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Abstract. Hierarchical Classification (HC) is an important problem
with a wide range of application in domains such as music genre clas-
sification, protein function classification and document classification.
Although several innovative classification methods have been proposed
to address HC, most of them are not scalable to web-scale problems.
While simple methods such as top-down “pachinko” style classification
and flat classification scale well, they either have poor classification per-
formance or do not effectively use the hierarchical information. Current
methods that incorporate hierarchical information in a principled man-
ner are often computationally expensive and unable to scale to large
datasets. In the current work, we adopt a cost-sensitive classification
approach to the hierarchical classification problem by defining misclassi-
fication cost based on the hierarchy. This approach effectively decouples
the models for various classes, allowing us to efficiently train effective
models for large hierarchies in a distributed fashion.

1 Introduction

Categorizing entities according to a hierarchy of general to specific classes is a
common practice in many disciplines. It can be seen as an important aspect
of various fields such as bioinformatics, music genre classification, image clas-
sification and more importantly document classification [18]. Often the data is
curated manually, but with exploding sizes of databases, it is becoming increas-
ingly important to develop automated methods for hierarchical classification of
entities.

Several classification methods have been developed over the past several years
to address the problem of Hierarchical Classification (HC). One straightforward
approach is to simply use multi-class or binary classifiers to model the relevant
classes and disregard the hierarchical information. This methodology has been
called flat classification scheme in HC literature [18]. While flat classification can
be competitive, an important research directions is to improve the classification
performance by incorporating the hierarchical structure of the classes in the
learning algorithm. Another simple data decomposition approach trains local
classifiers for each of the classes defined according to the hierarchy, such that the
trained model can be used in a top-down fashion to take the most relevant path
in testing. This top-down approach trains each classifier on a smaller dataset and
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is quite efficient in comparison to flat classification, which generally train one-vs-
rest classifiers on the entire dataset. However, a severe drawback of this approach
is that if a prediction error is committed at a higher level, then the classifier
selects a wrong prediction path, making it impossible to recover from the errors
at lower levels. Due to this error propagation, sometimes, sever degradation in
performance has been noted for the top-down classifier in comparison to flat
classifier [9]. A review of HC in several application domains can be found in a
recent survey by Silla Jr. et al. [18].

In recent years, researchers have shown more interest in large scale classifica-
tion where the number of categories, number of instances, as well as the number
of features are large. This has been highlighted by large scale hierarchical text
classification competitions such as LSHTC1 [15] and BioASQ 2, which pose sev-
eral interesting challenges. Firstly, since these problems deal with several thou-
sands of classes, scalability of the methods is a crucial requirement. Secondly, in
spite of having large number of total training examples, many categories have
few positive training samples. For example, 76% of the class-labels in the Yahoo!
Directory have 5 or fewer positive instances [11], and 72% in the Open Directory
Project have fewer than 4 positive instances [9]. This data sparsity brings about
two issues: (i) due to the lack of sufficient examples, the learned models tend
to be less robust, and (ii) due to the large skew in positive and negative class
distributions, the performance of smaller classes tends to deteriorate severely as
the mis-predictions tend to favor larger classes.

In this paper, we try to address two main issues of large scale hierarchical
classification, class imbalance and training efficiency, by extending the flat classi-
fication approach using cost sensitive training examples. Although regularization
methods which constrain the learned models to be close to neighboring classes
according to the hierarchy have been effective, they induce large scale optimiza-
tion problems which require specialized solutions [3]. Instead, by re-defining the
problem from regularization based approach to a cost sensitive classification
approach (based on similar assumptions) tends to decouple the training of the
models which can be trained in parallel fashion. We study various methods to
incorporate cost-sensitive information into hierarchical classification and empir-
ically evaluate their performance on several datasets. Finally, since any instance
based cost sensitive method can be used as a base classifier, the HC problem can
benefit from advancements in cost-sensitive classification.

