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Abstract. Anonymous authoring includes writing reviews, comments
and blogs, using pseudonyms with the general assumption that using
these pseudonyms will protect the real identity of authors and allows
them to freely express their views. It has been shown, however, that writ-
ing style may be used to trace authors across multiple Websites. This is
a serious threat to privacy and may even result in revealing the authors’s
identities. In obfuscating authors’ writing style, an authored document is
modified to hide the writing characteristics of the author. In this paper
we first show that existing obfuscation systems are insecure and propose
a general approach for constructing obfuscation algorithms, and then
instantiate the framework to give an algorithm that semi-automatically
modifies an author’s document. We provide a secure obfuscation scheme
that is able to hide an author’s document securely among other authors’
documents in a corpus. As part of our obfuscation algorithm we present
a new algorithm for identifying an author’s unique words that would be
of independent interest.

We present a security model and use it to analyze our scheme and
also the previous schemes. We implement our scheme and give its per-
formances through experiments. We show that our algorithm can be used
to obfuscate documents securely and effectively.
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1 Introduction

Creating accounts on Websites under pseudonyms and using them to write
reviews or post comments is a common practice, with the general belief that
authors remain anonymous and can freely express their opinions and views.
Although major review Websites do not allow mass collection of data by out-
siders, it is possible to collect substantial number of reviews and posts from Web-
sites such as IMDB and Netflix and so a natural question is whether authors
can be traced across websites that they have posted their blogs, reviews and
comments.

Authorship attribution techniques are based on the observation that people
write in their own individual styles. Authorship attribution techniques have made
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significant progress. Today, with sufficient amount of data it is possible to iden-
tify an author among a large number (e.g. 100,000) of authors [1]. An author’s
writing style is referred to as the writeprint and can be extracted as a feature set
from the documents written by them, and used to identify their anonymously
written documents with accuracy above 90% [2]. Examples of writeprint fea-
tures are syntactic features (such as part-of-speech tags, function words) and
lexical features (e.g., word frequencies, word n-grams). Using writing style to
link an author on multiple web sites was proposed in [3,4]. It was shown that
this can pose a real threat to the user’s anonymity and allow adversaries to learn
more about a user than they intended to reveal, including access to their private
information such as photos, places that they live and work. In some cases, if the
information can be linked to websites such as forums of universities that include
the users’ real names, the user identity will be revealed. In [3], Narayannan et al.
showed that attackers who know a small amount of information about a Netflix
subscriber can identify the subscriber in the dataset. Similarly through a linka-
bility study of Yelp reviews [4] authors showed that using letter distribution of
alphabet, up to 83% of anonymous reviews can be linked to their authors. To
summarize, analysis of writing style allows one to breach users’ privacy by tracing
their activities across the Internet. This is particularly concerning because users
are unaware of the fact and could inadvertently reveal sensitive information.

This problem can be alleviated if authors’ writing style is obfuscated. A
direct approach is to imitate another author’s style by analysing their style
using a set of documents on the same topic, learning the style characteristics and
modifying one’s own style to match those characteristics. This however would
be a tedious process that needs sufficient automation and computer support to
become acceptable. To support users in hiding their writing styles, a number
of approaches have been proposed. Unfortunately, these approaches [5,6] are
vulnerable to attacks that allow the adversary to narrow down the number of
users and in some cases recover the original author. We review previous works
and present our attacks on these works in Section 2.

We also propose a new approach to obfuscation of writing style and give
details of an instance of the approach, its security analysis and experimental
results supporting feasibility and practicality of the approach.
Our Contributions: Our contributions can be summarized as follows:

– We present attacks on the schemes [5,6] and show the attacks substantially
reduce the claimed security and in some cases completely reverse the obfus-
cation. The attacks exploit the deterministic nature of the algorithms and are
successful in revealing the original author of an obfuscated document. In the case
of Anonymouth (an instantiation of [6]) which is not completely deterministic,
using the data set and experiments that are reported in the paper, we can iden-
tify a set of size 2 that includes the author, with probability 14

32 = 0.438. In this
experiment, in total 10 authors were considered and so random guessing of a set
of size 2 that includes the author would have the success chance of 9

(102 ) = 0.2.

