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Abstract. We develop an online learning algorithm for bandits on a
graph with side information where there is an underlying Ising distri-
bution over the vertices at low temperatures. We are motivated from
practical settings where the graph state in a social or a computer hosts
network (potentially) changes at every trial; intrinsically partitioning the
graph thus requiring the learning algorithm to play the bandit from the
current partition. Our algorithm essentially functions as a two stage pro-
cess. In the first stage it uses “minimum-cut ” as the regularity measure
to compute the state of the network by using the side label received
and acting as a graph classifier. The classifier internally uses a poly-
nomial time linear programming relaxation technique that incorporates
the known information to predict the unknown states. The second stage
ensures that the bandits are sampled from the appropriate partition of
the graph with the potential for exploring the other part. We achieve
this by running the adversarial multi armed bandit for the edges in
the current partition while exploring the “cut” edges. We empirically
evaluate the strength of our approach through synthetic and real world
datasets. We also indicate the potential for a linear time exact algorithm
for calculating the max-flow as an alternative to the linear programming
relaxation, besides promising bounded mistakes/regret in the number of
times the “cut” changes.

1 Introduction

Many domains encounter a problem in collection of annotated training data due
to the difficulty and costs in requiring efforts of human annotators, while the
abundant unlabelled data come for free. What makes the problem more chal-
lenging is the data might often exhibit complex interactions that violate the inde-
pendent and identically distributed assumption of the data generation process.
In such domains, it is imperative that learning techniques can learn from unla-
belled data and the rich interactions based structure of the data. Learning from
unlabelled and a few labelled data falls under the purview of semi-supervised
learning. Coupling it with an encoding of the data interdependencies as a graph,
results in an attractive problem of learning on graphs.

Often, interesting applications are tied to such problems with rich underly-
ing structure. For example, consider the system of online advertising; serving
advertisements on web pages in an incremental fashion. The web pages can be
represented as vertices in the graph with the links as edges. At given time t,
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the system receives a request to serve an advertisement on a randomly selected
web-page. Moreover, at the same time, the system receives a side information
about the state of the web-page: for simplicity we assume the side information
to be a rating of 0 or 1. As a consequence, the advertisement pool change with
the change in the state of the graph or the ratings, given the already known
states and the current advert should be served from the appropriate pool. Once
the chosen advertisement is served, the feedback is received and incorporated in
serving the next request.

At a deeper level of understanding, the side information can be interpreted
as the label of the vertex. There are few available labels at the start; the rest
are only incrementally revealed. When a vertex is queried (request for an ad
placement made), an action needs to be picked (an advertisement needs to be
served) from a set of actions. The algorithm should be able to internally predict
what the state of the queried vertex is (how the state of the graph changes) and
then select the appropriate action from the action pool that (potentially)changes
with the predicted label of the queried vertex.

In this paper, we attempt to tackle this problem by exploiting the knowledge
of the non-independence graphical structure of the data in an online setting. We
do so by associating a complexity with the labelling. We call this complexity
“cut” or “energy” of the labelling on a Markov random field with discrete states
(Ising model). The goal of our graph labelling procedure is to minimize the
energy while being consistent with the information seen so far when predicting
the intrinsic state of the queried vertex at every round. This prediction directs
the overall goal towards minimizing the regret of our sequential action selection
(bandit) algorithm within the online graph labelling that occurs over the entire
sequence.

