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Abstract. Sparse coding plays a key role in high dimensional data anal-
ysis. One critical challenge of sparse coding is to design a dictionary that
is both adaptive to the training data and generalizable to unseen data of
same type. In this paper, we propose a novel dictionary learning method
to build an adaptive dictionary regularized by an a-priori over-completed
dictionary. This leads to a sparse structure of the learned dictionary
over the a-priori dictionary, and a sparse structure of the data over the
learned dictionary. We apply the hierarchical sparse dictionary learning
approach on both synthetic data and real-world high-dimensional time
series data. The experimental results demonstrate that the hierarchi-
cal sparse dictionary learning approach reduces overfitting and enhances
the generalizability of the learned dictionary. Moreover, the learned dic-
tionary is optimized to adapt to the given data and result in a more
compact dictionary and a more robust sparse representation. The exper-
imental results on real datasets demonstrate that the proposed approach
can successfully characterize the heterogeneity of the given data, and
leads to a better and more robust dictionary.

1 Introduction

Sparse representation has been demonstrated as very powerful in analyzing high
dimensional data [1–3], where each data point can be typically represented as a
linear combination of a few atoms in an over-complete dictionary. Assume x ∈ Rd

is a data vector and D is the dictionary, and then the sparse representation of x
can be formulated as to find the sparse code w over D by solving the following
optimization problem,

min
w

‖w‖0
s.t. ‖Dw − x‖ ≤ σ,

where σ is a pre-defined threshold. The pursued sparse code w can been con-
sidered as a robust representation of x, and can be used for clustering [4,5],
classification [6] and denoising [2,7].
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One key question is how to construct such an over-complete dictionary that is
suitable for sparse representation. There are two major approaches for construct-
ing such dictionaries: analytic approaches and learning-based approaches [8]. In
an analytic approach, the dictionary is carefully designed a priori, e.g. with atoms
such as wavelets [9], curvelets [10] and shearlets [11,12]. One advantage of the
analytic approaches is that the dictionary can be designed as well-conditioned
for stable representation, for example, to have a better incoherence condition or
restricted isometry property [13,14].

In learning-based approaches, the dictionaries are learned from the given
data [2,15,16]. Compared to the designed dictionaries in analytic approaches, the
learned dictionaries are usually more adaptive to the given data, and therefore
lead to more robust representations. Therefore, the learning-based approaches
outperform analytic approaches in many tasks such as denoising and clas-
sification, etc [1,17]. The dictionary learning problem in the learning-based
approaches is typically formulated as the following optimization problem,

min
D∈C,W

‖X − DW‖2F
s.t. ‖W‖0 ≤ k,

(1)

where X, W and D represent the data, their sparse codes and the dictionary,
respectively, and C is a pre-specified feasible region for D. However, (1) is non-
convex and thus it is very difficult to find the global optimal solution or even a
good local optimum.

In this paper, we propose to integrate both analytic approaches and learning-
based approaches and learn from data a dictionary that is also built upon and
regularized by an a-priori dictionary. The learned dictionary will be adaptive
to the training data and its size will be determined by the intrinsic complexity
of the training data. Meanwhile, due to the regularization from the a-priori
dictionary, the non-convex optimization problem will have a more stable and
better local minimum solution, and requires fewer training data. We compare
the new method with the state-of-the-art methods on various aspects and our
experimental results demonstrate superior performance of the new method.

