
An Empirical Investigation of Minimum
Probability Flow Learning Under Different

Connectivity Patterns

Daniel Jiwoong Im(B), Ethan Buchman, and Graham W. Taylor

School of Engineering, University of Guelph, Guelph, ON, Canada
{imj,ebuchman,gwtaylor}@uoguelph.ca

Abstract. Energy-based models are popular in machine learning due
to the elegance of their formulation and their relationship to statistical
physics. Among these, the Restricted Boltzmann Machine (RBM), and
its staple training algorithm contrastive divergence (CD), have been the
prototype for some recent advancements in the unsupervised training
of deep neural networks. However, CD has limited theoretical motiva-
tion, and can in some cases produce undesirable behaviour. Here, we
investigate the performance of Minimum Probability Flow (MPF) learn-
ing for training RBMs. Unlike CD, with its focus on approximating
an intractable partition function via Gibbs sampling, MPF proposes
a tractable, consistent, objective function defined in terms of a Tay-
lor expansion of the KL divergence with respect to sampling dynamics.
Here we propose a more general form for the sampling dynamics in MPF,
and explore the consequences of different choices for these dynamics for
training RBMs. Experimental results show MPF outperforming CD for
various RBM configurations.

1 Introduction

A common problem in machine learning is to estimate the parameters of a high-
dimensional probabilistic model using gradient descent on the model’s negative
log likelihood. For exponential models where p(x) is proportional to the expo-
nential of a negative potential function F (x), the gradient of the data negative
log-likelihood takes the form

∇θ =
1

|D|

(∑
x∈D

∂F (x)
∂θ

−
∑

x

p(x)
∂F (x)

∂θ

)
(1)

where the sum in the first term is over the dataset, D, and the sum in the
second term is over the entire domain of x. The first term has the effect of
pushing the parameters in a direction that decreases the energy surface of the
model at the training data points, while the second term increases the energy of
all possible states. Since the second term is intractable for all but trivial models,
we cannot, in practice, accommodate for every state of x, but rather resort to

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 483–497, 2015.
DOI: 10.1007/978-3-319-23528-8 30

484 D.J. Im et al.

sampling. We call states in the sum in the first term positive particles and those
in the second term negative particles, in accordance with their effect on the
likelihood (opposite their effect on the energy). Thus, the intractability of the
second term becomes a problem of negative particle selection (NPS).

The most famous approach to NPS is Contrastive Divergence (CD) [4], which
is the centre-piece of unsupervised neural network learning in energy-based mod-
els. “CD-k” proposes to sample the negative particles by applying a Markov
chain Monte Carlo (MCMC) transition operator k times to each data state.
This is in contrast to taking an unbiased sample from the distribution by apply-
ing the MCMC operator a large number of times until the distribution reaches
equilibrium, which is often prohibitive for practical applications. Much research
has attempted to better understand this approach and the reasoning behind its
success or failure [6,12], leading to many variations being proposed from the
perspective of improving the MCMC chain. Here, we take a more general app-
roach to the problem of NPS, in particular, through the lens of the Minimum
Probability Flow (MPF) algorithm [11].

MPF works by introducing a continuous dynamical system over the model’s
distribution, such that the equilibrium state of the dynamical system is the dis-
tribution used to model the data. The objective of learning is to minimize the
flow of probability from data states to non-data states after infinitesimal evolu-
tion under the model’s dynamics. Intuitively, the less a data vector evolves under
the dynamics, the closer it is to an equilibrium point; or from our perspective,
the closer the equilibrium distribution is to the data. In MPF, NPS is replaced
by a more explicit notion of connectivity between states. Connected states are
ones between which probability can flow under the dynamical system. Thus,
rather than attempting to approximate an intractable function (as in CD-k), we
run a simple optimization over an explicit, continuous dynamics, and actually
never have to run the dynamics themselves.

Interestingly, MPF and CD-k have gradients with remarkably similar form.
In fact, the CD-k gradients can be seen as a special case of the MPF gradients
- that is, MPF provides a generalized form which reduces to CD-k under a
special dynamics. Moreover, MPF provides a consistent estimator for the model
parameters, while CD-k as typically formalized is an update heuristic, that can
sometimes do bizarre things like go in circles in parameter space [6]. Thus, in one
aspect, MPF solves the problem of contrastive divergence by re-conceptualizing
it as probability flow under an explicit dynamics, rather than the convenient but
biased sampling of an intractable function. The challenge thus becomes one of
how to design the dynamical system.

