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Abstract. There are several reasons to evaluate a multi-class classi-
fier on other measures than just error rate. Perhaps most importantly,
there can be uncertainty about the exact context of classifier deployment,
requiring the classifier to perform well with respect to a variety of con-
texts. This is commonly achieved by creating a scoring classifier which
outputs posterior class probability estimates. Proper scoring rules are
loss evaluation measures of scoring classifiers which are minimised at the
true posterior probabilities. The well-known decomposition of the proper
scoring rules into calibration loss and refinement loss has facilitated the
development of methods to reduce these losses, thus leading to better
classifiers. We propose multiple novel decompositions including one with
four terms: adjustment loss, post-adjustment calibration loss, grouping
loss and irreducible loss. The separation of adjustment loss from calibra-
tion loss requires extra assumptions which we prove to be satisfied for
the most frequently used proper scoring rules: Brier score and log-loss.
We propose algorithms to perform adjustment as a simpler alternative
to calibration.

1 Introduction

Classifier evaluation is crucial for building better classifiers. Selecting the best
from a pool of models requires evaluation of models on either hold-out data or
through cross-validation with respect to some evaluation measure. An obvious
choice is the same evaluation measure which is later going to be relevant in the
model deployment context.

However, there are situations where the deployment measure is not neces-
sarily the best choice, as in model construction by optimisation. Optimisation
searches through the model space to find ways to improve an existing model
according to some evaluation measure. If this evaluation measure is simply the
error rate, then the model fitness space becomes discrete in the sense that there
are improvements only if some previously wrongly classified instance crosses the
decision boundary. In this case, surrogate losses such as quadratic loss, hinge
loss or log-loss enable SVMs, logistic regression or boosting to converge towards
better models.
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The second situation where the choice of evaluation measure is non-trivial is
when the exact context of model deployment is unknown during model training.
For instance, the misclassification costs or deployment class distribution might be
unknown. In such cases a scoring classifier is more versatile than a crisp classifier,
because once the deployment context becomes known, the best decision can be
made using ROC analysis by finding the optimal score threshold. Particularly
useful are scoring classifiers which estimate class probabilities, because these are
easiest to adapt to different contexts.

Proper scoring rules are loss measures which give the lowest losses to the ideal
model outputting the true class posterior probabilities. Therefore, using a proper
scoring rule as model evaluation measure helps to develop models which are good
class probability estimators, and hence easy to adapt to different contexts. The
best known proper scoring rules are log-loss and Brier score, both of which we are
concentrating on in this paper. These two are also frequently used as surrogate
losses for optimisation.

In practice it can be hard to decide which proper scoring rule to use. Accord-
ing to one view this choice could be based on the assumptions about the prob-
ability distribution over possible deployment contexts. For example, [6] shows
that the Brier score can be derived from a particular additive cost model.

Once the loss measure is fixed, the best model has to be found with respect
to that measure. The decomposition of expected loss corresponding to any proper
scoring rule into calibration loss and refinement loss has facilitated the develop-
ment of calibration methods (i.e. calibration loss reduction methods) which have
been shown to be beneficial for classification performance [2]. Another decompo-
sition1 splits refinement loss into uncertainty minus resolution [5,9]. Interestingly,
none of the decompositions relates to the loss of the optimal model. This inspires
our first novel decomposition of any proper scoring rule loss into epistemic loss
and irreducible (aleatoric2) loss. Irreducible loss is the loss of the optimal model
which outputs the true posterior class probability given the instance.

For our second decomposition we introduce a novel adjustment loss, which is
extra loss due to the difference between the average of estimated scores and the
class distribution. For both Brier score and log-loss we propose a corresponding
adjustment procedure, which reduces this loss to zero, and hence decreases the
overall loss. This procedure uses only the output scores and class distribution and
not the feature values. Therefore, it can easily be used in any context, whereas a
calibration procedure needs to make extra assumptions about the shape of the
calibration map.3

Finally, we propose a four-way decomposition by combining the decomposi-
tions relating to the notions of optimality, calibration and adjustment. The sep-
aration of adjustment loss from calibration loss is specific to the proper scoring

1 Note that the commonly used bias-variance decompositions apply to the loss of a
learning algorithm, whereas we are studying the loss of a particular model.

2 Our terminology here relates to epistemic and aleatoric uncertainty [10].
3 In some literature a classifier has been called calibrated when it is actually only
adjusted, a confusion that we hope to help remove by giving a name for the latter.
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rule (i.e. it relies on the existence of an adjustment procedure) whereas the
remainder of the decomposition applies to any proper scoring rule. The decom-
position has the following terms: adjustment loss (AL), post-adjustment calibra-
tion loss (PCL), grouping loss (GL) and irreducible loss (IL). Grouping loss is
the divergence of calibrated probabilities from the true posterior probabilities
and intuitively measures the loss due to the model assigning the same score to
(i.e. grouping together) instances which have different posterior class probabilities
(cf. refinement loss is the loss due to the same scores being assigned to instances
from different classes). Grouping loss has earlier been introduced in [7] where it
facilitated the improvement of probability estimation and classification using reli-
ability maps, which quantify conditional grouping loss given the model output
score. Our proposed decompositions aim to provide deeper insight into the causes
behind losses and facilitate development of better classification methods.

The structure of the paper is as follows: Section 2 defines proper scoring
rules and introduces notation. Section 3 provides two decompositions using ideal
scores and calibrated scores, respectively. Section 4 introduces the notion of
adjustment and a decomposition using adjusted scores. Section 5 provides two
theorems from which all decompositions follow, and provides terminology for
the obtained decomposed losses. Section 6 describes two proposed algorithms
and the results of convergence experiments. Section 7 discusses related work and
Section 8 concludes.