2 Definitions and Notations

In this section, we discuss the notations commonly used in this paper. N denotes
the set of all the nodes in the hierarchy, and T ⊂ N denotes the set of terminal
nodes to which examples are assigned. wn denotes the model learnt for class
n ∈ N . (xi, li) denotes the ith example where xi ∈ R

D and li ∈ T . The number
of examples is denote by N . We use yn

i to denote the binary label used in the
1 http://lshtc.iit.demokritos.gr
2 http://bioasq.org

http://lshtc.iit.demokritos.gr
http://bioasq.org
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learning algorithm for wn. For the training example (xi, li) we set yn
i = 1 iff

li = n and yn
i = −1 otherwise. γ (a, b) denotes the graph distance between

classes a, b ∈ N in the hierarchy, which is defined as the number of edges in the
undirected path between nodes a and b. We use cn

i to denote the cost of example
i in training of the model for class n. To simplify the notation, in some places,
we drop the super-script explicitly indicating the class, and use yi , ci and w
in place of yn

i , cn
i and wn where the class is implicitly understood to be n. L is

used to denote a generic loss function. In the current work, logistic loss function
is used, which is defined as L (y, f (x)) = log (1 + exp (−yf (x))).

3 Motivation and Related Work

In this section, we discuss the motivation for the approach taken in this paper
and examine various related methods proposed in the literature for addressing
the hierarchical classification problem.

A few large margin methods have been proposed as cost sensitive extensions
to the multi-class classification problem. Dekel et al. [5] proposed a large margin
method where the margin is defined with respect to the tree distance. Although
their method shows improvement on tree-error, the performance degrades with
respect to misclassification error. The methods proposed by Cai et al. [2] and
more recently by Chen et al. [4], also make an argument in favor of modifying
the misclassification error by making it dependent on the hierarchy. Both these
methods can be seen as special cases of a more general large margin structured
output prediction method proposed by Tsochantaridis et al. [20]. Although all
these methods try to incorporate cost sensitive losses based on the hierarchy, they
formulate a global optimization problem where the models for all the classes are
learned jointly and are not scalable to large scale classification problems.

Several methods try to incorporate the bias that categories which are seman-
tically related according to the hierarchy should also be similar with respect
to the learned models. McCallum et al. [13] show that for Naive Bayes classi-
fier, smoothing the parameter estimates of the data-sparse children nodes with
the parameter estimates of parent nodes, using a technique known as shrinkage,
produces more robust models. Other models in this class of methods typically
incorporate this assumption using parent child regularization or hierarchy based
priors [9,13,17]. In one of the prototypical models in this class of works, which
extends Support Vector Machines (SVM) and Logistic Regression (LR) [9], the
objective function takes the form given in (1),

min
w1,...,w|N|

∑

n∈N

1
2

∥∥wn − wπ(n)

∥∥2

2
+ C

∑

n∈T

N∑

i=1

L
(
yn

i ,wT
nxi

)
(1)

where, π (n) represents the parent of the class n according to the provided hier-
archy. The loss function L has been modeled as logistic loss or hinge loss. Note
that the loss is defined only on the terminal nodes T , and the non-terminal
node N − T , are introduced only as a means to facilitate regularization. Since
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the weights associated with different classes are coupled in the optimization
problem, Gopal et al. [9] used a distributed implementation of block coordinate
descent where each block of variables corresponds to wn for a particular class
n. The model weights are learned similarly to standard LR or SVM for the leaf
nodes n ∈ T , with the exception that the weights are shrunk towards parents
instead of towards the zero vector by the regularizer. For an internal non-leaf
node, the weights updates are averages of the other nodes which are connected
to it according to the hierarchy, i.e., the parents and children in the hierarchy.

The kind of regularization discussed above can be compared to the formula-
tions proposed in transfer and multi-task learning (MTL) literature [7], where
externally provided task relationships can be utilized to constrain the jointly
learned model weights to be similar to each other. In the case of HC, the task
relationship are explicitly provided as hierarchical relationships. However, one
significant difference between the application of this regularization between HC
and MTL is that the sets of examples in MTL for different tasks are, in gen-
eral, disjoint. Whereas, in the case of HC, the examples which are classified
as positive for one class are negative for all other classes except those which
belong to the ancestors of that class. Therefore, even though these models impose
similarity between siblings indirectly through the parent, when their respective
models are trained, the negative and positive examples are flipped. Hence, the
opposing forces for examples and regularization are acting simultaneously during
the learning of these models. However, due to the regularization strength being
imposed by the hierarchy, the net effect is that the importance of misclassifying
the examples coming for nearby classes is down-weighted. This insight can be
directly incorporated into the learning algorithm by defining the loss of nearby
negative examples for a class, where ”near” is defined with respect to the hierar-
chy, to be less severe than the examples which are farther. This yields a simple
cost sensitive classification method where the misclassification cost is directly
proportional to the distance between the nodes of the classes, which is the key
contribution of our work. With respect to prediction, there are only two classes
for each trained model, but the misclassification costs of negative examples are
dependent on the nodes from which they originate.

