
Regression with Linear Factored Functions

Wendelin Böhmer(B) and Klaus Obermayer

Neural Information Processing Group, Technische Universität Berlin,
Sekr. MAR5-6, Marchstr. 23, 10587 Berlin, Germany

{wendelin,oby}@ni.tu-berlin.de
http://www.ni.tu-berlin.de

Abstract. Many applications that use empirically estimated functions
face a curse of dimensionality, because integrals over most function
classes must be approximated by sampling. This paper introduces a novel
regression-algorithm that learns linear factored functions (LFF). This
class of functions has structural properties that allow to analytically solve
certain integrals and to calculate point-wise products. Applications like
belief propagation and reinforcement learning can exploit these properties
to break the curse and speed up computation. We derive a regularized
greedy optimization scheme, that learns factored basis functions during
training. The novel regression algorithm performs competitively to Gaus-
sian processes on benchmark tasks, and the learned LFF functions are
with 4-9 factored basis functions on average very compact.

Keywords: Regression · Factored functions · Curse of dimensionality

1 Introduction

This paper introduces a novel regression-algorithm, which performs competitive
to Gaussian processes, but yields linear factored functions (LFF). These have
outstanding properties like analytical point-wise products and marginalization.

Regression is a well known problem, which can be solved by many non-linear
architectures like kernel methods (Shawe-Taylor and Cristianini 2004) or neural
networks (Haykin 1998). While these perform well, the estimated functions often
suffer a curse of dimensionality in later applications. For example, computing an
integral over a neural network or kernel function requires to sample the entire
input space. Applications like belief propagation (Pearl 1988) and reinforcement
learning (Kaelbling et al. 1996), on the other hand, face large input spaces and
require therefore efficient computations. We propose LFF for this purpose and
showcase its properties in comparison to kernel functions.

1.1 Kernel Regression

In the last 20 years, kernel methods like support vector machines (SVM,
Boser et al. 1992; Vapnik 1995) have become a de facto standard in various practi-
cal applications. This is mainly due to a sparse representation of the learned clas-
sifiers with so called support vectors (SV). The most popular kernel method for
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 119–134, 2015.
DOI: 10.1007/978-3-319-23528-8 8

120 W. Böhmer and K. Obermayer

regression, Gaussian processes (GP, see Bishop 2006; Rasmussen and Williams
2006), on the other hand, requires as many SV as training samples. Sparse ver-
sions of GP aim thus for a small subset of SV. Some select this set based on
constraints similar to SVM (Tipping 2001; Vapnik 1995), while others try to
conserve the spanned linear function space (sparse GP, Csató and Opper 2002;
Rasmussen and Williams 2006). There exist also attempts to construct new SV by
averaging similar training samples (e.g. Wang et al. 2012).

Well chosen SV for regression are usually not sparsely concentrated on a deci-
sion boundary as they are for SVM. In fact, many practical applications report
that they are distributed uniformly in the input space (e.g. in Böhmer et al.
2013). Regression tasks restricted to a small region of the input space may tol-
erate this, but some applications require predictions everywhere. For example,
the value function in reinforcement learning must be generalized to each state.
The number of SV required to represent this function equally well in each state
grows exponentially in the number of input-space dimensions, leading to Bell-
man’s famous curse of dimensionality (Bellman 1957).

Kernel methods derive their effectiveness from linear optimization in a non-
linear Hilbert space of functions. Kernel-functions parameterized by SV are the
non-linear basis functions in this space. Due to the functional form of the kernel,
this can be a very ineffective way to select basis functions. Even in relatively
small input spaces, it often takes hundreds or thousands SV to approximate a
function sufficiently. To alleviate the problem, one can construct complex kernels
out of simple prototypes (see a recent review in Gönen and Alpaydın 2011).

1.2 Factored Basis Functions

Diverging from all above arguments, this article proposes a more radical app-
roach: to construct the non-linear basis functions directly during training, with-
out the detour over kernel functions and support vectors. This poses two main
challenges: to select a suitable functions space and to regularize the optimization
properly. The former is critical, as a small set of basis functions must be able to
approximate any target function, but should also be easy to compute in practice.

We propose factored functions ψi =
∏

k ψk
i ∈ F as basis functions for

regression, and call the linear combination of m of those bases a linear fac-
tored function f ∈ Fm (LFF, Section 3). For example, generalized linear mod-
els (Nelder and Wedderburn 1972) and multivariate adaptive regression splines
(MARS, Friedman 1991) are both LFF. Computation remains feasible by using
hinge functions ψk

i (xk) = max(0, xk − c) and restricting the scope of each fac-
tored function ψi. In contrast, we assume the general case without restrictions
to functions or scope.

Due to their structure, LFF can solve certain integrals analytically and allow
very efficient computation of point-wise products and marginalization. We show
that our LFF are universal function approximators and derive an appropriate
regularization term. This regularization promotes smoothness, but also retains
a high degree of variability in densely sampled regions by linking smoothness to

Regression with Linear Factored Functions 121

uncertainty about the sampling distribution. Finally, we derive a novel regression
algorithm for LFF based on a greedy optimization scheme.

Functions learned by this algorithm (Algorithm 1, see pages 125 and 133) are
very compact (between 3 and 12 bases on standard benchmarks) and perform
competitive with Gaussian processes (Section 4). The paper finishes with a dis-
cussion of the computational possibilities of LFF in potential areas of application
and possible extensions to sparse regression with LFF (Section 5).