2 Proper Scoring Rules

2.1 Scoring Rules

Consider the task of multi-class classification with k classes. We represent the
true class of an instance as a vector y = (y1, . . . , yk) where yj = 1 if the true class
is j, and yj = 0 otherwise. Let p = (p1, . . . , pk) be an estimated class probability
vector for an instance, i.e. pj ≥ 0, j = 1, . . . , k and

∑k
j=1 pj = 1. A scoring rule

φ(p, y) is a non-negative measure measuring the goodness of match between the
estimated probability vector p and the true class y.

Two well known scoring rules are log-loss φLL (also known as ignorance score)
and Brier score φBS (also known as squared loss or quadratic score), defined as
follows:

φLL(p, y) := − log py log-loss,

φBS(p, y) :=
k∑

i=1

(pi − yi)2 Brier score4,

where by a slight abuse of notation py denotes pj for j such that yj = 1. Both
these rules are proper in the sense defined in the following subsection. Note
that the scoring rules apply for a single instance, application to a dataset is by
averaging across all instances.
4 This Brier score definition agrees with the original definition by Brier [3]. Since it

ranges between 0 and 2, sometimes half of this quantity is also referred to as Brier
score.
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2.2 Divergence, Entropy and Properness

Suppose now that the true class y is being sampled from a distribution q over
classes (i.e. q is a probability vector). We denote by s(p, q) the expected score
with rule φ on probability vector p with respect to the class label drawn according
to q:

s(p, q) := EY ∼qφ(p, Y ) =
k∑

j=1

φ(p, ej)qj ,

where ej denotes a vector of length k with 1 at position j and 0 everywhere else.
We define divergence d(p, q) of p from q and entropy e(q) of q as follows:

d(p, q) := s(p, q) − s(q, q) , e(q) := s(q, q) .

A scoring rule φ is called proper if the respective divergence is always non-
negative, and strictly proper if additionally d(p, q) = 0 implies p = q. It is easy
to show that both log-loss and Brier score are strictly proper scoring rules.

For the scoring rules φLL and φBS the respective divergence and entropy
measures can easily be shown to be the following:

dLL(p, q) =
∑k

j=1 qj log qj
pj

KL-divergence;

eLL(q) = −∑k
j=1 qj log qj information entropy;

dBS(p, q) =
∑k

j=1(pj − qj)2 mean squared difference;

eBS(q) =
∑k

j=1 qj(1 − qj) Gini index.

In the particular case where q is equal to the true class label y, divergence is
equal to the proper scoring rule itself, i.e. d(p, y) = φ(p, y). In the following we
refer to proper scoring rules as d(p, y) because this makes the decompositions
more intuitive.

2.3 Expected Loss and Empirical Loss

Proper scoring rules define the loss of a class probability estimator on a single
instance. In practice, we are interested in the performance of the model on test
data. Once the test data are fixed and known, the proper scoring rules provide
the performance measure as the average of instance-wise losses across the test
data. We refer to this as empirical loss. If the test data are drawn randomly from
a (potentially infinite) labelled instance space, then the performance measure can
be defined as the expected loss on a randomly drawn labelled instance. We refer
to this as expected loss.

Empirical loss can be thought of as a special case of expected loss with uni-
form distribution over the test instances and zero probability elsewhere. Indeed,
suppose that the generative model is uniformly randomly picking and outputting
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one of the test instances. The empirical loss on the (original) test data and the
expected loss with this generative model are then equal. Therefore, all decom-
positions that we derive for the expected loss naturally apply to the empirical
loss as well, assuming that test data represent the whole population.

Next we introduce our notation in terms of random variables. Let X be a
random variable (a vector) representing the attributes of a randomly picked
instance, and Y = (Y1, . . . , Yk) be a random vector specifying the class of that
instance, where Yj = 1 if X is of class j, and Yj = 0 otherwise, for j = 1, 2, . . . , k.
Let now f be a fixed scoring classifier (or class probability estimator), then we
denote by S = (S1, S2, . . . , Sk) = f(X) the score vector output by the classifier
on instance X. Note that S is now a random vector, as it depends on the random
variable X. The expected loss of S with respect to Y under the proper scoring
rule d is E[d(S, Y )].

Example 1. Consider a binary (k = 2) classification test set of 8 instances with
2 features, as shown in column X(i) of Table 1. Suppose the instances with
indices 1,2,3,5,6 are positives (class 1) and the rest are negatives (class 2). This
information is represented in column Y

(i)
1 , where 1 means ‘class 1’ and 0 means

‘not class 1’.
Suppose we have two models predicting both 0.9 as the probability of class

1 for the first 4 instances, but differ in probability estimates for the remain-
ing 4 instances with 0.3 predicted by the first and 0.4 by the second model.
This information is represented in the columns labelled S

(i)
1 for both models.

Table 1. Example dataset with 2 classes, with information shown for class 1 only.
The score for class 1 is S1 = 0.3X1 by Model 1 and S1 = 0.25X1 + 0.15 by Model 2,
whereas the optimal model is Q1 = 0.5X2 (or any other model which outputs 1 for first
two instances and 0.5 for the rest). Columns A+,1, A∗,1 and C1 represent additively
adjusted, multiplicatively adjusted, and calibrated scores, respectively. The average of
each column is presented (mean), as well as log-loss (LL) and Brier score (BS) with
respect to the true labels (Y1 = 1 stands for class 1).