In this framework for HC, we essentially decouple the learning for each node
of the hierarchy and train the model for each one independently. Thus, rendering
scalability to this method. Instead of jointly formulating the learning of model
parameters for all the classes, we turn the argument around from that of regular-
izing the model weights towards those of the neighboring models, to the rescaling
the loss of example depending on the class relationships. A similar argument was
made in the case of multi-task transfer learning by Saha et al. [16], where, in
place of joint regularization of model weights, as is typically done in multi-task
learning [8], they augment the target tasks with examples from source tasks.
However, the losses for the two sets of examples are scaled differently.
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4 Methods

As shown in some previous works [1,9], the performance of flat classification has
been found to be very competitive, especially for large scale problems. Although,
the top-down classification method is efficient in training, it fares poorly with
respect to classification performance due to error propagation. Hence, in this
work, we extend the flat classification methodology to deal with HC. We use
the one-vs-all approach for training, where for each class n, to which examples
are assigned, we learn a classification model with weight wn. Note, that it is
unnecessary to train the models for non-terminal classes, as they only serve
as virtual labels in the hierarchy. Once the models for each terminal class are
trained, we perform prediction for input example x as per (2)

ŷ = argmaxn wT
nx (2)

The essential idea is to formulate the learning algorithm such that the mis-
predictions on negative examples coming from nearby classes are treated as
being less severe. We encode this assumption through cost sensitive classification.
Standard regularized binary classification models, such as SVMs and Logistic
Regression, minimize an objective function consisting of loss and regularization
terms as shown in (3).

min
w

N∑

i=1

L (yi, f (xi | w))

︸ ︷︷ ︸
loss

+ρ R (w)︸ ︷︷ ︸
regularizer

(3)

where w denotes the learned model weights. The loss function L, which is gen-
erally a convex approximation of zero-one loss, measures how well the model fits
the training examples. Here, each example is considered to be equally important.
As per the arguments made previously, we modify the importance of correctly
classifying examples according to the hierarchy using example based misclassifi-
cation costs. For models such as logistic regression, incorporating example based
costs into the learning algorithm is simply a matter of scaling the loss by a con-
stant positive value. Assuming that the classifier is being learned for class n, we
can write the cost sensitive objective function as shown in (4).

min
w

N∑

i=1

ciL
(
yi,wTxi

)
+ ρR (w) (4)

Here, ci denotes the cost associated with misclassification of the ith example.
Although, this scaling works for the smooth loss function of Logistic Regression,
it is not as straightforward in the case of non-smooth loss functions such as hinge
loss [12]. Therefore, using the formulation given in (4), for each of the models,
we can formulate the objective function for class n as a cost sensitive logistic
regression problem where the cost of the example xi for the binary classifier of
class n depends on how far the actual label li ∈ T is from n, according to the
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hierarchy. Additionally, to deal with the issue of rare categories, we can also
increase the cost of the positive examples for data-sparse classes thus mitigating
the effects of highly skewed datasets. Since our primary motivation is to argue
in favor of using hierarchical cost sensitive learning instead of more expensive
regularization models, we only concentrate on logistic loss, which is easier to
handle, from optimization perspective, than non-smooth losses such as SVM’s
hinge loss. The central issue, now, is that of defining the appropriate costs for
the positive and negative examples based on the distance of the examples from
the true class according to the hierarchy and the number of examples available
for training the classifiers. In the following section we discuss the selection of
costs for negative and positive examples.

4.1 Cost Calculations

Hierarchical Cost. Hierarchical costs impose the requirement that the mis-
classification of negative examples that are farther away from the training class
according to the hierarchy should be penalized more severely. Encoding this
assumption, we define the following instantiations of hierarchical costs. We
assume the class under consideration is denoted by n.