Related Work. Broadly speaking, there are two central themes that run
through our work unified under the common framework of online learning,
namely, action selection using bandit feedback and semi-supervised graph
labelling. The closest related work that addresses the intersection of these two
themes is the work by Claudio et al. [10]. They use bandit feedback to address
a multi-class ranking problem. The algorithm outputs a partially ordered sub-
set of classes and receives only bandit feedback (partial information) among the
selected classes it observes without any supervised ranking feedback. In contrast,
we play the bandit game of sequential action selection, using side information
as the class label of the current context. Our feedback for the action selected is
still partial (only loss for the selected action is observed). Further, our bandits
have a structure associated with the Ising model distribution over the vertices at
low temperature. The work of Amin et al.[2], addresses the graphical models for
bandit problems to demonstrate the rich interactions between the two worlds in
the similar lines of what we try to achieve. Bearing a strong resemblance to our
work, they address the similar context-action space. However, in their setting,
there is a strong coupling between the context-action space; the algorithm needs
to fulfil the entire joint assignment before receiving any feedback. In contrast,
our concept-action space is decoupled, labels are revealed gradually determining
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the current active concept for the learner to choose the action and receive the
feedback instantaneously. In their problem formulation under the Ising graph
setting, the algorithm tries to pick the action (the label of the concept) that is
NP hard. In contrast, we focus on the low temperature setting, where our actions
lie on the edges, and are not the labels of the vertices. The computation of the
marginal at the vertices is guided by the labels seen so far and the minimal cut.
We approximate the labelling of the entire graph rather than predicting the spin
configuration of a single vertex using the “cut” as the regularizer that dominates
the action selection. The contextual bandits work on online clustering of ban-
dits [9], deals with finding groups or clusters of bandits in the graphs. They have
a stochastic assumption of a linear function for reward generation. Similarity
is revealed by the parameter vector that is inferred over time. In contrast, we
use the similarity over edges to determine the “cut” which in-turns guides the
action selection process in adversarial settings. There work extends to running
a contextual bandit for every node, whereas ours is a single bandit algorithm,
where the context information is captured in the “cut”. The work of Castro et
al. [7] of edge bandits is similar in the sense that the bandits lie on the edges.
However, instead of direct rewards of action selection, rewards are a difference
in the values of the vertices. Further, this is the stochastic setting instead of
the adversarial one. In Spectral bandits [18], the actions are the nodes, while
there is a smooth Laplacian graph function for the rewards. We discuss later the
limitations of Laplacian based methods for graph labelling. Further, they do not
consider the Ising model that we study. The seminal work of semi supervised
graph labelling prediction can be found in [6], where minimum label-separating
cut is used for prediction. Laplacian based methods that results neighbouring
nodes connected by an edge to share similar values are widely studied in the
semi-supervised and manifold learning problems [5,11,12,19,20]. Typically, this
information is captured by the semi-norm induced by the Laplacian of the graph.
Essentially, the smoothness of the labelling is ensured by the “cut”. The “cut”
is the number of edges with disagreeing labels. Then, the norm induced by the
Laplacian can be considered as the regularizer. However, there are limitations in
these methods with increasing unlabelled data [1,16]. Here, we also use “cut” as
the regularization measure over an Ising model distribution of the values over the
vertices of the graph at low temperatures. We simultaneously find the partition
using the “min-cut” and then sample the actions from the relevant partition.

2 Background and Preliminaries

2.1 Semi-supervised Graph Classifier Complexity

The standard approach in semi supervised learning is to construct the graph
from the unlabelled and labelled data such that each datum is denoted as a
vertex. Traditionally, the norm induced by the graph Laplacian is used to predict
the labelling. Typically, either the norm induced by the Laplacian is directly
minimized/interpolated with respect to constraints or is used as a regulariser.
Both methods help build classifiers on graphs in order to learn sparse labels in
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R
n by incorporating a measure of complexity also called “cut” or energy. For a

graph G = (V,E), where the set of vertices V = {v1, . . . , vn} are connected by
edges in E. Let a weight of Aij be associated with every edge (i, j) ∈ E, such
that A is the n × n symmetric adjacency matrix, then the Laplacian L of the
graph is given by L = D − A, where D is the degree matrix with its diagonal
values given by Dii =

∑
j Aij . We re-state Definition 1 from [14] that relates

the quadratic form of the Laplacian with the complexity of the “cut-size” for
completeness.

Definition 1 ([14]). If the labelling of the graph G is given by u ∈ R
n, the “cut

size” of u is given by

ψG (u) =
1
4
uTLu =

1
4

∑

(i,j)∈E

Aij(ui − uj)2 . (1)

When u ∈ {0, 1}n, the “cut” is on the edge (i, j) where ui �= uj, then ψG (u) is
the number of “cut” edges.