Task Model 1 Model 2

i X(i) Y
(i)
1 Q

(i)
1 S

(i)
1 A

(i)
+,1 A

(i)
∗,1 C

(i)
1 S

(i)
1 A

(i)
+,1 A

(i)
∗,1 C

(i)
1

1 (3,2) 1 1.0 0.9 0.925 0.914 0.75 0.9 0.875 0.886 0.75
2 (3,2) 1 1.0 0.9 0.925 0.914 0.75 0.9 0.875 0.886 0.75
3 (3,1) 1 0.5 0.9 0.925 0.914 0.75 0.9 0.875 0.886 0.75
4 (3,1) 0 0.5 0.9 0.925 0.914 0.75 0.9 0.875 0.886 0.75
5 (1,1) 1 0.5 0.3 0.325 0.336 0.50 0.4 0.375 0.364 0.50
6 (1,1) 1 0.5 0.3 0.325 0.336 0.50 0.4 0.375 0.364 0.50
7 (1,1) 0 0.5 0.3 0.325 0.336 0.50 0.4 0.375 0.364 0.50
8 (1,1) 0 0.5 0.3 0.325 0.336 0.50 0.4 0.375 0.364 0.50

mean: 0.625 0.625 0.6 0.625 0.625 0.625 0.65 0.625 0.625 0.625

LL: 0 0.520 0.717 0.732 0.715 0.628 0.684 0.673 0.683 0.628
BS: 0 0.375 0.5 0.499 0.491 0.438 0.47 0.469 0.474 0.438
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The second model is better according to both log-loss (0.684 < 0.717) and Brier
score (0.47 < 0.5). These can equivalently be considered either as empirical losses
(as they are averages over 8 instances) or as expected losses (if the generative
model picks one of the 8 instances uniformly randomly). The meaning of the
remaining columns in Table 1 will become clear in the following sections.

3 Decompositions with Ideal Scores and Calibrated
Scores

In this paper, all decompositions of proper scoring rules are built on procedures
to map the estimated scores to new scores such that the loss is guaranteed to
decrease. We start from an idealistic procedure requiring an optimal model and
move towards realistic procedures.

3.1 Ideal Scores Q and the Decomposition L = EL + IL

Our first novel decomposition is determined by a procedure which changes the
estimated scores into true posterior class probabilities (which is clearly impos-
sible to do in practice). We denote the true posterior probability vector by
Q = (Q1, Q2, . . . , Qk) where Qj := E[Yj |X]. Variable Qj can be interpreted
as the true proportion of class j among the instances with feature values X, and
hence it is independent of the model. For our running example in Table 1 the
true posterior probabilities for class 1 are given in column Q

(i)
1 .

Our decomposition states that the expected loss corresponding to any proper
scoring rule is the sum of expected divergence of S from Q and the expected
divergence of Q from Y :

E[d(S, Y )] = E[d(S,Q)] + E[d(Q,Y )] .

This can be proved as a direct corollary of Theorem 2 in Section 5. As all these
expected divergences are non-negative (due to properness of the scoring rule)
and Q is the same regardless of the scoring model S, it immediately follows that
S := Q is the optimal model with respect to any proper scoring rule (it is a
model because it is a function of X). This justifies the following terminology:

– Epistemic Loss EL = E[d(S,Q)] is the extra loss due to the model not
being optimal, and equals zero if and only if the model is optimal. The term
relates to epistemic uncertainty (as opposed to aleatoric uncertainty) [10]
and is due to our mistreatment of the evidence X with respect to the ideal
model.

– Irreducible Loss IL = E[d(Q,Y )] is the loss due to inherent uncertainty
in the classification task, the loss which is the same for all models. This type
of uncertainty is called aleatoric [10] so the loss could also be called aleatoric
loss. It is the loss of the optimal model and equals zero only if the attributes
of the instance X provide enough information to uniquely determine the
right label Y (with probability 1).
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For our running example the epistemic log-loss ELLL for the two models is 0.198
and 0.164 (not shown in Table 1) and the (model-independent) irreducible log-
loss is ILLL = 0.520, which (as expected) sum up to the total expected log-loss of
0.717 and 0.684, respectively (with the rounding effect in the last digit of 0.717).
For Brier score the decomposition for the two models is 0.5 = 0.125 + 0.375 and
0.47 = 0.095 + 0.375, respectively.

3.2 Calibrated Scores C and the Decomposition L = CL + RL

The second, well-known decomposition [5] is determined by a procedure which
changes the estimated scores into calibrated probabilities. We denote the cali-
brated probability vector by C = (C1, C2, . . . , Ck) where Cj := E[Yj |S]. Variable
Cj can be interpreted as the true proportion of class j among the instances for
which the model has output the same estimate S, and hence calibration is model-
dependent. For our running example in Table 1 the calibrated probabilities of
class 1 for the two models are given in columns C

(i)
1 . Note that the columns for

the two models are identical. This is only because for any two instances in our
example, the first model gives them the same estimate if and only if the second
model does so.

The standard calibration-refinement decomposition [4] states5 that the
expected loss according to any proper scoring rule is the sum of expected diver-
gence of S from C and the expected divergence of C from Y :

E[d(S, Y )] = E[d(S,C)] + E[d(C, Y )] .

This is another direct corollary of Theorem 2 in Section 5. The standard termi-
nology is as follows:

– Calibration Loss CL = E[d(S,C)] is the loss due to the difference between
the model output score S and the proportion of positives among instances
with the same output (calibrated score).

– RefinementLossRL = E[d(C, Y )] is the loss due to the presence of instances
from multiple classes among the instances with the same estimate S.