2 Hierarchical Sparse Structures on Dictionaries

In the dictionary learning problem in (1), the constraint D ∈ C is critical to
regularize D. In the state of the art, C is typically specified as C = {D : ∀di ∈
D, ‖di‖2 ≤ c} [2,15] or C = {D : ‖D‖F ≤ c} [16]. Intuitively, in both cases, C
tames the amplitude of D. However, these constraints do not consider any prior
knowledge on D, if available. Prior knowledge is valuable to learn a dictionary
that is more powerful to characterize the data. For example, a dictionary for
image patches is expected to have finer structures that might be further rep-
resented using DCT or wavelets. Incorporating such knowledge into dictionary
learning can result in superior results [8,18].
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Given an a-priori over-complete dictionary Φ for data X based on some
prior knowledge about X, we aim to learn a dictionary D based on Φ so that
D is more adaptive to X. In specific, we propose hierarchical sparse structures
among Φ, D and X, that is, D is constructed from Φ via sparse combination of
Φ’s atoms, and X is constructed from D via sparse combination of D’s atoms.
Mathematically, the hierarchical sparse structure of D over Φ can be specified
using the feasible region C as follows,

C = {D : D = ΦU, ‖ui‖0 ≤ l, ∀i}, (2)

where U is the sparse coefficients for D over Φ. Given the dictionary D = ΦU,
data X can then be represented as

X = DW = ΦUW, (3)

where W is the sparse coefficients over D.
The hierarchical structures in (3) share some properties with deep architec-

tures of learning models. Deep architectures have been empirically demonstrated
as very effective for many complicated AI tasks [19]. Compared to a shallow
model, a deep architecture is able to characterize complex data with alleviated
overfitting. Our experimental results demonstrate that the hierarchical struc-
tures among dictionaries can also reduce overfitting and improve generalizability
of the model.

In this paper, we propose a learning framework to learn the dictionary D
and the sparse codes W in (3). The primary contributions of this paper include

– the proposed hierarchical sparse structures among an a-priori over-complete
dictionary Φ, the pursued dictionary D and the given training data X as in
(3);

– the formulation of a hierarchical sparse dictionary learning problem to learn
D and W in Sect. 3; and

– the solution algorithm for the problem in Sect. 3.

3 Hierarchical Sparse Dictionary Learning

We formulate the problem of learning a dictionary D from data X and X’s
sparse representation W over D, where D is built upon an a-priori over-complete
dictionary Φ, as in the following optimization problem.

min
D,W

‖X − DW‖2F
s.t. ‖W‖0 ≤ k

D ∈ C = {D : D = ΦU, ‖ui‖0 ≤ l, ∀i}.

(4)

We denote the learning problem in (4) as Hierarchical Sparse Dictionary Learn-
ing (HiSDL). The major difficulty in HiSDL is that the feasible region C is
non-convex and even not path-connected, and thus optimization over C is very
challenging. We solve the problem by first giving an approximated sparsity of D
on Φ in Sect. 3.1, and then a corresponding optimization algorithm in Sect. 3.2.
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3.1 Approximated sparsity of D on Φ

We first reformulate the feasible region constraint in (4) as a regularizer in
the objective function, and then consider its convex approximation. Specifically,
using the �1 convex relaxation of ‖ · ‖0, we define an C-function of D as follows,

C(D) =
∑

i

min
di

‖ui‖1 s.t. D = ΦU

= min
D

‖U‖1 s.t. D = ΦU.

Thus, the dictionary learning problem in (4) can be reformulated as

min
D,W

1
2
‖X − DW‖2F + γ‖U‖1

s.t. ‖W‖0 ≤ k,

D = ΦU.

(5)

Then we consider a convex approximation of C(D) based on the following
theorem.

Theorem 1. Assume a d × p dictionary Φ with incoherence μ, and D = ΦU
with all ui k-sparse and k < 1 + 1/μ, then

α‖ΦTD‖1 ≤ ‖U‖1 ≤ β‖ΦTD‖1,
where α = 1

1+(p−1)µ , β = 1
1−(k−1)µ . In particular, if Φ is an orthonormal basis,

then ‖U‖1 = ‖ΦTD‖1.
The proof of Theorem 1 is presented in the Appendix section.

Since Φ is a pre-designed dictionary with a well-constrained incoherence,
based on Theorem 1, we choose ‖ΦTD‖1 to approximate C(D) and thus to
regularize the sparsity of D on Φ. Furthermore, we relax and reformulate the
sparse constraint of W as an �1-norm regularizer in the objective function. The
resulting dictionary learning problem is thus as follows.

min
D,W

1
2
‖X − DW‖2F + λ‖W‖1 + γ‖ΦTD‖1. (6)

Due to the convexity of ‖ΦTD‖1, the objective function in (6) is convex with
respect to D.