Tree Distance (TrD): In (5), we define the cost of negative examples as the
undirected graphical distance, γ (n, li), between the class n and li, the class label
of example xi. We call this cost Tree Distance (TrD). We define γi ≡ γ (n, li)
and γmax = maxj∈T γj . Since dissimilarity increases with increasing γi, the cost
is a monotonically increasing function of γi.

ci =

{
γmax li = n

γi li �= n
(5)

Number of Common Ancestors (NCA): In some applications, where the depth
(distance of a node from the root node) of all terminal labels is not uniform, a
better definition of similarity might be the number of common ancestor between
two nodes. This is encoded in NCA costs, represented in (6). In the definition,
αi is used to denote the number of common ancestors between the pair of nodes
li and n. Unlike γi which is a monotonically increasing function of dissimilarity,
αi is a monotonically increasing function of similarity. αmax = maxj∈T αj .

ci =

{
αmax + 1 li = n

αmax − αj + 1 li �= n
(6)

Exponentiated Tree Distance (ExTrD): Finally, in some cases, especially for deep
hierarchies, the tree distances can be large, and therefore, in order to shrink the
values of cost into a smaller range, we define ExTrD in (7), where k > 1, can be
tuned according to the hierarchy. Through tuning we found that on our dataset,
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the range of values 1.1 ≤ k ≤ 1.25 of works well.

ci =

{
kγmax li �= n

kγi li �= n
(7)

In all these cases, we set the cost of the positive class to the maximum cost of
any example.

Imbalance Cost. In certain cases, especially for large scale hierarchical text
classification, some classes are extremely small with respect to the number of pos-
itive examples available for training. In these cases, the learned decision bound-
ary might favor the larger classes. Therefore, to deal with this imbalance in the
class distributions, we increase the cost of misclassifying rare classes. This has
the effect of mitigating the influence of skew in the data distributions of abun-
dant and rare classes. We call the cost function incorporating this as Imbalance
Cost (IMB), which is given in (8). We noticed that using cost such as inverse
of class size diminishes the performance. Therefore, we use a squashing function
inspired by logistic function f (x) = L/ [1 + exp −k (x − x0)], which would not
severely disadvantage very large classes.

ci = 1 + L/
[
1 + exp

(
|Ni − N0|+

)]
(8)

where |a|+ = max (a, 0) and Ni is the number of examples belonging to class
denoted by li. The value of ci lies in the range (1, L/2 + 1). We can use a tunable
parameter N0, which can be intuitively interpreted as the number of examples
required to build a “good” model, above which increasing the cost does not have
a significant effect or might adversely affect the classification performance. In
our experiments, we used N0 = 10 and L = 20.

In order to combine the Hierarchical Costs with the Imbalance Costs, we
simply multiply the contributions of both the costs. We also experimented with
several other hierarchical cost variants, which are not discussed here due to space
constraints.

4.2 Optimization

Since we are dealing with large scale classification problems, we need an efficient
optimization method which relies only on the first order information to solve the
learning problem given in (9).

min
w

[
f (w) =

N∑

i=1

ci log
(
1 + exp

(
−yiwTxi

))
+ ρ ‖w‖22

]
(9)

Since the cost values ci are predefined positive scalars, we can adapt any method
used to solve the standard regularized Logistic Regression (LR). We use acceler-
ated gradient descent due to its efficiency and simplicity. The ordinary gradient
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descent method has a convergence rate of O (1/k), where k is the number of iter-
ations. Accelerated gradient method improves the convergence rate to O

(
1/k2

)

by additionally using the gradient information from the previous iteration [14].
The complete algorithm to solve the cost-sensitive binary logistic regression is
provided in Line 1. We describe the notations and expressions used in the algo-
rithm below.

N is the number of examples; X ∈ R
N×D denotes the data matrix;

y ∈ {±1}N is the binary label vector for all examples; ρ ∈ R+ is the regu-
larization parameter; c = (c1, c2, . . . , cN ) ∈ R

N
+ denotes the cost vector, where

ci is the cost for example i ; w ∈ R
D denotes the weight vector learned by the

classifier; f (w) denotes the objective function value, given in (10)

f (w) = cT (log [1 + exp (Xw)]) + ρ ‖w‖22 (10)

∇f is the gradient of f w.r.t. w, which is defined in (11), where (y ◦ c) denotes
the vector obtained from the element-wise product of y and c. Similarly exp(·)
and division in (11) are element-wise operators.