This paper makes the following contributions. First, we provide an expla-
nation of MPF that begins from the familiar territory of CD-k, rather than
the less familiar grounds of the master equation. While familiar to physicists,
the master equation is an apparent obscurity in machine learning, due most
likely to its general intractability. Part of the attractiveness of MPF is the way
it circumvents that intractability. Second, we derive a generalized form for the
MPF transition matrix, which defines the dynamical system. Third, we provide

An Empirical Investigation of Minimum Probability Flow Learning 485

a Theano [1] based implementation of MPF and a number of variants of MPF
that run efficiently on GPUs1. Finally, we compare and contrast variants of MPF
with those of CD-k, and experimentally demonstrate that variants of MPF out-
perform CD-k for Restricted Boltzmann Machines trained on MNIST and on
Caltech-101.

2 Restricted Boltzmann Machines

While the learning methods we discuss apply to undirected probabilistic graph-
ical models in general, we will use the Restricted Boltzmann Machine (RBM)
as a canonical example. An RBM is an undirected bipartite graph with visible
(observed) variables v ∈ {0, 1}D and hidden (latent) variables h ∈ {0, 1}H [9].
The RBM is an energy-based model where the energy of state v,h is given by

E(v,h; θ) = −
∑

i

∑
j

Wijvihj −
∑

i

bivi −
∑

j

cjhj (2)

where θ = {W,b, c} are the parameters of the model. The marginalized proba-
bility over visible variables is formulated from the Boltzmann distribution,

p(v; θ) =
p∗(v; θ)
Z(θ)

=
1

Z(θ)

∑
h

exp

(
−1
τ

E(v,h; θ)

)
(3)

such that Z(θ) =
∑

v,h exp
(−1

τ E(v,h; θ)
)

is a normalizing constant and τ is the
thermodynamic temperature. We can marginalize over the binary hidden states
in Equation 2 and re-express in terms of a new energy F (v),

F (v; θ) = − log
∑
h

exp
(−1

τ
E(v,h)

)
(4)

=
1
τ

D∑
i

vibi − 1
τ

H∑
j=1

log

(
1 + exp

(
cj +

D∑
i

viWi,j

))
(5)

p(v; θ) =
exp

(− F (v; θ)
)

Z(θ)
(6)

Following physics, this form of the energy is better known as a free energy,
as it expresses the difference between the average energy and the entropy of a
distribution, in this case, that of p(h|v). Defining the distribution in terms of
free energy as p(v; θ) is convenient since it naturally copes with the presence of
latent variables.

1 https://github.com/jiwoongim/minimum probability flow learning

https://github.com/jiwoongim/minimum_probability_flow_learning

486 D.J. Im et al.

The key characteristic of an RBM is the simplicity of inference due to con-
ditional independence between visible and hidden states:

p(h|v) =
∏
j

p(hj |v), p(hj = 1|v) = σ(
∑

i

Wijvi + cj)

p(v|h) =
∏

i

p(vi|h), p(vi = 1|h) = σ(
∑

j

Wijhj + bi)

where σ(z) = 1/(1 + exp (−z)).
This leads naturally to a block Gibbs sampling dynamics, used universally

for sampling from RBMs. Hence, in an RBM trained by CD-k, the connectivity
(NPS) is determined with probability given by k sequential block Gibbs sampling
transitions.

We can formalize this by writing the learning updates for CD-k as follows

ΔθCD−k ∝ −
∑
j∈D

∑
i�∈D

(∂Fj(θ)
∂θ

− ∂Fi(θ)
∂θ

)
Tij (7)

where Tij is the probability of transitioning from state j to state i in k steps
of block Gibbs sampling. We can in principle replace Tij by any other transition
operator, so long as it preserves the equilibrium distribution. Indeed, this is what
alternative methods, like Persistent CD [13], achieve.

3 Minimum Probability Flow

The key intuition behind MPF is that NPS can be reformulated in a firm theoret-
ical context by treating the model distribution as the end point of some explicit
continuous dynamics, and seeking to minimize the flow of probability away from
the data under those dynamics. In this context then, NPS is no longer a sampling
procedure employed to approximate an intractable function, but arises naturally
out of the probability flow from data states to non-data states. That is, MPF
provides a theoretical environment for the formal treatment of Tij that offers
a much more general perspective of that operator than CD-k can. In the same
vein, it better formalizes the notion of minimizing divergence between positive
and negative particles.

3.1 Dynamics of the Model

The primary mathematical apparatus for MPF is a continuous time Markov
chain known as the master equation,

ṗi =
∑
j �=i

[Γijp
(t)
j − Γjip

(t)
i] (8)

where j are the data states and i are the non-data states and Γij is the
probability flow rate from state j to state i. Note that each state is a full vector

An Empirical Investigation of Minimum Probability Flow Learning 487

of variables, and we are theoretically enumerating all states. ṗi is the rate of
change of the probability of state i, that is, the difference between the probability
flowing out of any state j into state i and the probability flowing out of state i
to any other state j at time t. We can re-express ṗi in a simple matrix form as

ṗ = Γp (9)

by setting Γii = −∑
i�=j Γjip

(t)
i . We note that if the transition matrix Γ is

ergodic, then the model has a unique stationary distribution.
This is a common model for exploring statistical mechanical systems, but it

is unwieldy in practice for two reasons, namely, the continuous time dynamics,
and exponential size of the state space. For our purposes, we will actually find
the former an advantage, and the latter irrelevant.