The smoothness functional of uTLu is generalized in the work of semi-norm
interpolation [13] where the Laplacian p−seminorm is defined on u ∈ R

n as:

||u||G,p � ψG (u) =

⎛

⎝
∑

(i,j)∈E

Aij |ui − uj |p
⎞

⎠

1
p

. (2)

When p = 2, this is equivalent to the harmonic energy minimization technique
in [20]. Alternatively, this technique is also called the Laplacian interpolated
regularization [4]. In [14], the online version of the p = 2 case is studied in the
context of the already available labels. If G is a partially labelled graph as in our
problem, such that |V | = N , and the partial labels l ≤ N , with the labels given
by yl ∈ {1,−1}l on the l vertices, then the minimum semi-norm interpolation
gives the labelling:

y = argmin{uTLu : u ∈ R
n, ur = yr, r = 1, . . . , l} .

The prediction is made by using ŷi = sgn(yi) [13]. The rationale behind mini-
mizing the cut enables the neighbouring vertices to have similarly valued labels.
With p → 1, the prediction problem is reduced to predicting using the label
consistent minimum cut.

2.2 Ising Model at Low Temperature

As discussed above, the labelling of the whole graph is obtained by optimizing the
objective function constrained on the given labels. From label propagation [20],
we saw when p = 2, the harmonic energy function E(u) minimized in (1) is
quadratic in nature. The technique in (1), chooses the label as a function u :
V → R and a probability distribution on the function u given by a Gaussian
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field P (u) = exp−βE(u)

Z , where Z is the partition function and β in the inverse
temperature or the uncertainty in the model. There are multiple limitations
of the quadratic energy minimization technique. This model is not applicable
for p → 1 in the limit. Not only is the computation slow, the mistake bounds
obtained are not the best. Further, in our problem, we relax the values of the
labels such that u : V → [0, 1]. With p → 1, the energy function is equivalent
to the the one that finds the minimum cut. Further, when p → 1 using (2)
results in the minimization of a non-strongly convex function per trial that is
not differentiable. Also, interesting is that the Laplacian based methods are
limited with the abundance of unlabelled data [16]. Hence, we are interested in
the Markov random field applicable here with discrete states also known as the
Ising model. At low temperatures, the Ising probability distribution over the
labellings of a graph G is defined by:

PG
T (u) ∝ exp

(

− 1
T

ψG (u)
)

. (3)

where T is the temperature, u is the labelling over the vertices of G and ψG (u)
is the complexity of the labelling or the “cut-size”. The probabilistic Ising model
encodes the uncertainty about the labels of the vertices and at low temperatures
favours labellings that minimise the number of edges whose vertices have different
labels as shown in (2) with p = 1. If the vertex labels pairs seen so far is given
by Zt of vertex label pairs (j1, y1) , . . . , (jt, yt) such that (j, y) ∈ V (G) × {0, 1},
then the marginal probability of the label of the vertex v being y conditioned
on Zt is given by: PG

T (uv = y|Zt) = PG
T (uv = y|uj1 = y1, . . . , ujt

= yt). At low
temperatures and in the limit of zero temperature T → 0, the marginal favours
the labelling that is consistent with the labelling seen so far and the minimum
cut. Such label conditioning or label consistency in the context of graph labelling
has been extensively studied [11,12,15]. In this paper, we are only interested in
the low temperature setting of the Ising model as the environment in which the
player functions. However, at low temperatures, the minimum cut is still not
unique.

2.3 Multi-Armed Bandit Problem (MAB)

As with any sequential prediction game, the MAB is played between the learner
and the environment and proceeds in a series of rounds t = 1, . . . , n. At every
time instance t, the forecaster chooses an action It from the set of actions or
arms at ∈ A, where A is the action set with K actions. When sampling an arm,
the learner suffers a loss lt that the adversary chooses in a randomized way. The
forecaster receives the loss for the selected action only in the bandit setting.
The objective of the forecaster is to minimize the regret given by the difference
between the incurred cumulative loss on the sequence played and the optimal
cumulative loss with respect to the best possible action in hindsight. The decision
making process depends on the history of actions sampled and losses received
up until time t − 1. The notion of regret is expressed as expected (average)
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regret and pseudo regret, where pseudo regret is the weaker notion because of
the comparison with the optimal action in expectation. For the adversarial case,
it is given by:

