chosen and used by each client
connection for DET-ABE encryption or decryption.

Table 3. Running times for DET-ABE setup.

Timing (secs)

Module 128-bit 192-bit 256-bit

Curve param. generation 30.78 8.47 24.03
PK and MK generation 2.26 2.32 4.45

Figure 4 shows the running time for DET-ABE encryption, DET-ABE
decryption and CP-ABE key generation. For all experimentations, we used a
PDF document of size 182Kbytes and considered the three standard security
levels of 128-bit (symmetric pairing with type A elliptic curve), 192-bit, and
256-bit (asymmetric pairing with type F elliptic curve). The size of data being
encrypted does not impact significantly the overall timing of DET-ABE as the
number of attributes and security level do. Data size only affects the running
time of the block cipher AES, which is proved to have a complexity O(1) [8].

Figure 4 a) shows the running time for DET-ABE encryption. Note that more
considerable time is spent in case of using a symmetric pairing (128-bit security).
While a linear time with respect to the number of attributes is demanded for
128-bit encryption, that is not true for 192-bit and 256-bit. The same behaviour
is exhibited in Figure 4 b), that shows the time required for CP-ABE private
key generation. Figure 4 c) shows the decryption time. For 128-bit and 256-bit
security levels the time is very similar whereas a security level of 192-bit achieves
the better timing. Finally, Figure 4 d) contrasts the timing for each DET-ABE
operation considering the three security levels. For this last experiment, a PDF
file of 182Kbytes size and 6 attributes were used.

As it is observed, 128-bit encryption and private key generation using type A
elliptic curves are by far the most time consuming operations. In case of 192-bit



A Java API for Attribute Based Encryption 117

0

5

10

15

20

25

30

2 4 6 8 10

128 bit

192 bit

256 bit

0

5

10

15

20

25

30

2 4 6 8 10

128 bit

192 bit

256 bit

0

5

10

15

20

25

30

2 4 6 8 10

128 bit

192 bit

256 bit

0

2

4

6

8

10

12

14

16

18

128 192 256

DET ABE encryption

CP ABE prv key gen

DET ABE decryption

#attributes
a)

#attributes
b)

#attributes
c)

Standard security level
d)

Ti
m

e
(s

ec
s)

Ti
m

e
(s

ec
s)

Ti
m

e
(s

ec
s)

Ti
m

e
(s

ec
s)

Fig. 4. Running times of DET-ABE main modules considering different number of
attributes, a 182Kbyte digital document, and the three standard security levels. a)
DET-ABE encryption. b) CP-ABE private key generation to open the digital envelope.
c) DET-ABE decryption. d) Contrasting the three main DET-ABE modules using 6
attributes and the three standard security levels.

and 256-bit security levels, significant reduced time is obtained except for DET-
ABE decryption, which remains with high timing costs. As it was previously
stated, the proposed modules can be optimized to reduce the timing, for example,
the optimized versions of jPBC can be used to speed up the low level operation
(abstract algebra arithmetic).

6 Conclusion

We presented a set of Java classes aiming to reduce the existing gap for using
Pairing Based Cryptography (PBC) and Attribute Based Encryption (ABE) in
end-user IT applications. We presented the DET-ABE scheme for data encryp-
tion over a set of attributes, thus providing confidentiality and fine grained access
control under an end-to-end encryption approach. DET-ABE is the result of
using the Digital Envelope Technique (DET) together with CP-ABE and AES.
The proposed DET-ABE software modules are built on top of libraries for low
level computations in finite fields and groups. The complexity associated to the
operations and settings for a secure implementation of cryptographic algorithms
(adequate pairing parameters as the elliptic curve type and properties) are encap-
sulated in the proposed API, facilitating the use of those modules in end-user
applications. The efficacy of proposed software modules was verified in a simple
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application for securing digital documents. Further optimizations specially at
low level modules can be done to outperform the achieved running times, which
have shown to be viable in practical applications.

Future work is planned to explore implementation alternatives of the pro-
posed API, for example with multi-threading programming using GPUs and
multi-cores as underlying computing platforms to speed up the execution time
of DET-ABE modules. As the running time also depended on the pairing param-
eters and elliptic curves used, further research will be conducted to explore other
elliptic curve types to achieve faster computations, for example, to use alterna-
tive elliptic curves for the 128-bit security level.
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