For our running example the calibration loss for Brier score CLBS for the two
models is 0.062 and 0.033 (not shown in Table 1) and the refinement loss is for
both equal to RLBS = 0.438, which sum up to the total expected Brier scores
of 0.5 and 0.47, respectively (with the rounding effect in the last digit, we omit
this comment in the following cases). For log-loss the decomposition for the two
models is 0.717 = 0.090 + 0.628 and 0.684 = 0.056 + 0.628, respectively.

In practice, calibration has proved to be an efficient way of decreasing proper
scoring rule loss [2]. Calibrating a model means learning a calibration mapping
from the model output scores to the respective calibrated probability scores.
Calibration is simple to perform if the model has only a few possible output

5 Actually, in [4] the calibration-refinement decomposition is stated as E[s(S, Y )] =
E[d(S, C)] +E[e(C)] but this can easily be shown to be equivalent to our statement.
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scores, each covered by many training examples. Then the empirical class dis-
tribution among training instances with the same output scores can be used as
calibrated score vector. However, in general, there might be a single or even no
training instances with the same score vector as the model outputs on a test
instance. Then the calibration procedure needs to make additional assumptions
(inductive bias) about the shape of the calibration map, such as monotonicity
and smoothness.

Regardless of the method, calibration is almost never perfect. Even if per-
fectly calibrated on the training data, the model can suffer some calibration
loss on test data. In the next section we propose an adjustment procedure as a
precursor of calibration. Adjustment does not make any additional assumptions
and is guaranteed to decrease loss if the test class distribution is known exactly.

4 Adjusted Scores A and the Decomposition
L = AL + PL

Ideal scores cannot be obtained in practice, and calibrated scores are hard to
obtain, requiring extra assumptions about the shape of the calibration map.
Here we propose two procedures which take as input the estimated scores and
output adjusted scores such that the mean matches with the given target class
distribution. As opposed to calibration, no labels are required for learning how to
adjust, only the scores and target class distribution are needed. We prove that
additive adjustment is guaranteed to decrease Brier score, and multiplicative
adjustment is guaranteed to decrease log-loss. In both cases we can decompose
the expected loss in a novel way.

4.1 Adjustment

Suppose we are given the class distribution of the test data, represented as a
vector π of length k, with non-negative entries and adding up to 1. It turns out
that if the average of the model output scores on the test data does not match
with the given distribution then for both log-loss and Brier score it is possible
to adjust the scores with guaranteed reduction of loss. First we define what we
mean by adjusted scores.

Definition 1. Let π be a class distribution with k classes and A be a random
real-valued vector of length k. If E[Aj ] = πj for j = 1, . . . , k, then we say that A
is adjusted to the class distribution π.

If the scores are not adjusted, then they can be adjusted using one of the
two following procedures.

Additive (score) adjustment is a procedure applying the following func-
tion α+:

α+(s) = (s1 + b1, . . . , sk + bk) ∀s ∈ R
k ,
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where bj = πj−E[Sj ], for j = 1, . . . , k. Hence, the function is different depending
on what the model output scores and class distribution are. It is easy to prove
that the scores α+(S) are adjusted: E[Sj +bj ] = E[Sj ]+bj = E[Sj ]+πj −E[Sj ] =
πj , for j = 1, . . . , k.

Multiplicative (score) adjustment is a procedure applying the function α∗:

α∗(s) =

(
w1s1

∑k
j=1 wjsj

, . . . ,
wksk

∑k
j=1 wjsj

)

∀s ∈ R
k ,

where wj are suitably chosen non-negative weights such that α∗(S) is adjusted
to π. It is not obvious that such weights exist because of the required renormal-
isation, but the following theorem gives this guarantee.

Theorem 1 (Existence of weights for multiplicative adjustment). Let
π be a class distribution with k ≥ 2 classes and S be a random positive real
vector of length k. Then there exist non-negative weights w1, . . . , wk such that

E

[
wiSi∑k

j=1 wjSj

]

= πi for i = 1, . . . , k.

Proof. All the proofs are in the Appendix and the extended proofs are available
at http://www.cs.bris.ac.uk/∼flach/Kull Flach ECMLPKDD2015 Supplementary.pdf.

For our running example in Table 1 the additively adjusted and multiplica-
tively adjusted scores for class 1 are shown in columns A

(i)
+,1 and A

(i)
∗,1, respec-

tively. The shift b for additive adjustment was (+0.025,−0.025) for Model 1 and
(−0.025,+0.025) for Model 2. The weights w for multiplicative adjustment were
(1.18, 1) for Model 1 and (1, 1.16) for Model 2. For example, for Model 1 the
scores (0.9, 0.1) (of first four instances) become (1.062, 0.1) after weighting and
(0.914, 0.086) after renormalising (dividing by 1.062+0.1 = 1.162). The average
score for class 1 becomes 0.625 for both additive and multiplicative adjustment
and both models, confirming the correctness of these procedures.

4.2 The Right Adjustment Procedure Guarantees Decreased Loss

The existence of multiple adjustment procedures raises a question of which one
to use. As seen from the losses after adjustment in Table 1, multiplicative adjust-
ment achieves a lower loss for Model 1 and additive adjustment achieves a lower
loss for Model 2, for both log-loss and Brier score. This shows that neither pro-
cedure is better than the other across all models.