2 Regression

Let {xt ∈ X}n
t=1 be a set of n input samples, i.i.d. drawn from an input

set X ⊂ IRd. Each so called “training sample” is labeled with a real number
{yt ∈ IR}n

t=1. Regression aims to find a function f : X → IR, that predicts the
labels to all (previously unseen) test samples as well as possible. Labels may be
afflicted by noise and f must thus approximate the mean label of each sample,
i.e., the function μ : X → IR. It is important to notice that conceptually the noise
is introduced by two (non observable) sources: noisy labels yt and noisy samples
xt. The latter will play an important role for regularization. We define the con-
ditional distribution χ of observable samples x ∈ X given the non-observable
“true” samples z ∈ X , which are drawn by a distribution ξ. In the limit of
infinite samples, the least squares cost-function C[f |χ, μ] can thus be written as

lim
n→∞ inf

f

1
n

n∑

t=1

(
f(xt) − yt

)2

= inf
f

∫∫

ξ(dz)χ(dx|z)
(
f(x) − μ(z)

)2

. (1)

The cost function C can never be computed exactly, but approximated using the
training samples1 and assumptions about the unknown noise distribution χ.

3 Linear Factored Functions

Any non-linear function can be expressed as a linear function f(x) = a�ψ(x),
∀x ∈ X , with m non-linear basis functions ψi : X → IR, ∀i ∈ {1 . . . , m}. In this
section we will define linear factored functions (LFF), that have factored basis
functions ψi(x) := ψ1

i (x1) · . . . · ψd
i (xd) ∈ F , a regularization method for this

function class and an algorithm for regression with LFF.

3.1 Function Class

We define the class of linear factored functions f ∈ Fm as a linear combination
(with linear parameters a ∈ IRm) of m factored basis functions ψi : X → IR

1 The distribution ξ of “true” samples z can not be observed. We approximate in
the following ξ with the training-sample distribution. This may be justified if the
sample-noise χ is comparatively small. Although not strictly rigorous, the presented
formalism helps to put the regularization derived in Proposition 2 into perspective.

122 W. Böhmer and K. Obermayer

(with parameters {Bk ∈ IRmk×m}d
k=1):

f(x) := a�ψ(x) := a�
[d∏

k=1

ψk(xk)
]

:=
m∑

i=1

ai

d∏

k=1

mk∑

j=1

Bk
ji φk

j (xk) . (2)

LFF are formally defined in Appendix A. In short, a basis function ψi is the
point-wise product of one-dimensional functions ψk

i in each input dimension k.
These are themselves constructed as linear functions of a corresponding one-
dimensional base {φk

j }mk
j=1 over that dimension and ideally can approximate

arbitrary functions2. Although each factored function ψi is very restricted, a
linear combination of them can be very powerful:

Corollary 1. Let Xk be a bounded continuous set and φk
j the j’th Fourier base

over Xk. In the limit of mk → ∞,∀k ∈ {1, . . . , d}, holds F∞ = L2(X , ϑ).

Strictly this holds in the limit of infinitely many basis functions ψi, but we will
show empirically that there exist close approximations with a small number m
of factored functions. One can make similar statements for other bases {φk

j }∞
j=1.

For example, for Gaussian kernels one can show that the space F∞ is in the
limit equivalent to the corresponding reproducing kernel Hilbert space H.

LFF offer some structural advantages over other universal function approxi-
mation classes like neural networks or reproducing kernel Hilbert spaces. Firstly,
the inner product of two LFF in L2(X , ϑ) can be computed as products of
one-dimensional integrals. For some bases3, these integrals can be calculated
analytically without any sampling. This could in principle break the curse of
dimensionality for algorithms that have to approximate these inner products
numerically. For example, input variables can be marginalized (integrated) out
analytically (Equation 9 on Page 130). Secondly, the point-wise product of two
LFF is a LFF as well4 (Equation 10 on Page 131). See Appendix A for details.
These properties are very useful, for example in belief propagation (Pearl 1988)
and factored reinforcement learning (Böhmer and Obermayer 2013).

3.2 Constraints

LFF have some degrees of freedom that can impede optimization. For example,
the norm of ψi ∈ F does not influence function f ∈ Fm, as the corresponding
linear coefficients ai can be scaled accordingly. We can therefore introduce the
constraints ‖ψi‖ϑ = 1,∀i, without restriction to the function class. The factor-
ization of inner products (see Appendix A on Page 130) allows us furthermore
to rewrite the constraints as ‖ψi‖ϑ =

∏
k ‖ψk

i ‖ϑk = 1. This holds as long as
the product is one, which exposes another unnecessary degree of freedom. To

2 Examples are Fourier bases, Gaussian kernels or hinge-functions as in MARS.
3 E.g. Fourier bases for continuous, and Kronecker-delta bases for discrete variables.
4 One can use the trigonometric product-to-sum identities for Fourier bases or the Kro-

necker delta for discrete bases to construct LFF from a point-wise product without
changing the underlying basis {{φk

i }mk
i=1}d

k=1.

Regression with Linear Factored Functions 123

finally make the solution unique (up to permutation), we define the constraints
as ‖ψk

i ‖ϑk = 1,∀k,∀i. Minimizing some C[f] w.r.t. f ∈ Fm is thus equivalent to

inf
f∈Fm

C[f] s.t. ‖ψk
i ‖ϑk = 1 , ∀k ∈ {1, . . . , d} , ∀i ∈ {1, . . . , m} . (3)

The cost function C[f |χ, μ] of Equation 1 with the constraints in Equation 3
is equivalent to ordinary least squares (OLS) w.r.t. linear parameters a ∈ IRm.
However, the optimization problem is not convex w.r.t. the parameter space
{Bk ∈ IRmk×m}d

k=1, due to the nonlinearity of products.
Instead of tackling the global optimization problem induced by Equation 3,

we propose a greedy approximation algorithm. Here we optimize at iteration ı̂
one linear basis function ψı̂ =: g =:

∏
k gk ∈ F , with gk(xk) =: bk�φk(xk), at a

time, to fit the residual μ−f between the true mean label function μ ∈ L2(X , ϑ)
and the current regression estimate f ∈ F ı̂−1, based on all ı̂ − 1 previously
constructed factored basis functions {ψi}ı̂−1

i=1:

inf
g∈F

C[f + g|χ, μ] s.t. ‖gk‖ϑk = 1 , ∀k ∈ {1, . . . , d} . (4)

3.3 Regularization

Regression with any powerful function class requires regularization to avoid over-
fitting. Examples are weight decay for neural networks (Haykin 1998) or param-
eterized priors for Gaussian processes. It is, however, not immediately obvious
how to regularize the parameters of a LFF and we will derive a regularization
term from a Taylor approximation of the cost function in Equation 1.