Hence, our attack doubles the success chance of the attacker compared to this
random guess.
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– We propose a general approach for designing stylometry obfuscation
schemes and give an instantiation that provides a secure obfuscation system.
In this approach, a document is represented by a set of features. One can obfus-
cate a document with respect to a subset of features as described below. Consider
a corpus of documents of N authors and assume the corpus is used to determine
a set of features for both a user that is represented by a set of documents, and
a single document. A feature fD

i in a document D has value wD
i , and is also

referred to as a feature point (e.g. frequency of occurrences, a measure of the
uniqueness of the feature, etc.). To obfuscate a document D of the user U with
respect to a subset of features FD, the following steps are applied to elements of
FD in sequence. For a feature fD

i ∈ FD, a feature point wu′
i of another author

U ′ is selected and wD
i is modified so that it becomes “close” to wu′

i . Here “close”
means the distance between wD

i and wu′
i is made small under a distance mea-

sure. The resulting document will be used as the input of the same process for
the next feature in the sequence.

In our instantiation of this approach we will use Basic-9 as the feature set. A
feature point is a non-negative real number representing one of 9 characteristics
of a user’s writings. Moving “close” to a feature point means a user modifies
their document such that the corresponding feature in that document becomes
close to that target feature point.

We also present a new unique word identification algorithm using information
theoretic measures and use it as an identifying feature for users during obfusca-
tion. This algorithm may have other applications and would be of independent
interest.

– We present a security model for stylometry obfuscation algorithms and
will use it to analyse other schemes as well as our scheme. The model provides
a framework for the evaluation of style obfuscation systems. In this model, we
describe attackers’ capabilities, discuss possible attack strategies and define the
success of their attacks.

The rest of the paper is organized as follows. Section 2 summarizes the related
works and we present attacks to the security flaws of those previous works. In
Section 3 and 4 we introduce our approach and implementation. We provide a
security analysis in Section 5. Section 6 presents our experimental results. We
conclude the paper in Section 7.

2 Related Work

Rao and Rohatgi suggested round trip machine translation (for example, English -
German - English) as a possible method for document anonymization [7]. However,
with the improvement in machine translation, it has been shown empirically that
round trip machine translation is not effective in obfuscating writing style. There
are also proposals to allowusers to obfuscate theirwriting styles in an automated or
semi-automated way. Kacmarcik et. al [5] used word frequencies in one’s writings
as thewriting style.WinMine is a tool that usesDecisionTree algorithmand is used
as the core of their work. Each author’s writing is represented by a set of features
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(a feature is a word with a frequency attached to it). Inputs of the algorithm are
feature sets of K authors, and the output is the root of the Decision Tree which is
the most discriminating feature between these authors. This root is removed and
included in themost important feature set. The procedure is repeated with the rest
of the features from the authors to get the nextmost discriminating one until the set
of the most important features is completed. The algorithm also provides a thresh-
old for each feature that helps distinguish the authors. For example, if the feature fi

weight is less than0.034, it belongs to authorU1, if itsweight is greater than0.074, it
belongs to author U2 (suppose K=2). The system will suggest to an author how to
adjust their features so that the weights of the features are close to the correspond-
ing weights of the farthest authors of those features. In their implementation of the
approach they considered K = 2, and in experiments changes were only made to
features in order to evaluate the obfuscation results (no actual changes were made
in the document).