∇f (w) = 2w + XT

(
−y ◦ c

1 + exp {(Xw) ◦ y}

)
(11)

f̂λ (u,w), described in (12), is the quadratic approximation of f (u) at w using
approximation constant or step size λ. The appropriate step size in each iteration
is found using line search.

f̂λ (u,w) = f (w) + (u − w)T ∇f (w) + 1/2λ ‖u − w‖22 (12)

4.3 Dealing with Hierarchical Multi-label Classification

HC problems are trivially multi-label problems because every example belonging
to a class also inherits the labels of the ancestor classes. But in the current
context, we call a problem as hierarchical multi-label problem if an example can
be assigned multiple labels such that neither is an ancestor nor descendant of
the other.

In the case of single label classification, we perform prediction as per (2),
which selects only a single label per example. A trivial extension to multi-label
classification can be done by choosing a threshold of 0 such that we assign label n
to example x if wT

nx > 0 as in the case of binary classification. However, a better
strategy is to optimize the threshold tn for each class using a validation set, such
that the label n is assigned to the test example if wT

nx > tn . This strategy
is called SCut method [21]. Other strategies such as learning a thresholding
function t

(
wT

1 x,wT
2 x, . . . ,wT

Mx
)

using the margin scores [9] might improve the
results, but they are somewhat more expensive to tune for large scale problems.
The SCut method can tune the threshold independently of all other classes. In
cases where we do not have sufficient examples to tune the threshold, i.e. the
class has a single training example, we set the threshold to tn = 0.



HierCost: Cost Sensitive Hierarchical Classification 683

Algorithm 1. Accelerated Gradient Method for Cost Sensitive LR
Data: X,y, c, ρ, β ∈ (0, 1), max iter
Result: w
Let λ0 := 1;w−1 = w0 = 0;
for k = 1 . . . max iter do

θk = k−1
k+2

λ = λk−1

while TRUE do
w = uk − λ∇f (uk−1)
if f(w) ≤ f̂λ (u,w) then

λk = λ
wk = w
break

else
λ = βλ

end

end
if converged then

break
end

end
return wk

The second issue that we must deal with is the definition of cost based on
hierarchical distances and class sizes. With respect to the training of a class n,
an example xi might be associated with multiple labels l1, l2 . . . , lK . In this case
the tree distance γi is not uniquely defined. Hence, we must aggregate the values
of γ (n, l1) , . . . , γ (n, lK). One strategy is to use an average of the values, but we
found that the taking the minimum works a little better. Similarly we can use
a minimum of of the number of common ancestors to all target labels for NCA
costs.

Finally, since an example is associated with multiple class labels, the class
size Ni of the examples is also not uniquely defined, in this case as well, we
use the the effective size as the minimum size out of all the labels associated
with xi for our IMB cost. It also makes intuitive sense, because we are trying
to upweight the rare classes, and the rarest class should be given precedence in
terms of the cost definition.

5 Experimental Evaluations

5.1 Datasets

The details of the datasets used for our experimental evaluations are provided
in Table 1. CLEF [6] is a dataset comprising of medical images annotated with
hierarchically organized Image Retrieval in Medical Applications (IRMA) codes.
The task is to predict the IRMA codes from image features. Images are described
with 80 features extracted using a technique called local distribution of edges.
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IPC is a collection of patent documents classified according to the Interna-
tional Patent Classification (IPC) System3. DMOZ-small, DMOZ-2010 and
DMOZ-2012 are hierarchical text classification datasets released as part of
PASCAL Large Scale Hierarchical Text Classification Challenge (LSHTC)4 [15].
For LSHTC datasets except DMOZ-small, labels of the test datasets are not
available, but certain classification metrics can be obtained through their online
evaluation system. RCV1-v2 [10] is a multi-label text classification dataset
extracted from Reuters corpus of manually categorized newswire stories. RCV1
is multi-label and non-mandatory leaf node predication [18] dataset, while the
rest of the datasets are single label datasets with examples assigned only to leaf
nodes. All the hierarchies used in the experiments are tree-based. For all the text
datasets, raw term frequencies were converted to term weights using Cornell ltc
term weighting [10].

Table 1. Dataset Statistics.