Fig. 1. We interpret the
Radon-Nikodym derivative
dϑ
dξ

as uncertainty measure
for our knowledge of X . Reg-
ularization enforces smooth-
ness in uncertain regions.

We aim to enforce smooth functions, espe-
cially in those regions our knowledge is limited
due to a lack of training samples. This uncertainty
can be expressed as the Radon-Nikodym deriva-
tive5 ϑ

ξ : X → [0,∞) of our factored measure ϑ
(see Appendix A) w.r.t. the sampling distribution
ξ. Figure 1 demonstrates at the example of a uni-
form distribution ϑ how ϑ

ξ reflects our empirical
knowledge of the input space X .

We use this uncertainty to modulate the sam-
ple noise distribution χ in Equation 1. This means
that frequently sampled regions of X shall yield
low, while scarcely sampled regions shall yield
high variance. Formally, we assume χ(dx|z) to
be a Gaussian probability measure over X with
mean z and a covariance matrix Σ ∈ IRd×d, scaled
by the local uncertainty in z (modeled as ϑ

ξ (z)):

5 Technically we have to assume that ϑ is absolutely continuous in respect to ξ. For
“well-behaving” distributions ϑ, like the uniform or Gaussian distributions we discuss
in Appendix A, this is equivalent to the assumption that in the limit of infinite
samples, each sample z ∈ X will eventually be drawn by ξ.

124 W. Böhmer and K. Obermayer

∫ χ(dx|z)(x − z) = 0 , ∫ χ(dx|z)(x − z)(x − z)� = ϑ
ξ
(z) · Σ , ∀z ∈ X . (5)

In the following we assume without loss of generality6 the matrix Σ to be diag-
onal, with the diagonal elements called σ2

k := Σkk.

Proposition 2. Under the assumptions of Equation 5 and a diagonal covari-
ance matrix Σ, the first order Taylor approximation of the cost C in Equation 4
is

C̃[g] := ‖g − (μ − f)‖2ξ
︸ ︷︷ ︸

sample-noise free cost

+
d∑

k=1

σ2
k ‖ ∂

∂xk
g + ∂

∂xk
f‖2ϑ

︸ ︷︷ ︸
smoothness in dimension k

. (6)

Proof: see Appendix C on Page 132. �
Note that the approximated cost C̃[g] consists of the sample-noise free cost

(measured w.r.t. training distribution ξ) and d regularization terms. Each term
prefers functions that are smooth7 in one input dimension. This enforces smooth-
ness everywhere, but allows exceptions where enough data is available. To avoid
a cluttered notation, in the following we will use the symbol ∇kf := ∂

∂xk
f .

3.4 Optimization

Another advantage of cost function C̃[g] is that one can optimize one factor
function gk of g(x) = g1(x1)·. . .·gd(xd) ∈ F at a time, instead of time consuming
gradient descend over the entire parameter space of g. To be more precise:

Proposition 3. If all but one factor function gk are considered constant, Equa-
tion 6 has an analytical solution. If {φk

j }mk
j=1 is a Fourier base, σ2

k > 0 and ϑ 	 ξ,
then the solution is also unique.

Proof: see Appendix C on Page 133. �
One can give similar guarantees for other bases, e.g. Gaussian kernels. Note
that Proposition 3 does not state that the optimization problem has a unique
solution in F . Formal convergence statements are not trivial and empirically the
parameters of g do not converge, but evolve around orbits of equal cost instead.
However, since the optimization of any gk cannot increase the cost, any sequence
of improvements will converge to (and stay in) a local minimum. This implies a
nested optimization approach, that is formulated in Algorithm 1 on Page 133:

– An inner loop that optimizes one factored basis function g(x) = g1(x1) · . . . ·
gd(xd) by selecting an input dimension k in each iteration and solve Equation
6 for the corresponding gk. A detailed derivation of the optimization steps of

6 Non-diagonal covariance matrices Σ can be cast in this framework by projecting the
input samples into the eigenspace of Σ (thus diagonalizing the input) and use the
corresponding eigenvalues λk instead of the regularization parameters σ2

k’s.
7 Each regularization term is measured w.r.t. the factored distribution ϑ. We also

tested the algorithm without consideration of “uncertainty” ϑ
ξ
, i.e., by measuring

each term w.r.t. ξ. As a result, regions outside the hypercube containing the training
set were no longer regularized and predicted arbitrary (often extreme) values.

Regression with Linear Factored Functions 125

Algorithm 1. (abstract) – a detailed version can be found on Page 133
while new factored basis function can improve solution do

initialize new basis function g as constant function
while optimization improves cost in Equation 6 do

for random input dimension k do
calculate optimal solution for gk without changing gl, ∀l �= k

end for
end while // new basis function g has converged
add g to set of factored basis functions and solve OLS

end while // regression has converged

the inner loop is given in Appendix B on Page 131. The choice of k influences
the solution in a non-trivial way and further research is needed to build up
a rationale for any meaningful decision. For the purpose of this paper, we
assume k to be chosen randomly by permuting the order of updates.
The computational complexity of the inner loop is O(m2

kn+d2mkm). Memory
complexity is O(d mkm), or O(d mkn) with the optional cache speedup of
Algorithm 1. The loop is repeated for random k until the cost-improvements
of all dimensions k fall below some small ε.