Further inspection of Table 1 shows that for Model 1 the log-loss increased
after additive adjustment and for Model 2 the Brier score increased after multi-
plicative adjustment. Interestingly, we can guarantee decreased loss if the right
adjustment procedure is used: multiplicative adjustment always decreases log-
loss, and additive adjustment always decreases Brier score. Of course, the excep-
tion is when the scores are already adjusted, in which case there is no change in

http://www.cs.bris.ac.uk/~flach/Kull_Flach_ECMLPKDD2015_Supplementary.pdf
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the loss. The guarantee is due to the following novel loss-specific decompositions
(and non-negativity of divergence):

E[dBS(S, Y )] = E[dBS(S,A+)] + E[dBS(A+, Y )] ,

E[dLL(S, Y )] = E[dLL(S,A∗)] + E[dLL(A∗, Y )] ,

where A+ = α+(S) and A∗ = α∗(S) are obtained from the scores S using addi-
tive and multiplicative adjustment, respectively. Note that the additive adjust-
ment procedure can produce values out of the range [0, 1] but Brier score is
defined for these as well. The decompositions follow from Theorem 4 in Section 5,
which provides a unified decomposition:

E[d(S, Y )] = E[d(S,A)] + E[d(A, Y )]

under an extra assumption which links the adjustment method and the loss
measure. Due to this unification we propose the following terminology for the
losses:

– Adjustment Loss AL = E[d(S,A)] is the loss due to the difference between
the mean model output E[S] and the overall class distribution π := E[Y ].
This loss is zero if the scores are adjusted.

– Post-adjustment Loss PL = E[d(A, Y )] is the loss after adjusting the
model output with the method corresponding to the loss measure.

For our running example the adjustment log-loss ALLL for the two models is
0.0021 and 0.0019 (not shown in Table 1) and the respective post-adjustment
losses PLLL are 0.7154 and 0.6822, which sum up to the total expected log-loss
of 0.7175 and 0.6841, respectively. For Brier score the decomposition for the two
models is 0.5 = 0.00125 + 0.49875 and 0.47 = 0.00125 + 0.46875, respectively.

In practice, the class distribution is usually not given, and has to be estimated
from training data. Therefore, if the difference between the average output scores
and class distribution is small (i.e. adjustment loss is small), then the benefit of
adjustment might be subsumed by class distribution estimation errors. Experi-
ments about this remain as future work.

So far we have given three different two-term decompositions of expected
loss: epistemic loss plus irreducible loss, calibration loss plus refinement loss,
and adjustment loss plus post-adjustment loss. In the following section we show
that these can all be obtained from a single four-term decomposition, and provide
more terminology and intuition.

5 Decomposition Theorems and Terminology

In the previous sections we had the following decompositions of expected loss
using a proper scoring rule (with extra assumptions for the last decomposition):

E[d(S, Y )] =E[d(S, Q)]+E[d(Q, Y )] = E[d(S, C)]+E[d(C, Y )] = E[d(S, A)]+E[d(A, Y )]
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All these decompositions follow a pattern E[d(S, Y )] = E[d(S, V )] + E[d(V, Y )]
for some random variable V . In this section we generalise further, and introduce
decompositions E[d(V1, V3)] = E[d(V1, V2)] + E[d(V2, V3)] for some random vari-
ables V1, V2, V3. The random variables will always be from the list S,A,C,Q, Y ,
and always in the same order. Actually, we will prove that the decomposition
holds for any subset of 3 variables out of these 5, as long as the ordering is pre-
served. For decompositions involving adjusted scores A there is an extra assump-
tion required, this is introduced in Section 5.2. First we provide decompositions
without A.

5.1 Decompositions with S,C,Q, Y

Theorem 2. Let (X,Y ) be random variables representing features and labels
for a k-class classification task, f be a scoring classifier, and d be the divergence
function of a strictly proper scoring rule. Denote S = f(X), Cj = E[Yj |S],
and Qj = E[Yj |X] for j = 1, . . . , k. Then for any subsequence V1, V2, V3 of the
random variables S,C,Q, Y the following holds:

E[d(V1, V3)] = E[d(V1, V2)] + E[d(V2, V3)] .

This theorem proves the decompositions of Section 3 but adds two more:

E[d(S,Q)] = E[d(S,C)] + E[d(C,Q)] , EL = CL + GL ;
E[d(C, Y )] = E[d(C,Q)] + E[d(Q,Y )] , RL = GL + IL .

These decompositions introduce the following new quantity:

– Grouping Loss GL = E[d(C,Q)] is the loss due to many instances being
grouped under the same estimate S while having different true posterior
probabilities Q.

The above decompositions together imply the following three-termdecomposition:

E[d(S, Y )] = E[d(S,C)] + E[d(C,Q)] + E[d(Q,Y )] , L = CL + GL + IL .

5.2 Decompositions with S,A,C,Q, Y and Terminology

As discussed in Section 4, the decomposition of expected loss into adjustment
loss and post-adjustment loss requires a link between the adjustment procedure
and loss measure. The following definition presents the required link formally.

Definition 2. Let (X,Y ) be random variables representing features and labels
for a k-class classification task, f be a scoring classifier, and φ be a strictly
proper scoring rule. Denote S = f(X). Let α = (α1, . . . , αk) be a vector function
with αj : R → R and let us denote A = (A1, . . . , Ak) with Aj = αj(S). We
say that α provides coherent adjustment of S for proper scoring rule d if A is
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adjusted to the class distribution E[Y ] and the following quantity is a constant
(not a random variable), depending on i, j only:

φ(A, ei) − φ(A, ej) − φ(S, ei) + φ(S, ej) = consti,j (1)

where em is a vector of length k with 1 at position m and 0 everywhere else.