Rn = E

n∑

t=1

lIt,t − min
i=1,...,K

E

n∑

t=1

li,t . (4)

The expectation is with respect to the forecaster’s internal randomization and
possibly the adversary’s randomization. In this work, we consider the adversarial
bandit setting with side information (information at queried vertex). Note that
unlike in the standard MAB problems where there is no structure defined over
the actions, in our setup of the problem, we not only have a structure over the
action set but also potentially utilize the associated structural side information
that makes the problem more realistic. One more deviation from the standard
MAB framework is that at every round, the adversary randomly selects a ver-
tex as the current concept; the value of the concept queried is unknown until
after the trial and action selection. Further, our adversary is restricted in that
the complexity or “cut-size” of the model of the environment that we have cho-
sen cannot increase across trials. The intuition being, the number of times the
learner makes a mistake (predicts the queried state wrong) or does not choose
the optimal action, is bounded by the number of times the “cut” changes for the
minimum.

2.4 Formulation

We consider an undirected graph G = (V (G), E(G)) where the elements of E
are called edges that form an unordered pair between the unique elements of V
that are called vertices. We assume an unit weight on every edge. The number of
vertices in the graph are denoted by N . The vertices of the graph are associated
with partially unknown concept values or labels si that are gradually revealed,
while the bandits lie on the edges in E(G) to form the action set A with cardi-
nality |K|. We assume a κ connected graph, the maximum value of κ such that
each vertex has at least κ neighbours. Vertices i and j are neighbours if there
is an edge/action connecting them. Note, the number of rounds n ≤ |K|. In our
case, n is equal to number of vertices queried by the environment with unknown
labels. A vertex is randomly selected by the environment at every round t, in our
case, the queried vertex is given by xi where i ∈ NN . In our example, the queried
vertex could represent the request to place an advert on the product website the
user currently visits . More specifically, the connections in our graph, not only
capture the explicit connections between vertices given by locality, but our ban-
dits or edges also capture the implicit connections between the values of vertices
that are possibly differently labelled. In our case, the labels are relaxed such that
the label for the i-th vertex is denoted by si = {−1, 1}.

At the start we are given the labels of a small subset of observed vertices,
s o ∈ So ⊂ V (G). The labels of the unlabelled vertices su ∈ Su ⊂ V (G)\L, with

S = So ∪ Su is revealed one at a time sequentially as at the end of each round
as side information. We assume that there are at least two vertices labelled at
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the start, one in each category. The learning algorithm plays the online bandit
game where the adversary at each trial reveals the loss of the selected action
and the label of a randomly selected vertex. The goal of the learner is to be
able to predict the label of the randomly selected vertex and then sample the
appropriate action given the prediction.

3 Maximum Flow Computation

Given a partially labelled graph, the Ising model associates a probability with
every labelling that is a consistent completion of the partial labellings. Now,
if “cut” of a labelling defines the “energy” of the labelling, then the low −
temperature Ising is a simplified landscape made up of all such minimum cut
(energy) labellings. In a way, the Ising model induces an “energy landscape” over
labellings via the “cut.” For a n-vertex graph, the energy levels sit inside the
n-dimensional hypercube. One can minimize the energy while being consistent
with the observations seen so far to achieve the desired goal.

As a first step in the learning process, the learner has to detect the underly-
ing hidden partition in the graph, given the available labels with respect to the
currently queried vertex. It can do so by using efficient graph partitioning meth-
ods. However, given the partial labelling, the partition detected should respect
or be consistent with the labels seen so far. One way to address this is using
optimization methods that satisfies the label consistency through constraints.
Alternatively, there are very efficient linear time exact methods that can solve
this in practise. One such method is “Ford- Fulkerson”[8] algorithm. If one can
characterize the labelled vertices in such a way to designate a single source, single
sink network, running “Ford Fulkerson”[8] in an online fashion for every round
using the side information can be used to efficiently detect the partition. Here,
we choose to use a simplified linear programming relaxation to the classic Linear
Programming (LP) maximal flow problem (5). Although, the LP formulation we
use, can be solved in polynomial time, there is nothing restricting us in using
the linear time modified “Ford-Fulkerson” algorithm to achieve the same goal.
The objective here is to enable the learner for better predictions and hence lower
its regret quicker by detecting the partition early, rather than to illustrate the
computational efficiency of the method.