McDonald et al. [6] used Basic 9 feature set in their work (a brief description
of this feature set is presented in Section 4). Their system helps the user to semi-
automatically anonymize their document using the following approach. Consider
an author U who wants to obfuscate their writing style in a document D. Suppose
there exists a set of sample documents from other authors as well as a sample
set from U . Features extracted from all authors are clustered (for each feature
type separately) such that each cluster has at least K features. For each cluster,
the following weight is then measured: W = num elements × (centroid − fu

i ),
where num elements is the number of elements in the cluster, centroid is the
centroid of that cluster, and fu

i is the feature weight of the corresponding feature
extracted from sample documents of U . The cluster that has the greatest weight
will be selected, and author U should adjust their corresponding feature in D to
be close to that cluster’s centroid.

As we will describe in Section 2.1, the main drawback of the above two
algorithms is that the obfuscated documents could be linked to the original
authors.

There are other works [8,9] on automatic replacement and style transforma-
tion. However, these works either provide a general approach or are not accept-
able in practice. In [8], it is suggested to transform the writing style of a document
incrementally using a loop, where in each run of the loop, the style is slightly
changed and this is repeated until some target condition is satisfied. An example
of this latter category is [9] where all the words in a document are automati-
cally replaced with their synonyms. This may decrease the readability, and could
significantly affect the semantic of the document.

2.1 Attacks on the Existing Text Obfuscation Approaches

The algorithm in [5] is deterministic, and the steps of the algorithm can be
perfectly reversed, as we present below.

Attack on the system in [5]: Consider a document D written by U which is
anonymized following the algorithm described in [5], together with the initial
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training set. From the initial training set, we can obtain the most important
feature set F from the obfuscated document DO and for each feature in F ,
compare its feature point with the same feature of authors from the training
set. If an author U ′ in the training set results in the highest distance for every
feature in F , then U ′ is the original author of the anonymized document DO.

Attack on the system in [6]: Suppose the obfuscated document is DO, and the
initial training documents of other authors and U are given. We can de-obfuscate
the document DO as follows: (i) Cluster each feature point of all authors into
clusters, (ii) Compare centroids of these clusters with the corresponding feature
point in DO. The cluster that has centroid match with feature point of DO is
the cluster that was used in the obfuscation process. Call these clusters which
are collected from all feature types is CLS. (iii) For each candidate author c,
calculate its weight W with each cluster in CLS; (iv) If a candidate author U ′

which has the highest W values with every cluster in CLS, U ′ is the original
author of DO.

Anonymouth is an implementation of the algorithm [6] in which some ran-
domness has been used for the initial stage of the K-mean algorithm. However,
the resulting clusters from the K-mean algorithm stay mostly the same. Hence,
we will show that this would not be enough to protect the obfuscated docu-
ment. We exploit the fact that the targets in the obfuscation process can be
calculated and they are related to the features which also can be extracted from
the obfuscated document. We represent this relation by the distances between
the possible targets and the extracted features of the obfuscated document. To
normalize these distances over different types of features, the distances are con-
verted into percentages. An average distance over all features is then calculated
for each candidate author and all candidates are sorted in increasing order of
this distance. This distance for obfuscated document and its real author must
be small, and so the smaller distance means that it is more likely to be the real
author. Hence we consider the top 2 of this list. The result is the original author
appears at these positions with probability 14

32 while the random chance is 0.2.
This shows that this attack can be used to narrow down the set of possible
authors quite effectively.

Due to limited space, our detailed attack will be introduced in a longer version
of this paper.

3 Secure Stylometry Obfuscation

3.1 Problem Description

An author U wishes to obfuscate their writing style in a document D.
We assume there is a corpus C that contains public documents of U and also

of other authors. The total number of authors is N . Writing styles of U and
other authors are represented by a set of features that can be extracted from
their authored documents.
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3.2 A General Approach to Secure Obfuscation

Assume that the feature set of an author Uk in C consists of � features, denoted
by Fk = {fk

1 , fk
2 , · · · , fk

� }. For sufficiently long documents, a document can be
seen as a collection of sub-documents and so the algorithm used for extracting
a user’s feature set can be used to extract a feature set for a document. This
means that we can extract the same feature set FD from a document D that
needs to be obfuscated, FD = {fD

1 , fD
2 , · · · , fD

� }.
In order to hide a feature fD

i among the same feature of other authors in
the corpus C, we cluster authors’ features f1

i , f2
i , f3

i , · · · , fN
i into a number of

clusters and randomly select one as the target cluster for hiding fD
i . The target

cluster should not contain extreme values that are abnormal such as too small
or too large.