The objective of MPF is to minimize the KL divergence between the data
distribution and the distribution after evolving an infinitesimal amount of time
under the dynamics:

θMPF = argminθJ(θ), J(θ) = DKL(p(0)||p(ε)(θ))

Approximating J(θ) up to a first order Taylor expansion with respect to
time t, our objective function reduces to

J(θ) =
ε

|D|
∑
j∈D

∑
i�∈D

Γij (10)

and θ can be optimized by gradient descent on J(θ). Since Γij captures
probability flow from state j to state i, this objective function has the quite
elegant interpretation of minimizing the probability flow from data states to
non-data states [11].

3.2 Form of the Transition Matrix

MPF does not propose to actually simulate these dynamics. There is, in fact,
no need to, as the problem formulation reduces to a rather simple optimization
problem with no intractable component. However, we must provide a means
for computing the matrix coefficients Γij . Since our target distribution is the
distribution defined by the RBM, we require Γ to be a function of the energy,
or more particularly, the parameters of the energy function.

A sufficient (but not necessary) means to guarantee that the distribution
p∞ (θ) is a fixed point of the dynamics is to choose Γ to satisfy detailed balance,
that is

Γjip
(∞)
i (θ) = Γijp

(∞)
j (θ). (11)

The following theorem provides a general form for the transition matrix such
that the equilibrium distribution is that of the RBM:

488 D.J. Im et al.

Theorem 1. 1 Suppose p
(∞)
j is the probability of state j and p

(∞)
i is the proba-

bility of state i. Let the transition matrix be

Γij = gij exp
(

o(Fi − Fj) + 1
2

(Fj − Fi)
)

(12)

such that o(·) is any odd function, where gij is the symmetric connectivity
between the states i and j. Then this transition matrix satisfies detailed balance
in Equation 11.

The proof is provided in Appendix A.1. The transition matrix proposed by [11]
is thus the simplest case of Theorem 1, found by setting o(·) = 0 and gij = gji:

Γij = gij exp
(1

2
(Fj(θ) − Fi(θ)

)
. (13)

Given a form for the transition matrix, we can now evaluate the gradient of
J(θ)

∂J(θ)
∂θ

=
ε

|D|
∑
j∈D

∑
i�∈D

(∂Fj(θ)
∂θ

− ∂Fi(θ)
∂θ

)
Tij

Tij = gij exp
(1

2
(
Fj(θ) − Fi(θ)

))
and observe the similarity to the formulation given for the RBM trained by CD-k
(Equation 7). Unlike with CD-k, however, this expression was derived through
an explicit dynamics and well-formalized minimization objective.

4 Probability Flow Rates Γ

At first glance, MPF might appear doomed, due to the size of Γ , namely 2D×2D,
and the problem of enumerating all of the states. However, the objective function
in Equation 10 summing over the Γij ’s only considers transitions between data
states j (limited in size by our data set) and non-data states i (limited by
the sparseness of our design). By specifying Γ to be sparse, the intractability
disappears, and complexity is dominated by the size of the dataset.

Using traditional methods, an RBM can be trained in two ways, either with
sampled negative particles, like in CD-k or PCD (also known as stochastic max-
imum likelihood) [4,13], or via an inductive principle, with fixed sets of “fan-
tasy cases”, like in general score matching, ratio matching, or pseudo-likelihood
[3,5,7]. In a similar manner, we can define Γ by specifying the connectivity
function gij either as a distribution from which to sample or as fixed and deter-
ministic.

In this section, we examine various kinds of connectivity functions and their
consequences on the probability flow dynamics.

An Empirical Investigation of Minimum Probability Flow Learning 489

4.1 1-bit Flip Connections

It can be shown that score matching is a special case of MPF in continuous state
spaces, where the connectivity function is set to connect all states within a small
Euclidean distance r in the limit of r → 0 [11]. For simplicity, in the case of a
discrete state space (Bernoulli RBM), we can fix the Hamming distance to one
instead, and consider that data states are connected to all other states 1-bit flip
away:

gij =

{
1, if state i, j differs by single bit flip
0, otherwise

(14)

1-bit flip connectivity gives us a sparse Γ with 2DD non-zero terms (rather than
a full 22D), and may be seen as NPS where the only negative particles are those
which are 1-bit flip away from data states. Therefore, we only ever evaluate
|D|D terms from this matrix, making the formulation tractable. This was the
only connectivity function pursued in [11] and is a natural starting point for the
approach.

Algorithm 1. Minimum probability flow learning with single bit-flip connec-
tivity. Note we leave out all gij since here we are explicit about only connecting
states of Hamming distance 1.