– After convergence of the inner loop in (outer) iteration ı̂, the new basis
function is ψı̂ := g. As the basis has changed, the linear parameters a ∈ IRı̂

have to be readjusted by solving the ordinary least squares problem

a = (ΨΨ�)−1Ψy , with Ψit := ψi(xt) , ∀i ∈ {1, . . . , ı̂} , ∀t ∈ {1, . . . , n} .

We propose to stop the approximation when the newly found basis function
ψı̂ is no longer linearly independent of the current basis {ψi}ı̂−1

i=1. This can
for example be tested by comparing the determinant det(1

nΨΨ�) < ε, for
some very small ε.

4 Empirical Evaluation

In this section we will evaluate the novel LFF regression Algorithm 1, printed in
detail on Page 133. We will analyze its properties on low dimensional toy-data,
and compare its performance with sparse and traditional Gaussian processes
(GP, see Bishop 2006; Rasmussen and Williams 2006).

4.1 Demonstration

To showcase the novel Algorithm 1, we tested it on an artificial two-dimensional
regression toy-data set. The n = 1000 training samples were drawn from a noisy
spiral and labeled with a sinus. The variance of the Gaussian sample-noise grew
with the spiral as well:

xt = 6 t
n

[
cos

(
6 t

nπ
)

sin
(
6 t

nπ
)

]

+ N
(
0, t2

4n2 I
)

, yt = sin
(
4 t

nπ
)

, ∀t ∈ {1, . . . , n} . (7)

126 W. Böhmer and K. Obermayer

Fig. 2. Two LFF functions learned from the same 1000 training samples (white circles).
The color inside a circle represents the training label. Outside the circles, the color
represents the prediction of the LFF function. The differences between both functions
are rooted in the randomized order in which the factor functions gk are updated.
However, the similarity of the sampled region indicates that poor initial choices can be
compensated by subsequently constructed basis functions.

Figure 2 shows one training set plotted over two learned8 functions f ∈ Fm with
m = 21 and m = 24 factored basis functions, respectively. Regularization con-
stants were in both cases σ2

k = 0.0005,∀k. The differences between the functions
stem from the randomized order in which the factor functions gk are updated.
Note that the sampled regions have similar predictions. Regions with strong
differences, for example the upper right corner, are never seen during training.

In all our experiments, Algorithm 1 always converged. Runtime was mainly
influenced by the input dimensionality (O(d2)), the number of training sam-
ples (O(n)) and the eventual number of basis functions (O(m)). The latter was
strongly correlated with approximation quality, i.e., bad approximations con-
verged fast. Cross-validation was therefore able to find good parameters effi-
ciently and the resulting LFF were always very similar near the training data.

4.2 Evaluation

We compared the regression performance of LFF and GP with cross-validation
on five regression benchmarks from the UCI Manchine Learning Repository9:

– The concrete compressive strength data set (concrete, Yeh 1998) consists
of n = 1030 samples with d = 8 dimensions describing various concrete

8 Here (and in the rest of the paper), each variable was encoded with 50 Fourier cosine
bases. We tested other sizes as well. Few cosine bases result effectively in a low-pass
filtered function, whereas every experiment with more than 20 or 30 bases behaved
very similar. We tested up to mk = 1000 bases and did not experience over-fitting.

9 https://archive.ics.uci.edu/ml/index.html

https://archive.ics.uci.edu/ml/index.html

Regression with Linear Factored Functions 127

Fig. 3. Mean and standard deviation within a 10-fold cross-validation of a) the toy
data set with additional independent noise input dimensions and b) all tested UCI
benchmark data sets. The stars mark significantly different distribution of RMSE over
all folds in both a paired-sample t-test and a Wilcoxon signed rank test. Significance
levels are: one star p < 0.05, two stars p < 0.005.

mixture-components. The target variable is the real-valued compression
strength of the mixture after it hardened.

– The combined cycle power plant data set (ccpp, Tüfekci 2014) consists of
n = 9568 samples with d = 4 dimensions describing 6 years worth of mea-
surements from a combined gas and steam turbine. The real-valued target
variable is the energy output of the system.

– The wine quality data set (Cortez et al. 2009) consists of two subsets with
d = 11 dimensions each, which describe physical attributes of various white
and red wines: the set contains n = 4898 samples of white wine and n = 1599
samples of red wine. The target variable is the estimated wine quality on a
discrete scale from 0 to 10.

– The yacht hydrodynamics data set (yacht, Gerritsma et al. 1981) consists
of n = 308 samples with d = 6 dimensions describing parameters of the
Delft yacht hull ship-series. The real-valued target variable is the residuary
resistance measured in full-scale experiments.

To demonstrate the advantage of factored basis functions, we also used the 2d-
spiral toy-data set of the previous section with a varying number of additional
input dimensions. Additional values were drawn i.i.d. from a Gaussian distribu-
tion and are thus independent of the target labels. As the input space X grows,
kernel methods will increasingly face the curse of dimensionality during training.

Every data-dimension (except the labels) have been translated and scaled
to zero mean and unit-variance before training. Hyper-parameters were chosen
w.r.t. the mean of a 10-fold cross-validation. LFF-regression was tested for the
uniform noise-parameters σ2

k ∈ {10−10, 10−9.75, 10−9.5, . . . , 1010},∀k, i.e. for 81
different hyper-parameters. GP were tested with Gaussian kernels κ(x,y) =
exp(− 1

2σ̄2 ‖x − y‖22) using kernel parameters σ̄ ∈ {10−1, 10−3/4, 10−1/2, . . . , 3}
and prior-parameters β ∈ {10−2, 10−1, . . . , 1010} (Bishop 2006, see for the

128 W. Böhmer and K. Obermayer

Table 1. 10-fold cross-validation RMSE for benchmark data sets with d dimensions
and n samples, resulting in m basis functions. The cross-validation took h hours.