CLEF DMOZ
SMALL

IPC RCV1 DMOZ
2010

DMOZ
2012

Num. Training Examples 10000 4463 46324 23149 128710 383408

Num. Test Examples 1006 1858 28926 781265 34880 103435

Num. Features 80 51033 345479 48728 381580 348548

Num. Nodes 97 2388 553 117 17222 13963

Num. Terminal Nodes 63 1139 451 101 12294 11947

Max. Depth of Leaf Nodes 4 6 4 6 6 6

Avg. Labels per Example 1 1 1 3.18 1 1

5.2 Evaluation Metrics

We evaluate the prediction using the following standard performance measures
used in HC literature. The set based measures Micro-F1 and Macro-F1 are shown
below.

Micro-F1 = (2PR) / (P + R) (13)

Macro-F1 =
1

|T |
∑

t∈T
2PtRt/ (Pt + Rt) (14)

T denotes is the set of class labels, Pt and Rt are the precision and recall values
for class t ∈ T . P and R are the overall precision and recall values for the all the
classes taken together. Micro-F1 gives equal weight to all the examples therefore
it favors the classes with more number of examples. In the case of single label
classification, Micro-F1 is equivalent to accuracy. Macro-F1 gives equal weight

3 http://www.wipo.int/classifications/ipc/en/
4 http://lshtc.iit.demokritos.gr/

http://www.wipo.int/classifications/ipc/en/
http://lshtc.iit.demokritos.gr/
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to all the classes irrespective of their size. Hence, the performance on the smaller
categories is also taken into consideration.

Set based measures do not consider the distance of misclassification with
respect to the true label of the example, but in general, it is reasonable to
assume in most cases that misclassifications that are closer to the actual class
are less severe than misclassifications that are farther from the true class with
respect to the hierarchy. Hierarchical measures, therefore, take the distances
between the actual and predicted class into consideration. The hierarchical mea-
sures, described in eqs. (15) to (17), are Hierarchical Precision (hP ), Hierarchi-
cal Recall (hR), and their harmonic mean, Hierarchical F1 (hF1) respectively.
These are hierarchical extensions of standard precision and recall scores. Tree-
induced Error (TE) [19], given in (18), measures the average hierarchical distance
between the actual and predicted labels.

hP =
N∑

i=1

∣∣∣A (li) ∩ A
(
l̂i

)∣∣∣ /

N∑

i=1

∣∣∣A
(
l̂i

)∣∣∣ (15)

hR =
N∑

i=1

∣∣∣A (li) ∩ A
(
l̂i

)∣∣∣ /

N∑

i=1

|A (li)| (16)

hF1 = 2 · hP · hR/ (hP + hR) (17)

TE =
1
N

N∑

i=1

γ
(
li, l̂i

)
(18)

where, l̂i and li are the predicted label and true labels of example i, respectively.
γ (a, b) the graph distance between a and b according to the hierarchy. A (l)
denotes the set that includes the node l and all its ancestors except the root
node. For TE lower values are better, whereas for all other measures higher
values are better.

For multi-label classification, where each li is a set of micro-labels, we redefine

graph distance and ancestors as: γml(li, l̂i) =
∣∣∣l̂i

∣∣∣
−1 ∑

a∈l̂i
minb∈li γ (a, b) and

Aml (l) = ∪a∈lA (a).

5.3 Experimental Details

For all the experiments, the regularization parameter is tuned using a validation
set. The model is trained for a range of values 10k with appropriate values for
k selected depending on the dataset. Using the best parameter selected on vali-
dation set, we retrained the models on the entire training set and measured the
performance on a held out test set. The source code implementing the methods
discussed in this paper is available on our website 5. The experiments were per-
formed on computers with Dell C8220 processors with dual Intel Xeon E5-2670
8 core CPUs and 64 GB memory.
5 http://cs.gmu.edu/∼mlbio/HierCost/

http://cs.gmu.edu/~mlbio/HierCost/
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5.4 Methods for Comparison

In our experimental evaluations, we compare our cost sensitive hierarchical clas-
sification methods with the following hierarchical and flat classification methods
proposed in the literature.

Logistic Regression (LR). One-vs-rest binary logistic regression is used in
the conventional flat classification setting. For single label classification, we
assign test examples to the class which achieves best classification score.

Hierarchical Regularization for LR (HRLR). This method proposed by
Gopal et al. [9], extends flat classification using recursive regularization based
on hierarchical relationships. Since we used exactly the same setup as the
authors, in terms of training and test datasets, we are reporting their clas-
sification scores directly from [9].