3.2 Optimization Algorithm

There are two key steps in a typical dictionary learning algorithm: sparse coding
and dictionary update. In the sparse coding step, the goal is to find the sparse
coefficients W with a fixed dictionary D from the last iteration. In the dictio-
nary update step, D is further optimized with respect to the pursued W. The
objective function is therefore minimized in an alternating fashion.
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For the objective function as in (6), the sparse coding step is similar to that
in [15], that is, it is to find W by solving the following problem after fixing D.

min
W

1
2
‖X − DW‖2F + λ‖W‖1. (7)

It is a classical linear inverse problem with l1 regularization. We utilize the
FISTA algorithm [20], due to its efficiency and robustness, to solve (7).

During the dictionary update step, the objective is to pursue the dictionary
D by solving the following problem after fixing W.

min
D

1
2
‖X − DW‖2F + γ‖ΦTD‖1. (8)

To solve the above problem, we introduce an auxiliary variable H = ΦTD. Thus,
the problem in (8) can be reformulated as follows,

Ĥ = arg min
H

1
2
‖X − Φ†HW‖2F + γ‖H‖1, (9)

D̂ = Φ†Ĥ, (10)

where Φ† = (ΦΦT)−1Φ.1 The problem in (9) is again a linear inverse problem
with �1 regularization. We can solve it similarly as for (7) in the sparse coding
step. Thus, the entire procedure for solving (6) is presented in Algorithm 1.

Algorithm 1. Hierarchical Sparse Dictionary Learning (HiSDL)

Input: Data matrix X ∈ Rm×n, dictionary Φ
Initialize: λ, γ, D0

for t = 1, 2, . . . , T do
// Sparse coding: solve (7)
Wt = arg min

W

1
2
‖X − Dt−1W‖2

F + λ‖W‖1

// Dictionary update: solve (8)
Ht = arg min

H

1
2
‖X − Φ†HWt‖2

F + γ‖H‖1

Dt = Φ†Ht

end for
return DT

3.3 Analysis of HiSDL Algorithm

Atom selection in HiSDL Generally, the number of atoms in D is largely
determined by the complexity of the given data, and is therefore difficult to
determine a priori. Moreover, the non-convex nature of the objective function
in (6) inevitably leads to non-global optima. Therefore, it is very challenging to

1 ΦΦT is invertible since Φ is an over-complete frame [9].
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find the correct size of a dictionary D and its associated atoms that result in a
good local minimum [2,21]. Interestingly, HiSDL as in Algorithm 1 has an “atom
selection” property. In particular, the obsolete atoms in D will be automatically
eliminated, and thereby the size of D is well-controlled. To verify this property
of HiSDL, we first have the following lemma.

Lemma 1. For any atom di ∈ D, if dt
i = 0, then dt+1

i = 0, where dt
i is the

i-th atom of D at the t-th iteration as in Algorithm 1.

The proof of Lemma 1 is presented in the Appendix section.
Different from other state-of-the-art approaches as in [2,15], Lemma 1 states

that if one atom degenerates to 0, then it will stay as 0 since then. This essentially
addresses the dictionary pruning problem, i.e. the unused atoms are automati-
cally set to zero. Indeed, if one atom dose not contribute much to the reduction
of the empirical error ‖X − DW‖F , then it will be set to zero in the dictionary
update step based on the following theorem.

Theorem 2. At iteration t0, if ‖ΨTRiWT‖∞ < γ, where Ψ = Φ†, and Ri =
X−D−iW is the empirical error without using di in D, then di = 0 for t > t0.

The proof of Theorem 2 is presented in the Appendix section.
Theorem 2 ensures that the unnecessary atoms will degenerate to 0 as the

empirical error reduces during the learning process. We are therefore able to
maintain a compact dictionary in an on-line fashion.