DATA SET d n #SV RMSE LFF RMSE GP m LFF h LFF h GP

Concrete 8 1030 927 4.429 ± 0.69 5.196 ± 0.64 4.2 ± 0.8 3.00 0.05
CCPP 4 9568 2000 3.957 ± 0.17 3.888 ± 0.17 8.8 ± 2.0 1.96 1.14
White Wine 11 4898 2000 0.707 ± 0.02 0.708 ± 0.03 4.2 ± 0.4 4.21 0.69
Red Wine 11 1599 1440 0.632 ± 0.03 0.625 ± 0.03 4.7 ± 0.7 3.25 0.13
Yacht 6 308 278 0.446 ± 0.23 0.383 ± 0.11 4.2 ± 0.6 0.43 0.005

definition), i.e. for 221 different hyper-parameter combinations. The number of
support vectors in standard GP equals the number of training samples. As this is
not feasible for larger data sets, we used the MP-MAH algorithm (Böhmer et al.
2012) to select a uniformly distributed subset of 2000 training samples for sparse
GP (Rasmussen and Williams 2006).

Figure 3a demonstrates the advantage of factored basis functions over kernel
methods during training. The plot shows the root mean squared errors10 (RMSE)
of the two dimensional spiral toy-data set with an increasing number of indepen-
dent noise dimensions. GP solves the initial task better, but clearly succumbs to
the curse of dimensionality, as the size of the input space X grows. LFF, on the
other hand, significantly overtake GP from 3 noise dimensions on, as the factored
basis functions appear to be less affected by the curse. Another difference to GP
is that decreasing performance automatically yields less factored basis functions
(from 19.9 ± 2.18 with 0, to 6.3 ± 0.48 bases with 8 noise dimensions).

Figure 3b and Table 1 show that our LFF algorithm performs on all evaluated
real-world benchmark data sets comparable to (sparse) GP. RMSE distributions
over all folds were statistically indistinguishable, except for an advantage of LFF
regression in the concrete compressive strength data set (p < 0.01 in a t-test and
p < 0.02 in a signed rank test). As each basis function requries many iterations
to converge, LFF regression runs considerably longer than standard approaches.
However, LFF require between 3 and 12 factored basis functions to achieve the
same performance as GP with 278-2000 kernel basis functions.

5 Discussion

We presented a novel algorithm for regression, which constructs factored basis
functions during training. As linear factored functions (LFF) can in principle
approximate any function in L2(X , ϑ), a regularization is necessary to avoid
over-fitting. Here we rely on a regularization scheme that has been motivated by
a Taylor approximation of the least-squares cost function with (an approximation
of) virtual sample-noise. RMSE performance appears comparable to Gaussian

10 RMSE are not a common performance metric for GP, which represent a distribution
of solutions. However, RMSE reflect the objective of regression and are well suited
to compare our algorithm with the mean of a GP.

Regression with Linear Factored Functions 129

processes on real-world benchmark data sets, but the factored representation is
considerably more compact and seems to be less affected by distractors.

At the moment, LFF optimization faces two challenges. (i) The optimized
cost function is not convex, but the local minimum of the solution may be
controlled by selecting the next factor function to optimize. For example, MARS
successively adds factor functions. Generalizing this will require further research,
but may also allow some performance guarantees. (ii) The large number of inner-
loop iterations make the algorithm slow. This problem should be mostly solved
by addressing (i), but finding a trade-off between approximation quality and
runtime may also provide a less compact shortcut with similar performance.

Preliminary experiments also demonstrated the viability of LFF in a sparse
regression approach. Sparsity refers here to a limited number of input-dimensions
that affect the prediction, which can be implemented by adjusting the sample-
noise parameters σ2

k during training for each variable Xk individually. This is of
particular interest, as factored functions are ideally suited to represent sparse
functions and are in principle unaffected by the curse of dimensionality in func-
tion representation. Our approach modified the cost function to enforce LFF
functions that were constant in all noise-dimensions. We did not include our
results in this paper, as choosing the first updated factor functions gk poorly
resulted in basis functions that rather fitted noise than predicted labels. When
we enforce sparseness, this initial mistake can afterwards no longer be rectified
by other basis functions, in difference to the presented Algorithm 1. However, if
this can be controlled by a sensible order in the updates, the resulting algorithm
should be much faster and more robust than the presented version.

There are many application areas that may exploit the structural advan-
tages of LLF. In reinforcement learning (Kaelbling et al. 1996), one can exploit
the factorizing inner products to break the curse of dimensionality of the state
space (Böhmer and Obermayer 2013). Factored transition models also need
to be learned from experience, which is essentially a sparse regression task.
Another possible field of application are junction trees (for Bayesian inference,
see e.g. Bishop 2006) over continuous variables, where sparse regression may
estimate the conditional probabilities. In each node one must also marginalize
out variables, or calculate the point-wise product over multiple functions. Both
operations can be performed analytically with LFF, the latter at the expense of
more basis functions in the resulting LFF. However, one can use our framework
to compress these functions after multiplication. This would allow junction-tree
inference over mixed continuous and discrete variables.

In summary, we believe our approach to approximate functions by construct-
ing non-linear factored basis functions (LFF) to be very promising. The pre-
sented algorithm performs comparable with Gaussian processes, but appears
less sensitive to large input spaces than kernel methods. We also discussed some
potential extensions for sparse regression that should improve upon that, in par-
ticular on runtime, and gave some fields of application that would benefit greatly
from the algebraic structure of LFF.