It is known by Menger’s theorem of linear programming duality, that maxi-
mum flow and the minimum cut are related given a source and a target vertex.
Let us introduce the maximum flow or label consistent minimum cut in the graph
using the following notation c∗ = min{S ∈ {−1, 1}N : ψG(S|H)} consistent with
the trial sequence H seen so far.

E(S) = arg min
S∈{−1,1}N

∑

(i,j)∈E(G)

|si − sj | ≤ c∗ . (5)

In general. linear programming relaxations are much easier to analyse. Interested
readers are referred to the article [17], where LP relaxations are discussed. We
use a linear programming relaxation of the above objective as shown in Fig.1
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that has auxiliary variables introduced such that there is one variable for every
vertex v and one variable for every edge fij . Since, we have an undirected graph,
we assume a directed edge in each direction, for every undirected edge. Hence
we have two flow variables per edge in the graph. Essentially, the free variables
in the optimization are the unlabelled vertices sui , suj and the flows across every
direction fij . The total flow across all the edges will be our maximum flow for
this low temperature Ising model. The formulation in Fig.1 below is what the
learner follows to find the minimum cut ψG . The output from the computation
is a directed graph with the value of flow at every edge and the labelling of
the vertices consistent with the labels seen so far; w(i,j) is the cost variable
of the LP. The sum of the flows is the maximum flow in the Ising model at
low temperatures. We fix one of the labelled vertices as a source, and one as
target, each with different labels. We assume a unit capacity on every edge.
The constraints in Fig. 1 ensure the capacity constraint f(ij) and conservation
constraint si−sjare adhered to i.e. the flow in any vertex v other than the source
and target, is equal to flow out from v. The largest amount of flow that can pass
through any edge is at most 1, as we have unit capacity on every edge. We know
that the cost of the maximum flow is equal to the capacity of the minimum
cut. The minimum cut obtained as a solution to the optimization problem is an
integer.

3.1 Playing Ising Bandits

Figure 2 describes the main algorithm for Ising bandits. It is important to note
that ComputeMaxFlow can only guide the player towards the active partition with
respect to the current context (queried vertex) by detecting the partition early
on. P is a subgraph of G, P ⊆ G iff V (P) ⊆ V (G) and E(P) = {(i, j) : i, j ∈
V (P), (i, j) ∈ E(G)}. SelectPartition samples the Ising bandits from the best
partition with respect to the active concept if the minimum cut changes from
previous round. E(R), E(J ) are the partitions of the action set at trial t. Since
S′ provides the labelling, it is easy to see which bandits fall in which partition
with respect to xt . The probability distribution rt over E(R) , and jt over E(J )
sum to pt. Note that if the cut remains the same, player keeps playing the same
partition until the cut changes. This has an important implication. Since we
assume that the adversary cannot increase the cut at any trial, the cut can only
decrease or stay the same. For the rounds it stays the same, the regret that the
player suffers is well bounded by the number of times the cut changes. In the
best case, the algorithm behaves as a typical Multi-armed bandit (MAB) and in
the worst case when the partition changes at every round, the algorithm plays
the modified Ising Bandits. The algorithm parameter η is the standard MAB

value η =
√

log |K|
3n .