Intuitively, (1) requires α to apply in some sense the same adjustment to
different scores, with respect to the scoring rule. In Appendix we prove the
following theorem:

Theorem 3. Additive adjustment is coherent with Brier score and multiplicative
adjustment is coherent with log-loss.

Now we are ready to present our most general decomposition theorem:

Theorem 4. Let (X,Y ) be random variables representing features and labels
for a k-class classification task, f be a scoring classifier, and d be the divergence
function of a strictly proper scoring rule. Denote S = f(X), Cj = E[Yj |S],
and Qj = E[Yj |X] for j = 1, . . . , k. Let A = α(S) where α provides coherent
adjustment of S for proper scoring rule d. Then for any subsequence V1, V2, V3

of the random variables S,A,C,Q, Y the following holds:

E[d(V1, V3)] = E[d(V1, V2)] + E[d(V2, V3)] .

Note that coherent adjustment might not exist for all proper scoring rules:
then the decompositions involving A do not work, falling back to Theorem 2.
Theorem 4 proves the decompositions in Section 4 and also provides the following
decompositions:

E[d(S,C)] = E[d(S,A)] + E[d(A,C)] , CL = AL + PCL ;
E[d(S,Q)] = E[d(S,A)] + E[d(A,Q)] , EL = AL + PEL ;
E[d(A,Q)] = E[d(A,C)] + E[d(C,Q)] , PEL = PCL + GL ;
E[d(A, Y )] = E[d(A,Q)] + E[d(Q,Y )] , PL = PEL + IL ,

which introduce new quantities PCL and PEL.

– Post-adjustment Calibration Loss PCL = E[d(A,C)] is the loss due to
the remaining calibration loss after perfect adjustment.

– Post-adjustment Epistemic Loss PEL = E[d(A,Q)] is the loss due to
the remaining epistemic loss after perfect adjustment.

Now we have introduced all pairwise divergences between two variables from the
ordered list S,A,C,Q, Y . Table 2 summarises our proposed terminology.

A direct corollary from Theorem 4 is that if we choose 4 or 5 out of 5 variables
from S,A,C,Q, Y , then we get a 3- or 4-term decomposition, respectively. In
particular, the full 4-term decomposition involving all 5 variables is as follows:

E[d(S, Y )]=E[d(S, A)]+E[d(A, C)]+E[d(C, Q)]+E[d(Q, Y )] , L=AL+PCL+GL+IL .
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Table 2. Proposed terminology

Definition Visual Name Description

L E[d(S, Y )] S...Y Loss total expected loss
AL E[d(S, A)] SA... Adjustment Loss loss due to lack of adjustment
PCL E[d(A, C)] .AC.. Post-adjustment Calibration Loss calibration loss after adjustment
GL E[d(C, Q)] ..CQ. Grouping Loss loss due to grouping
IL E[d(Q, Y )] ...QY Irreducible Loss loss of the optimal model
CL E[d(S, C)] S.C.. Calibration Loss loss due to lack of calibration
PEL E[d(A, Q)] .A.Q. Post-adjustment Epistemic Loss epistemic loss after adjustment
RL E[d(C, Y )] ..C.Y Refinement Loss loss after calibration
EL E[d(S, Q)] S..Q. Epistemic Loss loss due to non-optimal model
PL E[d(A, Y )] .A..Y Post-adjustment Loss loss after adjustment

Table 3. The decomposed losses (left) and their values for model 1 of the running
example using log-loss (middle) and Brier score (right).

S A C Q Y

S 0 AL CL EL L
A 0 PCL PEL PL

C 0 GL RL
Q 0 IL

Y 0

LL S A∗ C Q Y

S 0 0.002 0.090 0.198 0.717
A∗ 0 0.088 0.196 0.715

C 0 0.108 0.628
Q 0 0.520

Y 0

BS S A+ C Q Y

S 0 0.001 0.062 0.125 0.5
A+ 0 0.061 0.124 0.499

C 0 0.062 0.438
Q 0 0.375

Y 0

Table 3 provides numerical values for all 10 losses of Table 2 for Model 1 in our
running example data (Table 1). The 4-term decomposition proves that the num-
bers right above the main diagonal (AL, PCL, GL, IL) add up to the total loss
at the top right corner (L). All other decompositions can be checked numerically
from the table (taking into account the accumulating rounding errors).

6 Algorithms and Experiments

We have proposed two new procedures in the paper: additive and multiplicative
adjustment. Here we provide algorithms to perform these procedures. Both pro-
cedures first require estimation of the parameter vectors: b for additive and w for
multiplicative adjustment. If the test instances are all given together in batch,
then the scores of the model on test data can be used to estimate these parameter
vectors. Otherwise, these need to be estimated on training (or validation) data.

Additive adjustment is algorithmically very easy. Parameter bj is the differ-
ence of proportion πj of class j and the mean E[Sj ], calculated as the average
output score for class j over all instances. This is exact if test data are given
in batch and πj is the true proportion, and it is approximate if πj is estimated
from training data. Finally, adjusted scores can be calculated by adding b to the
model output scores, for each test instance.
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Table 4. Average number of rounds to convergence of multiplicative adjustment across
10000 synthetic tasks with k classes and n instances. The number in parentheses shows
the count of failures to converge out of 10000.

k = 2 k = 3 k = 4 k = 5 k = 10 k = 20 k = 30 k = 50

n = 10 1.00 (21) 3.66 (9) 3.95 (3) 3.97 (3) 3.88 (3) 3.66 (4) 3.49 (23) 3.25 (99)
n = 100 1.00 (4) 3.64 (2) 3.95 (2) 3.97 (0) 3.86 (1) 3.63 (0) 3.44 (2) 3.22 (48)
n = 1000 1.00 (6) 3.64 (0) 3.95 (1) 3.96 (0) 3.85 (0) 3.62 (0) 3.44 (4) 3.22 (43)

For multiplicative adjustment the hard part is to obtain the parameter
(weight) vector w, whereas applying adjustment using the weights is straight-
forward. The weight vector w can be obtained by the coordinate descent opti-
misation algorithm where for coordinate j the task is to minimise the difference
between E[wjsj/

∑k
i=1 wisi] and πj , by changing only wj . The minimisation in

one coordinate can be done by binary search, since the expected value is mono-
tonically increasing with respect to wj . It is clear that if coordinate descent
algorithm converges, then the obtained w is the right one. However, the algo-
rithm can fail to converge.