130 W. Böhmer and K. Obermayer

Acknowledgments. The authors thank Yun Shen and the anonymous reviewers for
their helpful comments. This work was funded by the German science foundation
(DFG) within SPP 1527 autonomous learning.

Appendix A LFF Definition and Properties

Let Xk denote the subset of IR associated with the k’th variable of input space
X ⊂ IRd, such that X := X1 × . . . × Xd. To avoid the curse of dimension-
ality in this space, one can integrate w.r.t. a factored probability measure ϑ,
i.e. ϑ(dx) =

∏d
k=1 ϑk(dxk),

∫
ϑk(dxk) = 1,∀k. For example, ϑk could be uni-

form or Gaussian distributions over Xk and the resulting ϑ would be a uniform
or Gaussian distribution over the input space X .

A function g : X → IR is called a factored function if it can be written
as a product of one-dimensional factor functions gk : Xk → IR, i.e. g(x) =
∏d

k=1 gk(xk). We only consider factored functions g that are twice integrable
w.r.t. measure ϑ, i.e. g ∈ L2(X , ϑ). Note that not all functions f ∈ L2(X , ϑ)
are factored, though. Due to Fubini’s theorem the d-dimensional inner product
between two factored functions g, g′ ∈ L2(X , ϑ) can be written as the product
of d one-dimensional inner products:

〈g, g′〉ϑ =
∫

ϑ(dx) g(x) g′(x) =
∫

d∏

k=1

ϑk(dxk) gk(dxk) g′k(dxk) =
d∏

k=1

〈gk, g′k〉ϑk .

This trick can be used to solve the integrals at the heart of many least-squares
algorithms. Our aim is to learn factored basis functions ψi. To this end, let
{φk

j : Xk → IR}mk
j=1 be a well-chosen11 (i.e. universal) basis on Xk, with the

space of linear combinations denoted by Lk
φ := {b�φk|b ∈ IRmk}. One can thus

approximate factor functions of ψi in Lk
φ, i.e., as linear functions

ψk
i (xk) :=

mk∑

j=1

Bk
ji φk

j (xk) ∈ Lk
φ , Bk ∈ IRmk×m . (8)

Let F be the space of all factored basis functions ψi defined by the factor func-
tions ψk

i above, and Fm be the space of all linear combinations of those m
factored basis functions (Equation 2).

Marginalization of LFF can be performed analytically with Fourier bases φk
j

and uniform distribution ϑ (many other bases can be analytically solved as well):

∫

ϑl(dxl) f(x) =
m∑

i=1

(
ai

ml∑

j=1

Bl
ji 〈φl

j , 1〉ϑl

︸ ︷︷ ︸
mean of φl

j

)[d∏

k �=l

ψk
i

]
Fourier=

m∑

i=1

aiB
l
1i︸ ︷︷ ︸

new ai

[d∏

k �=l

ψk
i

]
.(9)

11 Examples for continuous variables Xk are Fourier cosine bases φk
j (xk) ∼ cos

(
(j −

1) π xk

)
, and Gaussian bases φk

j (xk) = exp
(

1
2σ2 (xk − skj)

2
)
. Discrete variables may

be represented with Kronecker-delta bases φk
j (xk = i) = δij .

Regression with Linear Factored Functions 131

Using the trigonometric product-to-sum identity cos(x) ·cos(y) = 1
2

(
cos(x−y)+

cos(x + y)
)
, one can also compute the point-wise product between two LFF f

and f̄ with cosine-Fourier base (solutions to other Fourier bases are less elegant):

f̃(x) := f(x) · f̄(x)

Fourier
=

mm̄∑

i,j=1

ai āj
︸︷︷︸
new ãt

d∏

k=1

2mk∑

l=1

(

new B̃k
lt

︷ ︸︸ ︷

1
2

l−1∑

q=1

Bk
qi B̄k

(l−q)j + 1
2

mk∑

q=l+1

Bk
qi B̄k

(q−l)j

)
φk

l (xk) , (10)

where t := (i − 1) m̄ + j, and Bk
ji := 0,∀j > mk, for both f and f̄ . Note that

this increases the number of basis functions m̃ = mm̄, and the number of bases
m̃k = 2mk for each respective input dimension. The latter can be counteracted
by low-pass filtering, i.e., by setting B̃k

ji := 0,∀j > mk.

Appendix B Inner Loop Derivation

Here we will optimize the problem in Equation 6 for one variable Xk at a time,
by describing the update step gk ← g′k. This is repeated with randomly chosen
variables k, until convergence of the cost C̃[g], that is, until all possible updates
decrease the cost less than some small ε.

Let in the following Ck := 〈φk,φk�〉ϑk and Ċk := 〈∇kφk,∇kφk�〉ϑk denote
covariance matrices, and Rk

l := ∂
∂bk 〈∇lg,∇lf〉ϑ denote the derivative of one reg-

ularization term. Note that for some choices of bases {φk
j }mk

j=1, one can compute
the covariance matrices analytically before the main algorithm starts, e.g. Fourier
cosine bases have Ck

ij = δij and Ċk
ij = (i − 1)2 π2 δij .

The approximated cost function in Equation 6 is

C̃[g] = ‖g‖2ξ−2〈g, μ−f〉ξ+‖μ−f‖2ξ+
d∑

k=1

σ2
k

(
‖∇kg‖2ϑ+2〈∇kg,∇kf〉ϑ+‖∇kf‖2ϑ

)
.