1. Input :
– C: corpus of N authors.
– K: number of clusters
– D: the document that needs to be obfuscated.
2. Algorithm:
(a) Consider feature i of N authors in the corpus C. Denote this set as
PublicFeatures = {f1

i , f2
i , f3

i , · · · , fN
i }

(b) Run K-means algorithm to cluster PublicFeatures into K clusters.
(c) User selects a target cluster (which could be randomly).
(d) The algorithm selects a random point p in the selected cluster.
(e) Modify D to corresponding feature in p, and output a temporary document
Dtmp. Set D = Dtmp.
3. Perform step 2 for all features in the feature set of document D. Use classifier
δ (described later) to classify Dtmp. If Dtmp is classified to user U with a prob-
ability less than or equal to a random chance, output DO = Dtmp. Otherwise,
replace D = Dtmp, and repeat from step 2.

The elements in the approach are described in detail as follows.

Parameter K. K is the number of clusters for each feature and ranges from
1 to N − 1. Choosing K depends on the number of features that a user wants
in a target cluster, specially level of privacy, and the distance that the user is
willing to move their document. Users may prefer many features in a cluster,
or resulting in small distances to adjust. In the worst case, K and the target
cluster may be chosen randomly by the user or the program (if there are too
many features in the feature set), which still guarantees that the obfuscation
system is secure as we will analyse in Section 5.

Feature set. This approach in general can work for any feature set. In our
implementation, we use Basic-9 feature set which is widely used in experiments
on text classification and text obfuscation [6,10] as well as more feasible for users
to modify them compared to other complex features.
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Text classifier δ. There is a wide range of text classifiers to perform text
classification. Many of these text classifiers are implemented in Weka [11] which
is a common tool set used in text classification related research. The tool set
includes implementations for SVM, NaiveBayes, Neural Network, Decision Tree,
etc. To select an appropriate classifier with respect to the corpus C, the classifiers
should be evaluated using cross-validation method: N-fold cross-validation splits
a data set into N folds and runs classification experiment N times, each time
one fold of data is used as test set and the classifier is trained on the other N−1
folds of data. The classification accuracy is averaged over the results of N runs,
and the classifier that gives higher accuracy is the one should be selected as δ
for the obfuscation process.

K-mean clustering algorithm. K-mean clustering algorithm starts by dividing
members in a dataset into K clusters, with at least one item in each cluster. The
data points are randomly assigned to the clusters resulting in clusters that have
roughly the same number of data points. The distance between each data point to
each cluster’s mean is then measured, and the mean is defined for each problem
normally as the average value of all elements in a cluster. If the data point is not
closest to its own cluster, it is moved to the closest cluster. This step is repeated
until there is no data point moving from one cluster to another.

The above approach is flexible and the set of features can be chosen so that
the document change is acceptable by the user.

4 Our Implementation

In this section, we present an implementation of the above approach using Basic-
9 feature set. This set can be divided into subsets, (i) Sentence related fea-
tures including: Average Sentence Length, Sentence Count, (ii) Lexical features
including: Unique Word Counts, Average Syllables per Word, Character Count,
Character Count without Space, and (iii) Readability related features including:
Gunning Fox Readability Index, Complexity, Flesch Reading Ease Score. These
features are described in Table 1. In stylometry Basic-9 feature set is less power-
ful than Writerprints which consists of low-level features such as frequencies of
1-, 2-, 3-grams. Basic-9 feature set, however, is convenient to provide suggestions
to change the document for the users following these suggestions.