We have performed experiments with synthetic tasks with k =
2, 3, 4, 5, 10, 20, 50 classes and n = 10, 100, 1000 instances to check convergence.
Each task is a pair of a n × k model score matrix and class distribution vector
of length k, all filled with uniformly random entries between 0 and 1, and each
row is normalised to add up to 1. Table 4 reports the number of cycles through
the coordinates to convergence, averaged over 10000 tasks for each k, n pair. As
expected, the results have almost no dependence on the number of instances.
The maximal number of rounds to convergence was 6. However, on average in
10 out of 10000 times there was no convergence. Further improvement of this
result remains as future work.

7 Related Work

Proper scoring rules have a long history of research, with Brier score introduced
in 1950 in the context of weather forecasting [3], and the general presentation of
proper scoring rules soon after, see e.g. [11]. The decomposition of Brier score
into calibration and refinement loss (which were back then called reliability and
resolution) was introduced by Murphy [8] and was generalised for proper scoring
rules by DeGroot and Fienberg [5]. The decompositions with three terms were
introduced by Murphy [9] with uncertainty, reliability and resolution (Murphy
reused the same name for a different quantity), later generalised to all proper
scoring rules as well [4]. In our notation these can be stated as E[d(S, Y )] =
REL + UNC − RES = E[d(S,C)] + E[d(π, Y )] − E[d(π,C)]. This can easily be
proved by taking into account that the last term can be viewed as calibration
loss for constant estimator π but segmented in the same way as S.

In machine learning proper scoring rules are often treated as surrogate loss
functions, which are used instead of the 0-1 loss to facilitate optimisation [1]. An
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important question in practice is which proper scoring rule to use. One possible
viewpoint is to assume a particular distribution over anticipated deployment
contexts and derive the expected loss from that assumption. Hernández-Orallo
et al. have shown that the Brier score can be derived from a particular additive
cost model [6].

8 Conclusions

This paper proposes novel decompositions of proper scoring rules. All presented
decompositions are sums of expected divergences between original scores S,
adjusted scores A, calibrated scores C, true posterior probabilities Q and true
labels Y . Each such divergence stands for one part of the total expected loss.
Calibration and refinement loss are known losses of this form, the paper pro-
poses names for the other 7 losses and provides underlying intuition. In par-
ticular, we have introduced adjustment loss, which arises from the difference
between mean estimated scores and true class distribution. While it is a part
of calibration loss, it is easier to eliminate or decrease than calibration loss.
We have proposed first algorithms for additive and multiplicative adjustment,
which we prove to be coherent with (decomposing) Brier score and log-loss,
respectively. More algorithm development is needed for multiplicative adjust-
ment, as the current algorithm can sometimes fail to converge. An open question
is whether there are other, potentially better coherent adjustment procedures for
these losses. We hope that the proposed decompositions provide deeper insight
into the causes behind losses and facilitate development of better classification
methods, as knowledge about calibration loss has already delivered several cali-
bration methods, see e.g. [2].
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Appendix: Proofs of the Theorems

Here we prove the theorems presented in the paper, extended proofs are available
at http://www.cs.bris.ac.uk/∼flach/Kull Flach ECMLPKDD2015 Supplementary.pdf.

Proof of Theorem 1: If there are any zeros in the vector π, then we can set
the respective positions in the weight vector also to zero and solve the problem
with the remaining classes. Therefore, from now on we assume that all entries
in π are positive.

Let W denote the set of all non-negative (weight) vectors of length k
with at least one non-zero component. We introduce functions ti :W→R with
ti(w)=E[wiSi/

∑k
j=1 wjSj ]. Then we need to find w∗ such that ti(w∗) = πi for

i = 1, . . . , k. For this we prove the existence of increasingly better functions
h0, h1, . . . , hk−1 : W → W such that for m = 0, . . . , k − 1 the function hm sat-
isfies ti(hm(w)) = πi for i = 1, . . . , m for any w. Then w∗ = hk−1(w) is the
desired solution, where w ∈ W is any weight vector, such as the vector of all
ones. Indeed, it satisfies ti(w∗) = πi for i = 1, . . . , k − 1 and hence for i = k.