4 Experiments

In our experiments, we compare three competitor algorithms with our algorithm
IsingBandits. The three are LabProp [19,20], Exp3 [3] and Exp4[3]. Exp3 and
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ComputeMaxFlow( target vertex: s� ; source vertex: s�; trial sequence:
H = (xk, sk)t

k=1; graph: G )

minimize
∑

(i,j)∈E(G)

w(i, j)f(i, j)

subject to:

f(i,j) ≥ 0 (6)
si − sj ≤ f(ij) (7)

si ≥ −1 (8)
si ≤ 1

Return: min-cut: c∗; flows: f ; consistent partition: S
′

Fig. 1. Computing the Max-flow

Parameters: Graph: G; η ∈ R+

Input: Trial Sequence: H = 〈(x1, −1), (x2, 1), (x3, s3), . . . , (xt, st)〉
Initialization: p1 is the initial distribution over A such that, p1 = ( 1

|K| ,
1

|K| , . . . ,
1

|K| ),

Initial cut-size c = ∞; active partition distribution r1 = p1

for t = 1, . . . , n do

Receive: xt ∈ NN

(c∗, f,S
′
) = ComputeMaxFlow(s�, s�, H, G)

if (c �= c∗) then % if cut has changed

(E(R), E(J ), rt, jt) = SelectPartition(xt, pt, S
′
, A)

Assign: qt be the distribution over Ising bandits w.r.t xt, such that,
∑|E(R)|

i=1 qi,t = rt. For any t, pt = rt ∪ jt

Play: It from qt

Receive: Loss zt; side information st

Compute: Estimated loss z̃i,t =
zi,t

qi,t
1It=i

Cumulative estimated loss: Z̃i,t = Z̃i,t + ˜zi,t

Update: qi,t+1 =
qi,t exp(ηZ̃i,t)

∑|E(R)|
j=1 exp (ηZ̃j,t)

end

Fig. 2. Ising Bandits Algorithm
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Exp4 are from the same family of algorithms for bandits in the adversarial set-
ting. Exp4 is the contextual bandit setting, the close competitor to Ising from
the contextual perspective. The experts or contexts in Exp4 for our problem
setting are a number of possible labellings. Note that the number of experts
selected for prediction have a bearing on the performance of the algorithm. In
our experiments, we fixed the number of experts to 10. In reality, even at low
temperatures for the model we consider, the set of all possible labellings is expo-
nential in size. LabProp [19,20] is the implementation where the state-of-the-art
graph Laplacian based labelling procedure is used to optimize the labelling con-
sistent with the labels seen so far. For all of the above algorithms, we use our
own implementation in MATLAB. Since online experiments are extremely time
consuming while processing one data point at a time, we have averaged each set
of experiments over five trials but for ISOLET, where we average over ten trials.
The datasets that we use are the standardized UCI datasets namely the USPS
and the ISOLET datasets. All datasets are nearly balanced in our experiments to
demonstrate the fairness of the class distribution and for avoiding any majority
vote cases where the class with the majority vote wins.

4.1 Dataset Description

The summary of datasets used is captured in Table 1. The USPS handwritten
digits is an optical character recognition dataset comprising 16x16 grayscale
images of “0” through “9” obtained from scanning handwritten digits. The pre-
processed dataset has each image with 256 real valued features without missing
values scaled to [-1,1]. We randomly sample the examples for the graph from the
7291 original training points. Each vertex in the graph thus sampled is a digit.
We perform several binary graph generation of sampling one digit vs. the other
digit to form our underlying graph with edges or connections between the two
digits forming our action set.

We use a noisy perceptual dataset for spoken letter recognition called ISOLET
consisting of 7797 instances with 617 real valued features. A total of 150 subjects
spoke each letter of the English alphabets twice resulting in 52 training examples
from each speaker. The total of 150 speakers are split into 30 speakers each into
files named as Isolet 1 through to Isolet 5. For the purpose of our experiments
here, we build the graph from Isolet 1 comprising 1560 examples from 30 speaker
with each letter being spoken twice. Again, we are only interested in binary
classified graphs here where we sample the first 13 spoken letters and the last 13
spoken letters as two separate underlying concepts in our graph, the connections
between which form our action set.

Fig. 3. Squares image.
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Table 1. Datasets used in this paper.