4.1 Preprocessing

We implemented all Basic-9 features except Unique Word Count, using the stan-
dard definitions of these features [12]. For Unique Word Count we defined a
new algorithm using the information theoretic measure of mutual information,
defined as follows.

For two random variables X and Y with joint probability distribution
P (X,Y ), the mutual information measure is defined as the reduced uncertainty
of variable X when variable Y is known, or vice versa. Our Unique Word Count
extractor works as follows.
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Table 1. Descriptions of Basic-9 feature set.

Feature Description

Unique Word Counts Number of unique words
Average Sentence Length Average number of words in a sentence
Sentence Count Number of sentences in a document
Average Syllables per Word Average number of syllables per a word used
Gunning Fox Readability Index A weighted average of the number of words per sentence,

and the number of long words per word:

(= 0.4[ words
sentences

+ 100( complex words
words

)])

Complexity equivalent to lexical density of a document (= Nlex
Ntok

)

Nlex is the number of lexical words token,
Ntok is the total number of tokens.

Character Count Number of characters used in a document
Character Count without Space Number of characters used in a document (without spaces)
Flesch Reading Ease Score The readability of a document:

the higher values are, the easier to read.

(= 206.83 − 1.015 total words
total sentence

− 84.6 total syllables
total words

)

Unique Word Extractor. To extract a list of unique word for an author U
from a corpus C we will do the following. Let WU denote the list of all the words
that U used in the documents in the corpus C.

The importance of a word wi ∈ WU to U is modelled by the mutual infor-
mation between two random variables XU that represents the presence of U in
the corpus, and Xwi

that represents the presence of the word wi in the corpus.
The mutual information is calculated as,

I(wi, U) = I(XU ,Xwi
) = H(Xwi

) − H(Xwi
|XU )

Here p(Xwi
= 1) is the probability that wi appears in a document in C,

p(XU = 1) is the probability that U is the author of a document in C, and
p(Xwi

= 1,XU = 1) is the probability that wi appear in a document written by
U in C. These probabilities are calculated as relative frequencies,

p(Xwi
= 1,XU = 1) = nwi∧U

n

p(Xwi
= 1) = nwi

n
p(XU = 1) = nU

n

where n is the number of documents in the corpus, nwi∧U is number of documents
in C that are written by U which contain wi, and nwi

is number of documents
in C contain wi, and nU is number of documents written by U .

Mutual information of words in WU with U are ranked, and the top � words
are selected to the most important or “unique” word set.

The advantage of extracting “unique words” as above instead of the standard
approaches, as in [13], is that the resulting extracted words are more representing
for one’s writing. Using the standard definition, words which appear once in a
particular context would be selected as unique words, thus, do not necessarily
represent one’s writings.
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4.2 Obfuscation Algorithm

Algorithm 1 is our instantiation of the approach described in Section 3.2.
The user must select the number of clusters Ki(i = 1, 2, ..., 9), and then after

applying the clustering algorithm, select one of the resulting clusters (which
could be done randomly). Each Ki in the K set ranges from 1 to N − 1, where
N is the total number of authors in the corpus C.

Among a number of choices for the classifiers in the Weka set, by running
10-fold cross-validation analysis over the training corpus, in Section 6, SVM is
selected as the best classifier for our scheme.

5 Security Analysis

We present an attacker model A for a text obfuscation system and use it to
evaluate our system. Let D be a document that is to be obfuscated using an
algorithm Π, with respect to a corpus C, a classification algorithm δ and a
feature set F = {f1, f2, · · · , f�}. The attacker can be modelled as follows.

Attacker capabilities:
– Attacker knows the obfuscation algorithm Π;
– Attacker knows the corpus of training documents from all authors C;
– Attacker can extract the same feature set F for an author or a document as
in the obfuscation algorithm Π;
– Attacker use the same text classifier δ as used in the obfuscation algorithm Π.

The attackers will use the following attack strategies:
1. Backtracking.