– Initialize the parameters θ
– for each training example d ∈ D do

1. Compute the list of states, L, with Hamming distance 1 from d
2. Compute the probability flow Γid = exp (1

2
(Fd(θ) − Fi(θ)) for each i ∈ L

3. The cost function for d is
∑

i∈L Γid

4. Compute the gradient of the cost function, ∂J(θ)
∂θ

=
∑

i∈L

(
∂Fd(θ)

∂θ
− ∂Fi(θ)

∂θ

)
Γid

5. Update parameters via gradient descent with θ ← θ − λ∇J(θ)
end for

4.2 Factorized Minimum Probability Flow

Previously, we considered connectivity gij as a binary indicator function of both
states i and j. Instead, we may wish to use a probability distribution, such
that gij is the probability that state j is connected to state i (i.e.

∑
i gij =

1). Following [10], we simplify this approach by letting gij = gi, yielding an
independence chain [14]. This means the probability of being connected to state
i is independent of j, giving us an alternative way of constructing a transition
matrix such that the objective function can be factorized:

J(θ) =
1

|D|
∑
j∈D

∑
i�∈D

gi

(
gj

gi

) 1
2

exp
(

1
2
(
Fj(x; θ) − Fi(x; θ)

))
(15)

490 D.J. Im et al.

=

(
1

|D|
∑

j∈D
exp

(
1

2

(
Fj(x; θ) + log gj

)
))
⎛

⎝
∑

i�∈D
gi exp

(
1

2

(− Fi(x; θ) + log gi

)
)
⎞

⎠

(16)

where
(

gj

gi

) 1
2

is a scaling term required to counterbalance the difference between
gi and gj . The independence in the connectivity function allows us to factor
all the j terms in 15 out of the inner sum, leaving us with a product of sums,
something we could not achieve with 1-bit flip connectivity since the connection
to state i depends on it being a neighbor of state j. Note that, intuitively,
learning is facilitated by connecting data states to states that are probable under
the model (i.e. to contrast the divergence). Therefore, we can use p(v; θ) to
approximate gi. In practice, for each iteration n of learning, we need the gi and
gj terms to act as constants with respect to updating θ, and thus we sample
them from p(v; θn−1). We can then rewrite the objective function as J(θ) =
JD(θ)JS(θ)

JD(θ) =

(
1

|D|
∑
x∈D

exp
[
1
2
(
F (x; θ) − F (x; θn−1)

)])
(17)

JS(θ) =

(
1

|S|
∑
x′∈S

exp
[
1
2
(− F (x′; θ) + F (x′; θn−1)

)])
(18)

where S is the sampled set from p(v; θn−1), and the normalization terms in log gj

and log gi cancel out. Note we use the θn−1 notation to refer to the parameters
at the previous iteration, and simply θ for the current iteration.

4.3 Persistent Minimum Probability Flow

There are several ways of sampling “fantasy particles” from p(v; θn−1). Notice
that taking the data distribution with respect to θn−1 is necessary for stable
learning.

Previously, persistent contrastive divergence (PCD) was developed to
improve CD-k learning [13]. Similarly, persistence can be applied to sampling
in MPF connectivity functions. For each update, we pick a new sample based
on a MCMC sampler which starts from previous samples. Then we update θn,
which satisfies J(θn) ≤ J(θn−1) [10]. The pseudo-code for persistent MPF is the
same as Factored MPF except for drawing new samples, which is indicated by
square brackets in Algorithm 2.

As we will show, using persistence in MPF is important for achieving faster
convergence in learning. While the theoretical formulation of MPF guarantees
eventual convergence, the focus on minimizing the initial probability flow will
have little effect if the sampler mixes too slowly.

An Empirical Investigation of Minimum Probability Flow Learning 491

Algorithm 2. Factored [Persistent] MPF learning with probabilistic connectiv-
ity.

– for each epoch n do
1. Draw a new sample Sn based on S0

[
Sn−1

]
using an MCMC sampler.

2. Compute JS(θ)
3. for each training example d ∈ D do

(a) Compute Jd(θ). The cost function for d is J(θ) = Jd(θ)JS(θ)
(b) Compute the gradient of the cost function,

∂J(θ)
∂θ

= JS(θ)Jd(θ) ∂Fd(θ)
∂θ

+ 1
|S|Jd

∑
x′∈S

(
∂F (x′)

∂θ
exp
[
1
2

(
F (x′; θ) − F (x′; θn−1)

)])

(c) Update parameters via gradient descent with θ ← θ − λ∇J(θ)
end for

5 Experiments

We conducted the first empirical study of MPF under different types of connec-
tivity as discussed in Section 4. We compared our results to CD-k with vary-
ing values for K. We analyzed the MPF variants based on training RBMs and
assessed them quantitatively and qualitatively by comparing the log-likelihoods
of the test data and samples generated from model. For the experiments, we
denote the 1-bit flip, factorized, and persistent methods as MPF-1flip, FMPF,
and PMPF, respectively. The goals of these experiments are to
1. Compare among MPF algorithms under different connectivities; and
2. Compare between MPF and CD-k.