Data set #Instances #Features #Classes

USPS 7291 256 10
Isolet 7797 617 26

4.2 Synthetic Dataset

Our synthetic data uses a 2D grid like topology. Figure 3 shows the image used
to construct the graph in our experiments. Our interest in using the image for
our simulation experiment stems from the natural occurring graph structure in
such 2D grids. The image style of Squares is chosen based on our interest in
smooth and wide regions of similar labels interspersed with dissimilar labelled
boundary regions. We use a square image that is constructed using a set of
pixels, each with an intensity of 0 or 1. The 0 and 1 intensities are balanced
across the pixels i.e. there are equal number of pixels with 0 and 1 intensities.
Each pixel in the image corresponds to a vertex in the graph and the intensities
correspond to the label or class of the vertex. Here, our graph has 3600 vertices.
The neighbourhood system in the graph comprises of edges connecting pairs of
neighbouring similar pixels. The connectivity is typically guided by if the pixels
are of comparable intensities, if the pixels are structurally close to each other or
both. Here, we are only interested in the physical pixel locations that are used to
determine connectivity i.e. pixels closer to each other on the grid are connected.
The connections eventually form our bandits action set. In this paper, we are only
interested in undirected and unweighted graphs. Our grid graph thus generated
have a weight of 1 on every edge and there is an edge in either direction. Further,
we investigate the type of neighbourhood system, called torus. In the torus grid,
each pixel has four neighbours; achieved by connecting the top with the bottom
edge pixels and the left with the right edge pixels. Our graph is the same across
trials. We randomly sample the available labelled vertices from the graph such
that there are equal number of labels from each concept class.

4.3 Graph Generation from Datasets

We design our experiments to test the action selection algorithm under a num-
ber of different criteria of graph creation: balanced labels, varying degree of
connectedness, varying sizes of initial labels and noise. The parameters that are
varied across the experiments are graph size indicated by N , labels available as
L, connectivity K, noise levels nse.

In the set of experiments with ISOLET, we chose to build the graph from
the first 30 speakers in Isolet1 that forms a graph of 1560 vertices of 52 spoken
letters (each letter spoken twice) by 30 speakers. The concept classes that are
sampled are the first 13 letters of English alphabets as one concept vs. the next
13 letters as the other concept. We build a 3 nearest neighbour graph from the
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Euclidean distance matrix constructed using the pairwise distances between the
examples (spoken letters). In order to ensure that the graph is connected for
such low connectivity, we sample a MST for each graph and always maintain
the MST edges in the graph. The MST uses the Euclidean distances as weights.
The same underlying graph is used across trials. The edges or connections form
the bandits. The available side information is sampled randomly such that the
two classes are balanced over the entire graph size.

In the USPS experiments, we randomly sample a different graph for each
trial. While sampling the vertices of the graph, we ensure to select vertices
equally from each concept class. We use a variety of concept classes 1 vs. 2, 2
vs. 3 and 4 vs. 7. We use the pairwise Euclidean distance as the weights for
the MST construction. All the sampled graphs maintain the MST edges. In
all the experiments on the datasets, the unweighted minimum spanning tree
(MST) and “K = 3”-NN graph had their edge sets’ “unioned” to create the
resultant graph. The motivating reason being that most empirical experiments
had shown competitive performance of algorithms at K = 3, while the MST
guaranteed connectivity in the graph. Besides, MST based graphs are sparse in
general, enabling computational efficient completion of the experiments. All the
experiments were carried out in a quad-core processor notebooks (@2.30 GHz
each) with 8GB RAM and 16 GB RAM.

4.4 Evaluation Criteria

We measure the performance of the algorithms by means of the instantaneous
regret or per-round regret of the learning algorithm as compared with the optimal
algorithm (lower the better). The instantaneous regret should sub-linearly reduce
to zero. The instantaneous regret of the algorithm is measured against time. In
our case, time indicates each unlabelled vertex queried in an iterative fashion
by the environment, until all unlabelled vertices had been queried. Ideally, the
more vertices has been queried and more side information obtained, the lower
should be the instantaneous regret of the algorithms. In all the experiments, the
hidden concept class distribution in the underlying graph is balanced.