In backtracking, the adversary takes the steps of the obfuscation algorithm in the
reverse order, starting from the obfuscated document, and taking reverse steps.
This adversary will have success chance of 1 in some deterministic obfuscation
algorithms.

2. Exhaustive search on authors in the corpus.
In exhaustive attack, the attacker considers each author in the corpus as the
candidate author. The distance for the features of each candidate and the obfus-
cated document can be derived (such as the distance in Section 2.1) and used
to select the most likely author. For example, the author who has the closest
distance is the original author.

We also consider the effect of using a different classification algorithm and
show that the attacker will not have a higher chance if they use a different
classification algorithm.

Suppose U is the original author of an obfuscated document DO. Consider an
attacker with capabilities as above, the attacker will try to make the candidate
set S as small as possible. We define the success of the attack by the size of a
set S that includes the original author. An attack is (Δ,S, t) - successful if the
probability that the author is in S is at least 1−Δ and |S| ≤ t (with Δ ≥ 0 and
1 ≤ t ≤ N):

Pt[Author in S] ≥ 1 − Δ
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Input : document D, corpus C, and
K = {K1, K2, K3, K4, K5, K6, K7, K8, K9}.

Output: obfuscated document DO

1 FeatureExtractor(C) ←− (F1, F2, · · · , FN )

2 /* Each Fk includes 9 elements of Basic-9 features:

Fk = {fk
1 , fk

2 , fk
3 , fk

4 , fk
5 , fk

6 , fk
7 , fk

8 , fk
9 } */

3 FeatureExtractor(D) ←− FD

4 /* FD = {fD
1 , fD

2 , fD
3 , fD

4 , fD
5 , fD

6 , fD
7 , fD

8 , fD
9 } */

5 Select a classifier δ.

6 for each feature i in the Basic-9 feature set do

7 /* Clustering f1
i , f2

i , · · · , fN
i into Ki clusters */

8 SimpleKmeans(f1
i , f2

i , · · · , fN
i , Ki)

9 U selects a cluster

10 /* A target ti is chosen randomly in that cluster. */

11 ti = RandomSelection()

12 U modifies D to adjust feature fD
i to the target ti.

13 Output a temporary document Dtmp. Set D = Dtmp.

14 end

15 δ(Dtmp) /* Reclassify Dtmp. */

16 if δ(Dtmp) ←− Ui and Ui �= U and P [δ(Dtmp ← U ] ≤ 1
N

then
17 output DO = Dtmp.
18 end

19 if DO ≡ ∅ then
20 Re-run the algorithm. /* Now D = Dtmp */

21 end

Algorithm 1. Secure Obfuscation

The most identifying attack is when t = 1.
We showed that the backtracking attack was successful against deterministic

algorithms to determine the author in Section 2.1.
Evaluation of Secure Obfuscation. Given the obfuscated document DO and

the public corpus C, the attacker can extract its feature set using the same feature
extractor algorithm as the obfuscator. Suppose all feature weights in the feature
set match the target values generated by the obfuscation process, so FDO

=
{t1, t2, t3, t4, t5, t6, t7, t8, t9} (ti is the target generated in the obfuscation process
for feature fD

i of the document D). According to our algorithm, these target
values are selected in chosen clusters by a random algorithm RandomSelection().
As these clusters are chosen by the user, if this information is not leaked, the
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attacker cannot determine which clusters that the values in FDO
belong to, and

only can guess these clusters with a random chance. The attackers are also unable
to find the link between the user and their chosen clusters.

The exhaustive search was successful against Anonymouth in reducing the
size of potential authors from the full author set to a limited set S with |S| = 2
and P2[Author in S]= 14

32 .
In Secure Obfuscation, the targets in the obfuscation process are chosen ran-

domly, hence the attacker cannot perform the same attack to our algorithm as
on Anonymouth in Section 2.1. Instead, we perform a similar attack on the doc-
uments which are obfuscated by our scheme (Section 6). The attack generates a
sorted list of the candidate authors for each obfuscated document based on the
average distance measured between the obfuscated document’s features and a
candidate author’s (instead of targets from clusters as in the attack on Anony-
mouth). Note that we allow the user to appear at the top two elements of the
list, the success probability of the attack is P2[Author in S]= 3

20 that is smaller
than a random chance as P2[Author in S]= 2

10 = 0.2.