We choose h0 to be the identity function and prove the existence of other
functions hm by induction. Let hm for m < k − 1 be such that for any w the
vector hm(w) does not differ from w in positions m+1, . . . , k and ti(hm(w)) = πi

for i = 1, . . . ,m. For a fixed w it is now sufficient to prove the existence of w′

such that it does not differ from w in positions m + 2, . . . , k and ti(w′) = πi for
i = 1, . . . ,m+1. We search for such w′ among the vectors hm(w[m+1 : x]) with
x ∈ [0,∞) where w[m + 1 : x] denotes the vector w with the element at position
m + 1 changed into x. The chosen form of w′ guarantees that it does not differ
from w in positions m+2, . . . , k and ti(w′) = πi for i = 1, . . . ,m. It only remains
to choose x such that tm+1(w′) = πm+1. For this we note that for x = 0 we have
tm+1(hm(w[m + 1 : 0])) = 0 because the weight at position m + 1 is zero. In the

http://www.cs.bris.ac.uk/~flach/Kull_Flach_ECMLPKDD2015_Supplementary.pdf
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limit process x → ∞ we have tm+1(hm(w[m+1 : x])) → 1−∑m
i=1 πi because the

weight x at position m + 1 will dominate over weights at m + 2, . . . , k, whereas
the weights at 1, . . . , m ensure that ti(hm(w[m + 1 : x])) = πi for i = 1, . . . , m.
Since 0 < πm+1 < 1−∑m

i=1 πi then according to the intermediate value theorem
there exists x such that tm+1(hm(w[m+1 : x])) = πm+1. By this we have proved
the existence of a suitable function hm+1, proving the step of induction, which
concludes the proof. ��
Lemma 1. Let V1, V2, V3,W be real-valued random vectors with length k where
V2,j = E[V3,j |W ] for j = 1, . . . , k, and V1 is functionally dependent on W .
If d is divergence of a proper scoring rule, then E[d(V1, V3)] = E[d(V1, V2)] +
E[d(V2, V3)].

Proof. Due to the law of total expectation it is enough to prove that
E[d(V1, V3)|W ] = E[d(V1, V2)|W ] + E[d(V2, V3)|W ]. After expressing each d as
a difference of two s terms, all obtained terms are sums over j = 1, . . . , k and it
is enough to prove that for each j the equality holds. Also, as we are conditioning
on W , all terms that do not involve V3 are constants with respect to conditional
expectation. Therefore, we need to prove that φ(V1, ej)E[V3,j |W ]−E[s(V3, V3)|W ]
equals φ(V1, ej)V2,j − φ(V2, ej)V2,j + φ(V2, ej)E[V3,j |W ] − E[s(V3, V3)|W ]. This
holds due to E[V3,j |W ] = V2,j . ��
Proof of Theorem 2: We consider the following two possibilities:

1. V2 = C. Let us take W = S in Lemma 1. Then V1 = S and it is functionally
dependent on itself, W . Also, V2,j = E[V3,j |W ] regardless of whether V3 = Y or
V3 = Q because Cj = E[Yj |S] = E[E[Yj |X,S]|S] = E[Qj |S], where the second
equality is due to the law of iterated expectations. The result now follows from
Lemma 1.

2. V2 = Q. Then V3 = Y and the result follows from Lemma 1 with W = X
because V2,j = Qj = E[Yj |X] = E[V3,j |W ] and both candidates S and C for V1

are functionally dependent on W = X. ��
Proof of Theorem 3: In Section 4 we proved that both methods provide
adjusted scores, so we only need to prove Eq.(1). For log-loss we need to prove
that − log Ai +log Aj +log Si− log Sj is a constant. For this it is enough to show
that (Aj/Ai)/(Sj/Si) is constant. According to the definition of multiplicative
adjustment this quantity equals ((wjSj)/(wiSi))/(Sj/Si) = wj/wi which is a
constant, proving that multiplicative adjustment is coherent with log-loss. For
Brier score we need to prove that

k∑

m=1

(Am − δmi)
2 −

k∑

m=1

(Am − δmj)
2 −

k∑

m=1

(Sm − δmi)
2 +

k∑

m=1

(Sm − δmj)
2 = constij ,

where δmi is 1 if m = i and 0 otherwise. For m /∈ {i, j} the respective terms
in the first and second sums and in the third and fourth sums are equal and
therefore cancel each other. For m = i the respective terms together give



Novel Decompositions of Proper Scoring Rules for Classification 85

(Ai − 1)2 − A2
i − (Si − 1)2 + S2

i , for additive adjustment this equals to the con-
stant −2bi due to Ai = Si + bi. A similar argument holds for m = j and as a
result we have proved that the requirement (1) holds and additive adjustment
is coherent with Brier score. ��
Proof of Theorem 4: If none of V1, V2, V3 is A, then the result follows from
Theorem 2. If V1 = A, then the result follows from Theorem 2 with fNEW = α◦f
because then SNEW = A, CNEW = C, QNEW = Q. It remains to prove the
result for the case where V1 = S and V2 = A. Denote βj = φ(A, e1) − φ(A, ej) −
φ(S, e1) + φ(S, ej) for j = 1, . . . , k, then βj are all constants. Now it is enough
to prove that the following quantity is zero:

E[d(S, V3)] − E[d(S, A)] − E[d(A, V3)] =

=E

[ k∑

j=1

(
φ(S, ej)V3,j − φ(S, ej)Aj + φ(A, ej)Aj − φ(A, ej)V3,j

)
− s(V3, V3) + s(V3, V3)

]

=E
[ k∑

j=1

(
φ(S, ej)−φ(A, ej)

)(
V3,j −Aj

)]
=E
[ k∑

j=1

(
βj + φ(S, e1)−φ(A, e1)

)(
V3,j −Aj

)]

=
k∑

j=1

βj

(
E[V3,j ] − E[Aj ]

)
+ E

[(
φ(S, e1) − φ(A, e1)

)( k∑

j=1

V3,j −
k∑

j=1

Aj

)]
.

The first term is equal to zero regardless of whether V3 is Y or Q or C since
E[Aj ] = E[Yj ] = E[Qj ] = E[Cj ]. The second term is equal to zero because both
V3,j and Aj for j = 1, . . . , k add up to 1. ��
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