In our experiments, we considered the MNIST and CalTech Silhouette
datasets. MNIST consists of 60,000 training and 10,000 test images of size 28
× 28 pixels containing handwritten digits from the classes 0 to 9. The pixels in
MNIST are binarized based on thresholding. From the 60,000 training examples,
we set aside 10,000 as validation examples to tune the hyperparameters in our
models. The CalTech Silhouette dataset contains the outlines of objects from the
CalTech101 dataset, which are centred and scaled on a 28 × 28 image plane and
rendered as filled black regions on a white background creating a silhouette of
each object. The training set consists of 4,100 examples, with at least 20 and at
most 100 examples in each category. The remaining instances were split evenly
between validation and testing2. Hyperparameters such as learning rate, number
of epochs, and batch size were selected from discrete ranges and chosen based on
a held-out validation set. The learning rate for FMPF and PMPF were chosen
from the range [0.001, 0.00001] and the learning rate for 1-bit flip was chosen
from the range [0.2, 0.001].

2 More details on pre-processing the CalTech Silhouettes can be found in http://
people.cs.umass.edu/∼marlin/data.shtml

http://people.cs.umass.edu/~marlin/data.shtml
http://people.cs.umass.edu/~marlin/data.shtml

492 D.J. Im et al.

Table 1. Experimental results on MNIST using 11 RBMs with 20 hidden units each.
The average training and test log-probabilities over 10 repeated runs with random
parameter initializations are reported.

Method Average log Test Average log Train Time(s) Batchsize
CD1 -145.63 ± 1.30 -146.62 ± 1.72 831 100
PCD -136.10 ± 1.21 -137.13 ± 1.21 2620 300
MPF-1flip -141.13 ± 2.01 -143.02 ± 3.96 2931 75
CD10 -135.40 ± 1.21 -136.46 ± 1.18 17329 100
FMPF10 -136.37 ± 0.17 -137.35 ± 0.19 12533 60
PMPF10 -141.36 ± 0.35 -142.73 ± 0.35 11445 25
FPMPF10 -134.04 ± 0.12 -135.25 ± 0.11 22201 25
CD15 -134.13 ± 0.82 -135.20 ± 0.84 26723 100
FMPF15 -135.89 ± 0.19 -136.93 ± 0.18 18951 60
PMPF15 -138.53 ± 0.23 -139.71 ± 0.23 13441 25
FPMPF15 -133.90 ± 0.14 -135.13 ± 0.14 27302 25
CD25 -133.02 ± 0.08 -134.15 ± 0.08 46711 100
FMPF25 -134.50 ± 0.08 -135.63 ± 0.07 25588 60
PMPF25 -135.95 ± 0.13 -137.29 ± 0.13 23115 25
FPMPF25 -132.74 ± 0.13 -133.50 ± 0.11 50117 25

Fig. 1. Samples generated from the training set. Samples in each panel are generated
by RBMs trained under different paradigms as noted above each image.

5.1 MNIST - Exact Log Likelihood

In our first experiment, we trained eleven RBMs on the MNIST digits. All RBMs
consisted of 20 hidden units and 784 (28×28) visible units. Due to the small num-
ber of hidden variables, we calculated the exact value of the partition function
by explicitly summing over all visible configurations. Five RBMs were learned
by PCD1, CD1, CD10, CD15, and CD25. Seven RBMs were learned by 1 bit
flip, FMPF, and FPMPF3. Block Gibbs sampling is required for FMPF-k and
FPMPF-k similar to CD-k training, where the number of steps is given by k.

The average log test likelihood values of RBMs with 20 hidden units are
presented in Table 1. This table gives a sense of the performance under dif-
ferent types of MPF dynamics when the partition function can be calculated
exactly. We observed that PMPF consistently achieved a higher log-likelihood
than FMPF. MPF with 1 bit flip was very fast but gave poor performance

3 FPMPF is the composition of the FMPF and PMPF connectivities.

An Empirical Investigation of Minimum Probability Flow Learning 493

Table 2. Experimental results on MNIST using 11 RBMs with 200 hidden units each.
The average estimated training and test log-probabilities over 10 repeated runs with
random parameter initializations are reported. Likelihood estimates are made with
CSL [2] and AIS [8].