Top-Down Logistic Regression (TD). This denotes Top-down logistic
regression model, where we train a one-vs-rest multi-class classifier at each
internal node. At testing time, the predictions are made starting from the
root node. At each internal node, the highest scoring child node is selected
until we reach a leaf node.

5.5 Results

In this section, we present experimental comparisons of various cost sensitive
learning strategies with other baseline methods. We provide separate compar-
isons of different cost based improvements on smaller datasets, and finally com-
pare our best method with the competing methods. In the tables, statistically
significant results for Micro-F1 and Macro-F1 [22] are marked with either † or ‡
which correspond to p-values < 0.05 and < 0.001 respectively.

In Table 2, we compare LR with various hierarchical costs defined in
Section 4.1. The results show a uniform improvement in all the metrics reported.
There was a statistically significant improvement in Micro-F1, especially for
DMOZ Small, IPC and RCV1 datasets. Macro-F1 scores were also improved,
but due to the presence of only a small number of categories in CLEF and RCV1
datasets, statistical significance could not be established, except for ExTrD.

In Table 3 we compare the effect of introducting imbalance costs, discussed
in Section 4.1, on standard LR and hierarchical costs. In IMB+LR only the
imbalance cost is used, in others, we use the product of costs derived from
IMB strategy and the corresponding hierarchical costs. We also measured the
significance of the improvement over the corresponding results from Table 2.
Only for DMOZ Small, which has a large number of classes with few examples,
imbalance costs further improve the results significantly for all the methods. On
CLEF, IPC and RCV1, where majority of the classes have sufficient number of
examples for training, the results did not improve significantly in most cases.
Overall, the IMB+ExTrD method provides more robust improvements.

The final comparison of our best method (IMB+ExTrD, which we call Hier-
Cost in the following) against various baseline methods is presented in Table 4.
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Table 2. Performance comparison of hierarchical costs.

Micro-F1 (↑) Macro-F1 (↑) hF1 (↑) TE (↓)

CLEF LR 79.82 53.45 85.24 0.994

TrD 80.02 55.51 85.39 0.984

NCA 80.02 57.48 85.34 0.986

ExTrD 80.22 57.55† 85.34 0.982

DMOZ SMALL LR 46.39 30.20 67.00 3.569

TrD 47.52‡ 31.37‡ 68.26 3.449

NCA 47.36‡ 31.20‡ 68.12 3.460

ExTrD 47.36‡ 31.19‡ 68.20 3.456

IPC LR 55.04 48.99 72.82 1.974

TrD 55.24‡ 50.20‡ 73.21 1.954

NCA 55.33‡ 50.29‡ 73.28 1.949

ExTrD 55.31‡ 50.29‡ 73.26 1.951

RCV1 LR 78.43 60.37 80.16 0.534

TrD 79.46‡ 60.61 82.83 0.451

NCA 79.74‡ 60.76 83.11 0.442

ExTrD 79.33‡ 61.74† 82.91 0.466

The evaluations on Dmoz 2010 and Dmoz 2012 datasets are blind and the pre-
dictions have to be uploaded to LSHTC website in order to obtain the scores.
For Dmoz 2012, Tree Errors are not available and for Dmoz 2010, the hF1 are
not available. For HRLR, we do not have access to the predictions, hence, we
could only report the values for Micro-F1 and Macro-F1 scores from [9]. Sta-
tistical significance tests compare the results of HierCost with LR. These tests
could not be performed on LSHTC datasets due to non-availability of the true
labels on test sets. As seen in Table 4, HierCost improves upon the baseline LR
results as well as the results reported in [9], in most cases, especially the Macro-
F1 scores. The results of HierCost are better on most measures. TD performs
worst on average on set-based measures. In fact, only on Dmoz 2012 dataset,
TD is competitive, on the rest, the results are much worse than the flat LR
classifier and its hierarchical extensions. On hierarchical measure, however, TD
outperformed flat classifiers on some datasets.