4.5 Results

In the synthetic dataset of concentric squares experiment in Fig. 4, Ising always
outperforms Exp3, Exp4 and LabProp. LabProp and Ising are very competitive
over uninformed competitors of Exp3, Exp4. Exp3, Exp4 do not use the avail-
able side information to sample their action. Note, the overlapping squares cre-
ate a difficult dataset where closely connected clusters of similar labels white
with intensity 1 are surrounded by clusters of opposite labels black with
intensity 0 around its boundary. Although, LabProp is good at exploiting
connectivity, here we see that Ising captures the opposing boundary side infor-
mation better than LabProp.
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Fig. 4. Results on torus graph generated from Squares image with equal number of
neighbours K = 4, N = 3600, L = 250.

Our dataset experiments begin with the USPS 2 Vs.3 experiment with con-
nectivity K = 3, available labels L = 8, and number of data points N = 1000.
In Fig. 5 below, algorithms Ising and LabProp are very competitive when side
information about more than half of the dataset is obtained. When the side
information is very limited at the beginning of the game, LabProp outperforms
Ising.

Fig. 5. USPS 2 Vs.3 with K = 3, N = 1000, L = 8

In Fig. 6 below, we test the behaviour of the algorithms with varying degree of
connectivity. We vary the parameter K over a range to check how well the cluster
size affects the performance. It is known from labelling over graph literature that
with increasing K the behaviour deteriorates. Here, we see Ising outperforms
LabProp for lower values of K, while LabProp wins for higher K.
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(a) K=3 (b) K=5 (c) K=7

Fig. 6. USPS 4 Vs.7, with varying connectivity K = 3,K = 5,K = 7 on randomly
sampled graphs with N = 1000, L = 8. The color coding is uniform over all the graphs
and as indicated in (c) above.

In our experiments over the dataset ISOLET, we sample the graph from
ISOLET 1. In Fig. 7, we observe that with K = 3 and L = 128, Ising out-
performs LabProp throughout. The overall regret achieved in ISOLET is higher
than the regret achieved in USPS as ISOLET is a noisy dataset.

Fig. 7. Experiments on ISOLET with K = 3, N = 1560, L = 128

The following set of experiments in Fig. 8 and Fig. 9 test the robustness of
our methods in presence of balanced noise. Our noise parameter nse is varied
over the percentage range s = 10, 20, 30, 40. When noise is say x percent, we
randomly eliminate the actions/edges in the graph (from existing connections)
for which the noise is less than x percent, and add a balanced equal number of
new actions (connections) to the graph. We see that the performance of Ising
is the most robust across various noise levels. LabProp suffers with noise as it is
heavily dependant on connectivity, and under performs in contrast to Exp4 and
Exp3. On the contrary, Ising uses the connectivity for side information, with its
action selection unaffected with the introduction of noise. When the noise level
increases, the performance of all the algorithms decrease uniformly.
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(a) nse = 10 (b) nse = 20

Fig. 8. USPS 1 vs. 2 Robustness Experiments with noise levels 10% and 20%

(a) nse = 30 (b) nse = 40

Fig. 9. USPS 1 vs. 2 Robustness Experiments with noise levels 30% and 40%

5 Conclusion

There are real life scenarios where a core minimal subset of connections in a net-
work is responsible for partitioning the graph. Such a core group could be a focus
of targeted advertising or content-recommendation as that can have maximum
influence on the network with a potential to go viral. Typically, there is a lot
of available information in such settings that is potentially usable for detecting
the changing partitioning set. We address such advertising and content recom-
mendation challenges by casting the problem as an online Ising graph model of
bandits with side information. We use the notion of cut-size as a regularity mea-
sure in the model to identify the partition and play the bandits game. The best
case behaviour of the algorithm when there is a single partition is equivalent to
the standard adversarial MAB. We show a polynomial algorithm where the label
consistent “cut-size” can guide the sampling procedure. Further, we motivate a
linear time exact algorithm for computing the max flow that also respects the
label consistency. An interesting effect of the algorithm is that as long as the
cut-size does not change, the learner keeps playing the same partition on the
active action set (size smaller than the actual action set). The regret is then
bounded by the number of times the cut changes during the entire game. This
can be proven analytically, which we will like to pursue as future work.
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