CSL AIS
Method Avg. log Test Avg. log Train Avg. log Test Avg. log Train Time(s) Batchsize

CD1 -138.63 ± 0.48 -138.70 ± 0.45 -98.75 ± 0.66 -98.61 ± 0.66 1258 100
PCD1 -114.14 ± 0.26 -114.13 ± 0.28 -88.82 ± 0.53 -89.92 ± 0.54 2614 100
MPF-1flip -179.73 ± 0.085 -179.60 ± 0.07 -141.95 ± 0.23 -142.38 ± 0.74 4575 75
CD10 -117.74 ± 0.14 -117.76 ± 0.13 -91.94 ± 0.42 -92.46 ± 0.38 24948 100
FMPF10 -115.11 ± 0.09 -115.10 ± 0.07 -91.21 ± 0.17 -91.39 ± 0.16 24849 25
PMPF10 -114.00 ± 0.08 -113.98 ± 0.09 -89.26 ± 0.13 -89.37 ± 0.13 24179 25
FPMPF10 -112.45 ± 0.03 -112.45 ± 0.03 -83.83 ± 0.23 -83.26 ± 0.23 24354 25
CD15 -115.96 ± 0.12 -115.21 ± 0.12 -91.32 ± 0.24 -91.87 ± 0.21 39003 100
FMPF15 -114.05 ± 0.05 -114.06 ± 0.05 -90.72 ± 0.18 -90.93 ± 0.20 26059 25
PMPF15 -114.02 ± 0.11 -114.03 ± 0.09 -89.25 ± 0.17 -89.85 ± 0.19 26272 25
FPMPF15 -112.58 ± 0.03 -112.60 ± 0.02 -83.27 ± 0.15 -83.84 ± 0.13 26900 25
CD25 -114.50 ± 0.10 -114.51 ± 0.10 -91.36 ± 0.26 -91.04 ± 0.25 55688 100
FMPF25 -113.07 ± 0.06 -113.07 ± 0.07 -90.43 ± 0.28 -90.63 ± 0.27 40047 25
PMPF25 -113.70 ± 0.04 -113.69 ± 0.04 -89.21 ± 0.14 -89.79 ± 0.13 52638 25
FPMPF25 -112.38 ± 0.02 -112.42 ± 0.02 -83.25 ± 0.27 -83.81 ± 0.28 53379 25

compared to FMPF and PMPF. We also observed that MPF-1flip outperformed
CD1. FMPF and PMPF always performed slightly worse than CD-k training
with the same number of Gibbs steps. However, FPMPF always outperformed
CD-k. The advantage of FPMPF in this case may reflect the increased effective
number of entries in the transition matrix.

One advantage of FMPF is that it converges much quicker than CD-k or
PMPF. This is because we used twice many samples as PMPF as mentioned in
Section 4.3. Figure 1 shows initial data and the generated samples after running
100 Gibbs steps from each RBM. PMPF produces samples that are visually more
appealing than the other methods.

5.2 MNIST - Estimating Log Likelihood

In our second set of experiments, we trained RBMs with 200 hidden units. We
trained them exactly as described in Section 5.1. These RBMs are able to gen-
erate much higher-quality samples from the data distribution, however, the par-
tition function can no longer be computed exactly.

In order to evaluate the model quantitatively, we estimated the test log-
likelihood using the Conservative Sampling-based Likelihood estimator (CSL)
[2] and annealed importance sampling (AIS) [8]. Given well-defined conditional
probabilities P (v|h) of a model and a set of latent variable samples S collected
from a Markov chain, CSL computes

log f̂(v) = log meanh∈SP (v|h). (19)

The advantage of CSL is that sampling latent variables h instead of v has the
effect of reducing the variance of the estimator. Also, in contrast to annealed
importance sampling (AIS) [8], which tends to overestimate, CSL is much more
conservative in its estimates. However, most of the time, CSL is far off from the

494 D.J. Im et al.

Fig. 2. Samples generated from the training set. Samples in each panel are generated
by RBMs trained under different paradigms as noted above each image.

true estimator, so we bound our negative log-likelihood estimate from above and
below using both AIS and CSL.

Table 2 demonstrates the test log-likelihood of various RBMs with 200 hid-
den units. The ranking of the different training paradigms with respect to per-
formance was similar to what we observed in Section 5.1 with PMPF emerging
as the winner. However, contrary to the first experiment, we observed that MPF
with 1 bit flip did not perform well. Moreover, FMPF and PMPF both tended to
give higher test log-likelihoods than CD-k training. Smaller batch sizes worked
better with MPF when the number of hiddens was increased. Once again, we
observed smaller variances compared to CD-k with both forms of MPF, espe-
cially with FMPF. We noted that FMPF and PMPF always have smaller vari-
ance compared to CD-k. This implies that FMPF and PMPF are less sensitive to
random weight initialization. Figure 2 shows initial data and generated samples
after running 100 Gibbs steps for each RBM. PMPF clearly produces samples
that look more like digits.