In Table 5, we report the run-times comparisons of TD, LR and HierCost.
We trained the models in parallel for different classes and computed the sum of
run-times for each training instance. In theory, the run-times of LR and Hier-
Cost should be equivalent, because they solve similar optimization problems.
However, minor variations in the run-times were observed because of the varia-
tions in optimal regularization penalties, which influences the convergence of the
optimization algorithm. The runtimes of flat methods were significantly worse
than TD, which is efficient in terms of training, but at considerable loss in classi-
fication performance. Although, we do not measure the training times of HRLR,
based on the experience from a similar problem [3], the recursive model take
between 3-10 iterations for convergence. In each iteration, the models for all the
terminal labels need to be trained hence each iteration is about as expensive as
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Table 3. Peformance comparison with imbalance cost included.

Micro-F1 (↑) Macro-F1 (↑) hF1 (↑) TE (↓)

CLEF IMB + LR 79.52 53.11 85.19 1.002

IMB + TrD 79.92 52.84 85.59 0.978

IMB + NCA 79.62 51.89 85.34 0.994

IMB + ExTrD 80.32 58.45 85.69 0.966

DMOZ SMALL IMB + LR 48.55‡ 32.72‡ 68.62 3.406

IMB + TrD 49.03‡ 33.21‡ 69.41 3.334

IMB + NCA 48.87‡ 33.27‡ 69.37 3.335

IMB + ExTrD 49.03‡ 33.34‡ 69.54 3.322

IPC IMB + LR 55.04 49.00 72.82 1.974

IMB + TrD 55.60‡ 50.45† 73.56 1.933

IMB + NCA 55.33 50.29 73.28 1.949

IMB + ExTrD 55.67‡ 50.42 73.58 1.931

RCV1 IMB + LR 78.59‡ 60.77 81.27 0.511

IMB + TrD 79.63‡ 61.04 83.13 0.435

IMB + NCA 79.61 61.04 82.65 0.458

IMB + ExTrD 79.22 61.33 82.89 0.469

Table 4. Performance comparison of HierCost with other baseline methods.

Micro-F1 (↑) Macro-F1 (↑) hF1 (↑) TE (↓)

TD 73.06 34.47 79.32 1.366

CLEF LR 79.82 53.45 85.24 0.994

HRLR 80.12 55.83 - -

HierCost 80.32 58.45† 85.69 0.966

TD 40.90 24.15 69.99 3.147

DMOZ SMALL LR 46.39 30.20 67.00 3.569

HRLR 45.11 28.48 - -

HierCost 49.03‡ 33.34‡ 69.54 3.322

TD 50.22 43.87 69.33 2.210

IPC LR 55.04 48.99 72.82 1.974

HRLR 55.37 49.60 - -

HierCost 55.67‡ 50.42† 73.58 1.931

TD 77.85 57.80 88.78 0.524

RCV1 LR 78.43 60.37 80.16 0.534

HRLR 81.23 55.81 - -

HierCost 79.22‡ 61.33 82.89 0.469

TD 38.86 26.29 - 3.867

DMOZ 2010 LR 45.17 30.98 - 3.400

HRLR 45.84 32.42 - -

HierCost 45.87 32.41 - 3.321

TD 51.65 30.48 73.33 -

DMOZ 2012 LR 51.72 27.19 72.53 -

HRLR 53.18 20.04 - -

HierCost 53.36 28.47 73.79 -
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Table 5. Total training runtimes (in mins).

TD-LR LR HierCost

CLEF <1 <1 <1

DMOZ SMALL 4 41 40

IPC 27 643 453

RCV1 20 29 48

DMOZ 2010 196 15191 20174

DMOZ 2012 384 46044 50253

a single run of LR. In addition, the distributed recursive models require commu-
nication between the training machines which incurs an additional overhead.

6 Conclusions

In this paper, we have argued that the methods that extend flat classifica-
tion using hierarchical regularization, can be viewed in a complementary way
as weighting the losses on the negative examples depending on dissimilarity
between the positive and negative classes. The approach proposed in this paper,
incorporates this insight directly into the loss function by scaling the loss func-
tion according to the dissimilarity between the classes with respect to the hier-
archy, thus obviating the need for recursive regularization and iterative model
training. At the same time, this approach also makes parallelization trivial. Our
method also mitigates the adverse effects of imbalance in the training data by up-
weighting the loss for examples from smaller classes, thus, significantly improv-
ing their classification results. Our experimental results show that the proposed
method is able to efficiently incorporate hierarchical information by transform-
ing the hierarchical classification problem into an example based cost sensitive
classification problem. In future work, we would like to evaluate the benefits of
cost sensitive classification using large margin classifiers such as support vector
machines.
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