Computational Complexity of HiSDL The sparse coding step (7) and the
dictionary update step (8) dominate the computational complexity of HiSDL. In
particular, the sparse coding step and the dictionary update step are essentially
the same constrained �1-minimization problem, of which the computational com-
plexity is mainly from matrix multiplication when using soft-thresholding meth-
ods such as FISTA [20]. Specifically, if X is of dimension d×m, D is of dimension
d×n, and Φ is of dimension d×p, where typically m > p > n and m > d, p > d 2,
then the computational complexity of each soft-thresholding iteration in sparse
coding is O(mnd), and similarly O(pdn) for dictionary update.

4 Related Work

Structured dictionary learning has been explored in previous works [22–24] from
different perspectives. For example, in [22], a tree-like hierarchical structure is
learned among the atoms in a dictionary, instead of treating each atom inde-
pendently. Group sparsity among atoms is also considered in [23] and is applied
to model spatial relations between atoms. In [24], a smooth prior on the sparse

2 The number of samples m in X should be larger than p, the number of atoms in
Φ, and p > n, the number of atoms in a more compact dictionary D. However, n is
determined by the richness of X, and may therefore be larger or smaller than d.
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coefficients W is used in order to get a more stable representation. In con-
trast to these methods, we introduce a known dictionary representing the prior
knowledge of the given data, and the hierarchical structure is imposed on the
known dictionary and the learned dictionary rather than among the atoms in
the learned dictionary. In addition, in our model, the known dictionary is used
directly to regularize dictionary learning rather than to enforce structures in
W as in [22–24]. As shown in this paper later, the use of the known dictionary
and the hierarchical structures among the known dictionary and the learned
dictionary enable a sparser representation with lower empirical errors.

5 Experimental Results

In this section, we present experimental results on synthetic data to empirically
evaluate HiSDL. We also demonstrate the applications of HiSDL using real-world
data. In particular, we test HiSDL on the following two datasets:

1. Synthetic data: we synthesize 200 time series of length 100 using DCT and
Haar wavelets to simulate the real-world time series. DCT and Haar wavelets
are composed into the a-priori over-complete dictionary Φ. Then a few atoms
from Φ are randomly selected and combined with amplitudes following a
uniform distribution in [−1, 1] into an atom in a dictionary D, and in the
end D has 100 atoms. A random sparse matrix W is then generated and
used so as to generate the synthetic time series from D.

2. Chemical plant time series (CPT): This dataset includes 1625 time series
from various sensors monitoring an entire manufacture process of a chemical
plant. Every time series is the output of one sensor, and each sensor collects
one observation every minute. The data exhibit high heterogeneity in nature,
e.g., there are both continuous and discrete time series, smooth and non-
smooth time series, etc.

5.1 Evaluation on Empirical Errors

Fig. 1 shows the empirical errors of HiSDL and of the state-of-the-art method [15],
denoted as BatchDL, during learning iterations with different parameter λ values
on the synthetic data (γ = 0.05λ; other λ values give similar trends; the optimal
λ and γ combinations are from grid search). For each of the λ values, the sparsity
of the learned W is relatively similar from both HiSDL and BatchDL. However,
HiSDL consistently achieves smaller empirical errors than BatchDL after each
learning iteration. This demonstrates that by introducing a regularization of D
with respect to an a-priori over-complete Φ, the optimization process in (4) may
have a better chance to end up at a better local minimum within the reduced
(and better) search space. In addition, HiSDL achieves smaller empirical errors
faster than BatchDL. This implies that HiSDL can quickly find a more accurate
sparse representation than BatchDL.