Fig. 1. The tested obfuscated documents as the x-axis, the positions of the original
authors in the sorted candidate lists as the y-axis.

We note that as the backtracking strategy cannot continue after the
RandomSelection() step. Hence combinations of backtracking with other strate-
gies also cannot proceed after this point. In other words, backtracking strategy
cannot improve the strength of other attacks.

Cross-classifier attack. Consider our obfuscation scheme which is based on
a classification algorithm δ and assume we obfuscate a document D of author
U to DO such that δ classifies DO to U ′. There is a chance that δ misclassifies
DO, which means that DO may still link to U . Therefore, if the attacker uses
another classifier δ′ which can link DO to the real author, he may gain success.
We analyzed the success chance of the attacker which is:

Succ = 1
N−1 ((1 − pδ) pδ′ + pδ (1 − pδ′)) ≤ 1

N−1
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where pδ and pδ′ are the precision rates of δ and δ′ respectively. This shows that,
with this attack, the attacker cannot gain a success with a chance better than a
random chance which is 1

N .

6 Experiments

In our experiments, we demonstrate that our algorithm obfuscates documents
successfully with Basic-9 feature set, and examine the effect of changing the
background corpus on the obfuscation results. In our experiments, the back-
ground corpus is Brennan-Greenstadt Adversarial Stylometry Corpus [6] and is
comprised of documents from 10 authors. In this corpus, there are at least 5
documents for each author, each document consisting of 500 words. These docu-
ments are written about different topics. We asked 10 participants to contribute
their documents and join our experiments.

Each participant submitted at least 6 documents of at least 500 words. One
document was used to obfuscate and the rest was used as training data. All
the documents were in English and extracted to plaintext forms. We asked each
participant to obfuscate at least 2 documents.

To select an appropriate classifier for our data set we followed the approach
in Section 3.2. We ran ten-fold validation analysis on various classifiers (J48,
Neural Network, Naive Bayes, etc.) in the Weka classifier set. The analysis was
performed on the public corpus of authors’ documents. SVM was selected as it
yielded in high classification accuracy of 86%.

For each document, we output for users a list of suggested target values of
features respecting to that corpus and a list of unique word. Guidelines on how
to change these features in their documents to achieve these target values were
suggested to users, e.g. removing or rephrasing unique words (note that we did
not ask users to increase or decrease their number of unique words), reduce
the sentence count by combining sentences together. We transformed number
of characters to an approximate number of words, so that changing character
counts related features would become changing number of words.

Fig. 2. Authorship attribution results of the obfuscated documents.
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The temporary document which was output after changing the features was
then re-classified using the SVM classification algorithm. Using above approach
19 out of 20 document were obfuscated after users change their features. On
average, it took users one round of modifying features to anonymize the doc-
uments. In Figure 2 we demonstrate the authorship attribution results of the
first 10 obfuscated documents. These documents were attributed to the original
authors with less than or equal to a random chance which was 1

10 and also were
attributed to other authors with more significant chances.

6.1 Effect of Background Corpus on the Obfuscation Results

The background corpus, or set of reference authors and documents, is important
for document anonymization as the algorithm calculates the target value for each
feature based on the background corpus and suggests changes to users based on
these target values.

We tested if documents anonymized using one background corpus are also
anonymized against a different background corpus. To test this, we added 3 more
authors to the existing corpus. The documents from these authors were about
different topics (similar to the documents in the initial background corpus). The
results (Figure 3a) showed that the effectiveness of the anonymization could
change if the background corpus is changed. Although all the obfuscated doc-
uments were still anonymized however the chances that those documents were
classified to the original authors might slightly increase or stay the same. This
was also true for the case when we added 6 authors to the existing corpus.