The non-zero gradients of all inner products of this equation w.r.t. parameter
vector bk ∈ IRmk are

∂
∂bk 〈g, g〉ξ = 2 〈φk · ∏

l �=k

gl,
∏

l �=k

gl · φk�〉ξb
k ,

∂
∂bk 〈g, μ − f〉ξ = 〈φk · ∏

l �=k

gl, μ − f〉ξ ,

∂
∂bk 〈∇lg,∇lg〉ϑ = ∂

∂bk 〈∇lg
l,∇lg

l〉ϑl

∏

s �=l

1
︷ ︸︸ ︷
〈gs, gs〉ϑs = 2 δkl Ċkbk ,

Rk
l := ∂

∂bk 〈∇lg,∇lf〉ϑ =

⎧
⎪⎨

⎪⎩

ĊkBk
[
a · ∏

s �=k

Bs�Csbs
]

, if k = l

CkBk
[
a · Bl�Ċlbl · ∏

s �=k �=l

Bs�Csbs
]

, if k = l
.

Setting this to zero yields the unconstrained solution gk
uc,

bk
uc =

(
regularized covariance matrix C̄k

︷ ︸︸ ︷

〈φk · ∏

l �=k

gl,
∏

l �=k

gl · φk�〉ξ + σ2
kĊ

k
)−1(

〈φk ·∏
l �=k

gl, μ−f〉ξ−
d∑

l=1

Rk
l σ2

l

)
. (11)

132 W. Böhmer and K. Obermayer

However, these parameters do not satisfy to the constraint ‖g′k‖ϑk
!= 1, and

have to be normalized:

b′k :=
bk

uc

‖gk
uc‖ϑk

=
bk

uc√
bk�

uc Ckbk
uc

. (12)

The inner loop finishes when for all k the improvement12 from gk to g′k drops
below some very small threshold ε, i.e. C̃[g] − C̃[g′] < ε. Using g′l = gl,∀l = k,
one can calculate the left hand side:

C̃[g] − C̃[g′] = ‖g‖2ξ − ‖g′‖2ξ − 2〈g − g′, μ − f〉ξ

+
d∑

l=1

σ2
l

[
‖∇lg‖2ϑ︸ ︷︷ ︸
bl�Ċlbl

− ‖∇lg
′‖2ϑ︸ ︷︷ ︸

b′l�Ċlb′l

−2 〈∇lg − ∇lg
′,∇lf〉ϑ

︸ ︷︷ ︸
(bk−b′k)�Rk

l

]
(13)

= 2〈g − g′, μ − f〉ξ + bk�C̄kbk� − b′k�C̄kb′k� − 2(bk − b′k)�
(d∑

l=1

Rk
l σ2

l

)
.

Appendix C Proofs of the Propositions

Proof of Proposition 2: The 1st order Taylor approximation of any g, f ∈
L2(X , ξχ) around z ∈ X is f(x) = f(z + x − z) ≈ f(z) + (x − z)�∇f(z).
For the Hilbert space L2(X , ξχ) we can thus approximate:

〈g, f〉ξχ =

∫

ξ(dz)

∫

χ(dx|z) g(x) f(x)

≈
∫

ξ(dz)
(
g(z) f(z) ∫

1
︷ ︸︸ ︷
ξ(dx|z)+g(z) ∫

0 due to (eq.5)
︷ ︸︸ ︷
χ(dx|z) (x − z)�∇f(z)

+ ∫ χ(dx|z) (x − z)
︸ ︷︷ ︸

0 due to (eq.5)

�∇g(z) f(z) + ∇g(z)� ∫ χ(dx|z) (x − z)(x − z)�
︸ ︷︷ ︸

ϑ
ξ
(z)·Σ due to (eq.5)

∇f(z)
)

= 〈g, f〉ξ +
d∑

k=1
σ2

k 〈∇kg, ∇kf〉ϑ .

Using this twice and the zero mean assumption (Eq. 5), we can derive:

inf
g∈F

C[f + g|χ, μ] ≡ inf
g∈F

∫∫

ξ(dz) χ(dx|z)
(
g2(x) − 2 g(x)

(
μ(z) − f(x)

))

= inf
g∈F

〈g, g〉ξχ + 2〈g, f〉ξχ − 2

∫

ξ(dz) μ(z)

∫

χ(dx|z) g(x)

≈ inf
g∈F

〈g, g〉ξ − 2〈g, μ − f〉ξ +
d∑

k=1

σ2
k

(
〈∇kg, ∇kg〉ϑ + 2〈∇kg, ∇kf〉ϑ

)

≡ inf
g∈F

‖g − (μ − f)‖2
ξ +

d∑

k=1

σ2
k‖∇kg + ∇kf‖2

ϑ = C̃[g] .

�
12 Anything simpler does not converge, as the parameter vectors often evolve along

chaotic orbits in IRmk .

Regression with Linear Factored Functions 133

Proof of Proposition 3: The analytical solution to the optimization problem in
Equation 6 is derived in Appendix B and has a unique solution if the matrix
C̄k, defined in Equation 11, is of full rank:

C̄k := 〈φk · ∏

l �=k

gl,
∏

l �=k

gl · φk�〉ξ + σ2
kĊ

k .

For Fourier bases the matrix Ċk is diagonal, with Ċk
11 being the only zero entry.