We further compare the performance of HiSDL and BatchDL on the CPT
dataset. We randomly pick one-day data in the dataset for dictionary learning,
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Fig. 1. Empirical errors vs learning iterations on synthetic data
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Fig. 3. Reconstruction errors on CPT
testing data

and the data from a later day for testing. For CPT, Φ is constructed as a com-
bination of DCT and Haar wavelets, of which the number of atoms is twice as
the length of time series. However, the learned dictionary is composed of only
120 atoms. Fig. 2 shows the empirical errors during learning iterations with
λ = 0.001 and γ = 0.02λ (the λ and γ values and combinations are optimized
from grid search). Again, on the real dataset, HiSDL achieves smaller empirical
errors faster than BatchDL. Fig. 3 shows the reconstruction errors of HiSDL and
BatchDL on CPT testing data with different λ values. In Fig. 3, HiSDL consis-
tently achieves smaller reconstruction errors than BatchDL, which implies that
HiSDL is able to find more robust and generalizable dictionaries than BatchDL.

5.2 Evaluation on Atom Recovery

Fig. 4 presents some sample atoms learned from HiSDL on the synthetic data.
These atoms exhibit finer structures as a linear combination of DCT and Haar
wavelets, which demonstrates the capability of HiSDL recovering the building
structures of the data. However, as shown in Fig. 5, the learned atoms by BatchDL
on the synthetic data appear less structured, more homogeneous and do not
conform to the true structures underlying the data. This is due to that fact that
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synthetic data
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Fig. 6. Recovery errors vs sample size

BatchDL constraints the norm of each atom and thus biases the search of the
atoms towards a bad local minimum.

To further test the performance of the methods on the discovery of latent
atoms, we evaluate HiSDL and BatchDL on the blind source separation prob-
lem [25,26] on a set of synthetic datasets. These synthetic datasets have the same
a-priori over-complete dictionary Φ and dictionary D as generated as before, but
different number of time series (150, 200, 250 up to 1000). The success of the
recovery of latent atoms relies on the ratio of the given sample size to the num-
ber of latent atoms. Intuitively, we can only expect to recover all latent atoms
when every atom has been sufficiently used in the given sample set. Naturally,
this recovery goal is more likely to be achieved when we have a large dataset.

Denote the learned dictionary as D̂, and the relative recovery error of each
atom di ∈ D is then defined as follows,

ri = min
d̂j∈D̂

{1 − cos Θ(d̂j ,di)}, (11)
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Fig. 7. Sample time series clusters in CPT and the corresponding mostly used atoms

where Θ(d̂j ,di) is the angle between d̂j and di. In specific, ri ∈ [0, 1], and if
there exists d̂j ∈ D̂ that satisfies di = d̂j , then ri = 0. In Fig. 6, we show the
mean/median atom recovery error vs the relative sample size (i.e., p/n in Fig. 6,
the ratio of sample sizes over the dictionary size) on the synthetic datasets.

In this set of experiments, the initial dictionary size for both algorithms is 150,
and the dictionary of ground truth is of size 100. Each point in Fig. 6 is the mean
of 5 experiments under the same training set, but with different initialization.
We can see that when the sample size is large, i.e. sufficient information is
provided, both HiSDL and BatchDL work well. However, when the sample size
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is small, such as two to four times the number of latent atoms, HiSDL shows a
substantially superior performance. It further demonstrates that by integrating
a priori knowledge of the given dataset, HiSDL achieves better generalizability.

5.3 Evaluation on Sparse Codes

We also explore the ability of HiSDL to process heterogeneous time series data by
studying the clustering results using sparse codes. Intuitively, if the learned dic-
tionary successfully characterizes the given data, the clustering generated from
their associated sparse codes should exhibit good structures. Fig. 7 shows some
clusters of time series from CPT data and their frequently used dictionary atoms.
The clustering is done by using spectral clustering algorithm [27] on the sparse
codes. As Fig. 7 shows, the CPT data are heterogeneous including step sig-
nals, piece-wise linear signals, periodical signals and even brownian motion-like
signals. However, after representing the time series over the learned hierarchi-
cal dictionaries, the clustering over their sparse codes shows high homogeneity
within each cluster, and the frequently used atoms for each cluster represent dom-
inant features of the cluster. This demonstrates that HiSDL has the capability of
capturing the most representative features from even highly heterogeneous time
series.