We also tested the results using the whole new 10-author corpus. When
we switched to the new background corpus, the chances that those obfuscated
documents were attributed to the original authors all increased (Figure 3b). This
was predictable as the documents were anonymized respecting to a different
background corpus.

Fig. 3. Authorship attribution accuracy of the obfuscated documents in a new back-
ground corpus: (a) 3 authors were added to the original corpus, (b) new 10 authors
were used.
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6.2 An Example of an Obfuscated Document

A Short Paragraph Before Being Obfuscated: “This work does not make
big improvement comparing to the previous works, the reasons are follows. In
Obana’s work, the adversarial cheating probability is defined as the overall failure
probability for all the players that adversary control. We can not compare the
cheating probability under the different definition of cheating success probability.
In the proof of theorem 1, the authors show the cheating probability is... But I
don’t know how they get the probability less than... In Obana’s proof of cheating
probability, he got the probability from the forging probability of strong universal
hash functions of strength t + 1. But in this proof, the g(X) is not proved to be
the strong universal hash function, so they can not directly get the probability
less than 1 q. There are some mistakes of writing: in page 8, kil+1,it+1 should
be kit+1,it+1 . There are similar mistake in this page. To sum up, the authors
do not define the cheating probability in the same way as Obana’s work and do
not explain the relation between two definitions. The improvement of sharing
size is small comparing with Choudhury’s work. The proof of theorem 1 is not
well explained. I suggest the paper should consider the above issues.”

The Obfuscated Paragraph: “This work does not make a big improvement
comparing to the previous works, the reasons are follows. In the previous work,
the adversarial cheating probability is defined as the overall failure probability
for all the players that adversary control. We can not compare the cheating
probability with the different definition of cheating success probability. In the
proof of theorem 1, the authors show the cheating probability is..., and they
get the probability less than... In proof the previous work about the cheating
chance, he got the probability from the forging probability of strong universal
hash functions of strength t + 1. But in this proof, the g(X) is not proved to be
the strong universal hash function, so they can not directly get the probability
less than 1 q. There are some mistakes of writing: in page 8, kil+1,it+1 should
be kit+1,it+1 . There are similar mistake in this page. To sum up, the authors
do not define the cheating probability in the same way as the previous work and
do not explain the relation between two definitions. The improvement of sharing
size is small comparing with previous work. The proof of theorem 1 is not well
written. I suggest the paper should address the above issues.”

Remark: In the above example, we highlighted some of the modifying applied
by the author to the document. Author increased the sentence length by adding
sentences together. Unique words were replaced or removed in the document.
Author also adopted new words that they did not normally use in their document
to change the complexity score of the document. The classification result of the
obfuscated document with SVM classifier and Basic-9 feature set is presented in
author 6 in Figure 2. The result shows that the probability that the obfuscated
document is classified to the original author is nearly zero.
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6.3 Performance Evaluation

Over 10 participants, we estimated that on average, obfuscation process requires
17 to 20 minutes depends on each user for a 500 word document. The time
started from the time that the program output the suggested targets and the
user knew about the task clearly, and also had a basic guide on how to change
feature weights in their documents as noted above. This is reasonably efficient for
document obfuscation. During our experiments, after modification process and
if the document was already anonymized, we did not ask participants to change
the readability-related features that had been affected because of the change in
other features.

7 Concluding Remarks

We considered privacy of authors on anonymous websites by considering obfus-
cating their writing styles. We showed that the current research does not guar-
antee security and proposed secure obfuscation as an approach to hiding an
author’s identity among other authors in a corpus. We implemented our scheme
using Basic-9 feature set and SVM classifier.
Our work provides a clear analysis of security for stylometry obfuscation schemes,
and our algorithm can help users to obfuscate documents in practice. Refining
our work to include other feature types will be an interesting direction for future
research.
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