C̄k is therfore full rank if σ2
k > 0 and C̄k

11 > 0. Because ϑ is absolutely continuous
w.r.t. ξ, the constraint ‖gl‖ϑ = 1,∀l, implies that there exist no gl that is
zero on all training samples. As the first Fourier base is a constant,
〈φk

1 · ∏
l �=k gl,

∏
l �=k gl · φk

1〉ξ > 0 and the matrix C̄k is therefore of full rank. �

Algorithm 1. (detailed) – LFF-Regression
Input: X ∈ IRd×n, y ∈ IRn , σ2 ∈ IRd ε, ε ∈ IR

Ck := 〈φk, φk〉
ϑk , Ċk := 〈∇φk, ∇φk〉

ϑk , ∀k // analytical covariance matrices

Φk
jt := φk

j (Xkt) , ∀k , ∀j , ∀t // optional cache of sample-expansion

f := 0 ∈ IRn; a := ∅ ; Bk := ∅ , ∀k ; Ψ := ∞ // initialize empty f ∈ F0

while det
(

1
n ΨΨ�

)
> ε do

bk := 1k ∈ IRmk , ∀k ; gk := 1 ∈ IRn , ∀k // initialize all gk as constant

h := ∞ ∈ IRd // initialize estimated improvement

while max(h) > ε do

for k in randperm(1, . . . , d) do

Rk := ĊkBk [a · ∏

s �=k

Bs�Csbs] // Rk = ∂

∂bk 〈∇kg, ∇kf〉ϑ

Rl := CkBk [a · Bl�Ċlbl · ∏

s �=k �=l

Bs�Csbs] , ∀l �= k // Rl = ∂

∂bk 〈∇lg, ∇lf〉ϑ

C̄ := Φk
[
Φk� · ∏

l �=k

(gl)2 1�
]

+ σ2
k Ċk // regularized cov. matrix (eq. 11)

b′ := C̄−1
(
Φk

[
(y − f) · ∏

l �=k

gl
]

− Rσ2
)

// unconstrained gk
uc (eq. 11)

b′ := b′ /
√

b′�Ckb′ // enforce constraints (eq. 12)

hk := 2
n (bk − b′)�

(
Φk

[
(y − f) · ∏

l �=k

gl
])

// approximate 2〈g − g′, μ − f〉ξ

hk := hk + bkC̄bk − b′C̄b′ − 2(bk − b′)�Rσ2 // cost improvement (eq. 13)

bk := b′ ; gk := Φk�bk // update factor function gk

end for // end function gk update

end while // end inner loop: cost function converged and thus g optimized

Bk := [Bk, bk] , ∀k ; Ψ :=
[d∏

k=1
Bk�Φk

]
// adding g to the bases functions of f

a :=
(
ΨΨ�)−1Ψy ; f := Ψ�a // project μ onto new bases

end while // end outer loop: new g no longer linear independent, thus f ≈ μ

Output: a ∈ IRm, {Bk ∈ IRmk×m}d
k=1 // return parameters of f ∈ Fm

134 W. Böhmer and K. Obermayer

References

Bellman, R.E.: Dynamic programming. Princeton University Press (1957)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer-Verlag New York

Inc, Secaucus (2006). ISBN 0387310738
Böhmer, W., Obermayer, K.: Towards structural generalization: Factored approx-

imate planning. ICRA Workshop on Autonomous Learning (2013). http://
autonomous-learning.org/wp-content/uploads/13-ALW/paper 1.pdf

Böhmer, W., Grünewälder, S., Nickisch, H., Obermayer, K.: Generating feature spaces
for linear algorithms with regularized sparse kernel slow feature analysis. Machine
Learning 89(1–2), 67–86 (2012)

Böhmer, W., Grünewälder, S., Shen, Y., Musial, M., Obermayer, K.: Construction
of approximation spaces for reinforcement learning. Journal of Machine Learning
Research 14, 2067–2118 (2013)

Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin clas-
sifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, pp. 144–152 (1992)

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences
by data mining from physicochemical properties. Decision Support Systems 47(4),
547–553 (2009)

Csató, L., Opper, M.: Sparse on-line Gaussian processes. Neural Computation 14(3),
641–668 (2002)

Friedman, J.H.: Multivariate adaptive regression splines. The Annals of Statistics
19(1), 1–67 (1991)

Gerritsma, J., Onnink, R., Versluis, A.: Geometry, resistance and stability of the delft
systematic yacht hull series. Int. Shipbuilding Progress 28, 276–297 (1981)

Gönen, M., Alpaydın, E.: Multiple kernel learning algorithms. Journal of Machine
Learning Research 12, 2211–2268 (2011). ISSN 1532–4435

Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall
(1998). ISBN 978-0132733502

Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. Journal
of Artificial Intelligence Research 4, 237–285 (1996)

Nelder, J.A., Wedderburn, R.W.M.: Generalized linear models. Journal of the Royal
Statistical Society, Series A, General 135, 370–384 (1972)

Pearl, J.: Probabilistic reasoning in intelligent systems. Morgan Kaufmann (1988)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT

Press (2006)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge

University Press (2004)
Tipping, M.E.: Sparse bayesian learning and the relevance vector machine. Journal of

Machine Learning Research 1, 211–244 (2001). ISSN 1532–4435
Tüfekci, P.: Prediction of full load electrical power output of a base load operated

combined cycle power plant using machine learning methods. International Journal
of Electrical Power & Energy Systems 60, 126–140 (2014)

Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer (1995)
Wang, Z., Crammer, K., Vucetic, S.: Breaking the curse of kernelization: Budgeted

stochastic gradient descent for large-scale svm training. Journal of Machine Learning
Research 13(1), 3103–3131 (2012). ISSN 1532–4435

Yeh, I.-C.: Modeling of strength of high performance concrete using artificial neural
networks. Cement and Concrete Research 28(12), 1797–1808 (1998)

http://autonomous-learning.org/wp-content/uploads/13-ALW/paper_1.pdf
http://autonomous-learning.org/wp-content/uploads/13-ALW/paper_1.pdf

	Regression with Linear Factored Functions
	1 Introduction
	1.1 Kernel Regression
	1.2 Factored Basis Functions

	2 Regression
	3 Linear Factored Functions
	3.1 Function Class
	3.2 Constraints
	3.3 Regularization
	3.4 Optimization

	4 Empirical Evaluation
	4.1 Demonstration
	4.2 Evaluation

	5 Discussion
	Appendix A LFF Definition and Properties
	Appendix B Inner Loop Derivation
	Appendix C Proofs of the Propositions
	References