6 Conclusion

In this paper, we introduce a novel dictionary learning framework HiSDL which
utilizes a hierarchical sparse structure to characterize observed data. The exper-
iments demonstrate that the hierarchical sparse structure within the model reg-
ularizes potential solutions, and enables smaller empirical errors. In addition,
HiSDL is able to identify the most representative latent atoms from a few train-
ing samples, and thus well characterizes the training data. Future work may
include constructing nonlinear and deep structures on dictionary learning mod-
els. Also it would be interesting to see a more thorough evaluation of HiSDL on
other types of data, such as videos and images.

Appendix

Proof of Theorem 1

Proof. We first show the right part of the inequality, β‖ΦTD‖1 ≥ ‖U‖1.
since D = ΦU, ‖ui‖0 ≤ k,∀ui ∈ U, it follows that

‖ΦTD‖1 = ‖ΦTΦU‖1
=

∑

i

‖ΦTΦui‖1. (12)
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Moreover, according to the definition of incoherence,

‖ΦTΦui‖1 ≥
∑

j

(1 − (k − 1)μ)|uij |1

= (1 − (k − 1)μ)‖ui‖1. (13)

Consequently, we have

‖ΦTD‖1 ≥
∑

i

‖ui‖1(1 − (k − 1)μ)

= (1 − (k − 1)μ)‖U‖1, (14)

and let β = 1
1−(k−1)µ , it follows that β‖ΦTD‖1 ≥ ‖U‖1.

We next prove the left part of the inequality, α‖ΦTD‖1 ≤ ‖U‖1.
Proceeding from (12), we further have

‖ΦTΦui‖1 ≤
∑

j

(1 − (p − 1)μ)|uij |1

= (1 − (p − 1)μ)‖ui‖1. (15)

and as a result,

‖ΦTD‖1 =
∑

i

‖ΦTΦui‖1

≤ (1 − (p − 1)μ)‖U‖1. (16)

Since α = 1
1+(p−1)µ , we therefore have α‖ΦTD‖1 ≤ ‖U‖1. �

Proofs of Lemma 1 and Theorem 2

We first show the proof of Lemma 1.

Proof. If dt
i = 0, then

Wt+1 = arg min
W

1
2
‖X − DtW‖2F + λ‖W‖1 (17)

implies that the ith row of Wt+1, wi
t+1, is also 0.

Now consider

Dt+1 = arg min
D

=
1
2
‖X − DWt+1‖2F + λ‖ΦTD‖1, (18)

since wi
t+1 = 0, we therefore have dt+1

i = 0. �

Having Lemma 1 proved, we can then proceed to prove Theorem 2.
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Proof. At iteration t0, let g(H) = γ‖H‖1 + 1
2‖X − ΨHW‖2F , and assume Ĥ =

arg minH g(H), we then have

∂g(Ĥ) = γ∂‖Ĥ‖1 + ΨT(X − ΨĤW)WT � 0. (19)

Rewrite H as H = Hi + H−i, where Hi = [0, . . . ,0,hi,0, . . . ,0] and H−i =
[h1, . . . ,hi−1,0,hi+1, . . . ,hn], then we have

∂g(Ĥi) � 0, ∂g(Ĥ−i) � 0. (20)

Note that

∂g(Ĥi) = γ∂‖Ĥi‖1 + ΨT(Ri − ΨĤiW)WT, (21)

where Ri = X − ΨĤ−iW = X − D−iW.
Consider the condition ‖ΨTRiWT‖∞ < γ, combined with the subgradient

of �1-norm that ∂‖x‖1 = (−1, 1), we have

Ĥi = 0 ⇔ ∂g(Ĥi) � 0. (22)

When hi = 0, since D = ΨH, it follows that di = 0 at t0 + 1. According to
Lemma 1, we consequently have di = 0 for t > t0. �
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