5.3 Caltech 101 Silhouettes - Estimating Log Likelihood

Finally, we evaluated the same set of RBMs on the Caltech-101 Silhouettes
dataset. Compared to MNIST, this dataset contains much more diverse struc-
tures with richer correlation among the pixels. It has 10 times more categories,
contains less training data per category, and each object covers more of the
image. For these reasons, we use 500 hidden units per RBM. The estimated
average log-likelihood of train and test data is presented in Table 3.

The results for Caltech 101 Silhouettes are consistent with MNIST. In every
case, we observed a larger margin between PMPF and CD-k when the number
of sampling steps was smaller. In addition, the single bit flip technique was
not particularly successful, especially as the number of latent variables grew.
We speculate that the reason for this might have to do with the slow rate of
convergence for the dynamic system. Moreover, PMPF works better than FMPF
for similar reasons. By having persistent samples as the learning progresses, the

An Empirical Investigation of Minimum Probability Flow Learning 495

Table 3. Experimental results on Caltech-101 Silhouettes using 11 RBMs with 500
hidden units each. The average estimated training and test log-probabilities over 10
repeated runs with random parameter initializations are reported. Likelihood estimates
are made with CSL [2] and AIS [8].

CSL AIS
Method Avg. log Test Avg. log Train Avg. log Test Avg. log Train Time(s) Batchsize

CD1 -251.30 ± 1.80 -252.04 ± 1.56 -141.87 ± 8.80 -142.88 ± 8.85 300 100
PCD1 -199.89 ± 1.53 -199.95 ± 1.31 -124.56 ± 0.24 -116.56 ± 2.40 784 100
MPF-1flip -281.55 ± 1.68 -283.03 ± 0.60 -164.96 ± 0.23 -170.92 ± 0.20 505 100
CD10 -207.77 ± 0.92 -207.16 ± 1.18 -128.17 ± 0.20 -120.65 ± 0.19 4223 100
FMPF10 -211.30 ± 0.84 -211.39 ± 0.90 -135.59 ± 0.16 -135.57 ± 0.18 2698 20
PMPF10 -203.13 ± 0.12 -203.14 ± 0.10 -128.85 ± 0.15 -123.06 ± 0.15 7610 20
FPMPF10 -200.36 ± 0.16 -200.16 ± 0.16 -123.35 ± 0.16 -108.81 ± 0.15 11973 20
CD15 -205.12 ± 0.87 -204.87 ± 1.13 -125.08 ± 0.24 -117.09 ± 0.21 6611 100
FMPF15 -210.66 ± 0.24 -210.19 ± 0.30 -130.28 ± 0.14 -128.57 ± 0.15 3297 20
PMPF15 -201.47 ± 0.13 -201.67 ± 0.10 -127.09 ± 0.10 -121 ± 0.12 9603 20
FPMPF15 -198.59 ± 0.17 -198.66 ± 0.17 -122.33 ± 0.13 -107.88 ± 0.14 18170 20
CD25 -201.56 ± 0.11 -201.50 ± 0.13 -124.80 ± 0.20 -117.51 ± 0.23 13745 100
FMPF25 -206.93 ± 0.13 -206.86 ± 0.11 -129.96 ± 0.07 -127.15 ± 0.07 10542 10
PMPF25 -199.53 ± 0.11 -199.51 ± 0.12 -127.81 ± 020 -122.23 ± 0.17 18550 10
FPMPF25 -198.39 ± 0.0.16 -198.39 ± 0.17 -122.75 ± 0.13 -108.32 ± 0.12 23998 10

Fig. 3. Random samples generated by RBMs with different training procedures.

dynamics always begin closer to equilibrium, and hence converge more quickly.
Figure 3 shows initial data and generated samples after running 100 Gibbs steps
for each RBM on Caltech28 dataset.

6 Conclusion

MPF is an unsupervised learning algorithm that can be employed off-the-shelf
to any energy-based model. It has a number of favourable properties but has not
seen application proportional to its potential. In this paper, we first expounded
on MPF and its connections to CD-k training, which allowed us to gain a bet-
ter understanding and perspective to CD-k. We proved a general form for the
transition matrix such that the equilibrium distribution converges to that of an
RBM. This may lead to future extensions of MPF based on the choice of o(·) in
Equation 12.

496 D.J. Im et al.

One of the merits of MPF is that the choice of designing a dynamic system
by defining a connectivity function is left open as long as it satisfies the fixed
point equation. Additionally, it should scale similarly to CD-k and its variants
when increasing the number of visible and hidden units. We thoroughly explored
three different connectivity structures, noting that connectivity can be designed
inductively or by sampling. Finally, we showed empirically that MPF, and in
particular, PMPF, outperforms CD-k for training generative models. Until now,
RBM training was dominated by methods based on CD-k including PCD; how-
ever, our results indicate that MPF is a practical and effective alternative.

References

1. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A.,
Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. In: Deep
Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012)

2. Bengio, Y., Yao, L., Cho, K.: Bounding the test log-likelihood of generative mod-
els. In: Proceedings of the International Conference on Learning Representations
(ICLR) (2013)

3. Besag, J.: Statistical analysis of non-lattice data. The Statistician 24, 179–195
(1975)

4. Hinton, G.E.: Training products of experts by minimizing contrastive divergence.
Neural Computation 14, 1771–1880 (2002)

5. Hyvärinen, A.: Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research 6, 695–709 (2005)

6. MacKay, D.J.C.: Failures of the one-step learning algorithm (2001). http://
www.inference.phy.cam.ac.uk/mackay/abstracts/gbm.html, unpublished Techni-
cal Report

7. Marlin, B.M., de Freitas, N.: Asymptotic efficiency of deterministic estimators for
discrete energy-based models: ratio matching and pseudolikelihood. In: Proceedings
of the Uncertainty in Artificial Intelligence (UAI) (2011)

8. Salakhutdinov, R., Murray, I.: On the quantitative analysis of deep belief networks.
In: Proceedings of the International Conference of Machine Learning (ICML)
(2008)

9. Smolensky, P.: Information processing in dynamical systems: foundations of
harmony theory. In: Parallel Distributed Processing: Volume 1: Foundations,
pp. 194–281. MIT Press (1986)

10. Sohl-Dickstein, J.: Persistent minimum probability flow. Tech. rep, Redwood Cen-
tre for Theoretical Neuroscience (2011)

11. Sohl-Dickstein, J., Battaglino, P., DeWeese, M.R.: Minimum probability flow learn-
ing. In: Proceedings of the International Conference of Machine Learning (ICML)
(2011)

12. Sutskever, I., Tieleman, T.: On the convergence properties of contrastive diver-
gence. In: Proceedings of the AI & Statistics (AI STAT) (2009)

13. Tieleman, T., Hinton, G.E.: Using fast weights to improve persistent contrastive
divergence. In: Proceedings of the International Conference of Machine Learning
(ICML) (2009)

14. Tierney, L.: Markov chains for exploring posterior distributions. Annals of Statistics
22, 1701–1762 (1994)

http://www.inference.phy.cam.ac.uk/mackay/abstracts/gbm.html
http://www.inference.phy.cam.ac.uk/mackay/abstracts/gbm.html

An Empirical Investigation of Minimum Probability Flow Learning 497

A Minimum Probability Flow

A.1 Dynamics of The Model

Theorem 2. 1 Suppose p
(∞)
j is the probability of state j and p

(∞)
i is the proba-

bility of state i. Let the transition matrix be

Γij = gij exp
(

o(Fi − Fj) + 1
2

(Fj − Fi)
)

(20)

such that o(·) is any odd function, where gij is the symmetric connectivity
between the states i and j. Then this transition matrix satisfies detailed balance
in Equation 11.

Proof. By cancelling out the partition function, the detailed balance Equation
11 can be formulated as

Γji exp (−Fi) = Γij exp (−Fj) (21)

where Fi = F (v = i; θ). By substituting the transition matrix defined in Equa-
tion 12, we arrive at the following expression after some straightforward manip-
ulation:

Γji exp (−Fi)/Γij exp (−Fj)) = 1

exp
(

o(Fi − Fj) + 1
2

(Fj − Fi) − Fi

)
/ exp

(
o(Fj − Fi) + 1

2
(Fi − Fj) − Fj

)
= 1

exp
(

o(Fi − Fj) + 1
2

(Fj − Fi) − Fi − o(Fj − Fi) + 1
2

(Fi − Fj) + Fj

)
= 1

o(Fi − Fj) + 1
2

(Fj − Fi) − Fi − o(Fj − Fi) + 1
2

(Fi − Fj) + Fj = 0

(Fi − Fj)
(

o(Fi − Fj) + 1
2

+
o(Fj − Fi) + 1

2
− 1

)
= 0

(Fi − Fj)
(

o(Fi − Fj)
2

+
o(Fj − Fi)

2

)
= 0

Notice that since o(·) is an odd function, this makes the term
(o(Fi−Fj)

2 +
o(Fj−Fi)

2

)
= 0. Therefore, the detailed balance criterion is satisfied.

	An Empirical Investigation of Minimum Probability Flow Learning Under Different Connectivity Patterns
	1 Introduction
	2 Restricted Boltzmann Machines

	3 Minimum Probability Flow
	3.1 Dynamics of the Model
	3.2 Form of the Transition Matrix

	4 Probability Flow Rates
	4.1 1-bit Flip Connections
	4.2 Factorized Minimum Probability Flow
	4.3 Persistent Minimum Probability Flow

	5 Experiments
	5.1 MNIST - Exact Log Likelihood
	5.2 MNIST - Estimating Log Likelihood
	5.3 Caltech 101 Silhouettes - Estimating Log Likelihood

	6 Conclusion
	References
	A Minimum Probability Flow
	A.1 Dynamics of The Model

