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Abstract. This paper considers the problem of finding large dense sub-
graphs in relational graphs, i.e., a set of graphs which share a common
vertex set. We present an approximation algorithm for finding the dens-
est common subgraph in a relational graph set based on an extension
of Charikar’s method for finding the densest subgraph in a single graph.
We also present a simple greedy heuristic which can be implemented effi-
ciently for analysis of larger graphs. We give graph dependent bounds
on the quality of the solutions returned by our methods. Lastly, we show
by empirical evaluation on several benchmark datasets that our method
out-performs existing approaches.

1 Introduction

Finding dense subgraphs is a key subtask in many applications [see 21, forasurvey].
In many contexts, there exist several graphs encoding different relationships
between the same set of actors. Then, a subset of actors having high degree of inter-
connections (dense) which recur in multiple graphs (frequent) often have a rich
interpretation in the application domain. For example, dense recurrent subgraphs
in multiple gene co-expression networks have been shown to correspond to known
functional/transcriptional modules or protein complexes as well as phenotype-
specific modules [12,24].

Several data-miningmethodshave addressed theproblemof enumeratingdense
recurrent subgraphs [see,e.g., 6,12,13,24,26,31,33].Most existing approaches enu-
merate all frequent quasicliques depending on parameters such as minimum sup-
port threshold and minimum relative density. This results in exponential growth
of search space with increasing size of the returned subgraph, making the methods
unsuitable for identifying large dense subgraphs in multiple graphs. The approach
of [24] yields a non-convex cubic programming problem which is solved approx-
imately using multi-stage convex relaxation [34] and used in the analysis of co-
expression networks in order to identify small biologically relevant modules. [13]
present a method to identify large dense subgraphs based on solving a Multiple
Kernel Learning (MKL) problem [3,27] with precomputed kernels.

On the other hand, there is a rich body of work on approximation algo-
rithms which addresses the problem of finding the densest subgraph (DS) [7,11]
and its size-constrained variants (DkS, DalkS, DamkS) [1,5,20] including greedy
approaches [2,9,28], truncated power method [32], linear programming (LP)
based methods [7,20] and semidefinite programming (SDP) based methods
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[8,29]. We note that given a relational graph set 1, G := {G(m) = (V,E(m))}M
m=1,

it is possible to construct integrated graphs, e.g., G∪, G∩ or G≥t having edge
sets respectively,

⋃
E(m),

⋂
E(m) or {e | supp(e,G) ≥ t}) 2; and identify dense

subgraphs in the integrated graph using these methods. However, as noted by
[16], a dense subgraph in the integrated graph may either not be dense in one
or more of the original graphs, e.g., G∪ and G≥t; or, be too pessimistic in size
of the returned subgraph, e.g., G∩.

In this paper, we formalize the notion of Densest Common Subgraph (i.e., a
subset of nodes which maximizes the density of the induced subgraph in each of
the graphs in the relational graph set) which was previously discussed in [13]. We
present an approximation algorithm (DCS LP) for finding the densest common
subgraph in a relational graph set based on an extension of Charikar’s LP based
approach [7,20] for finding the densest subgraph (DS) in a single graph. We
also present a simple greedy heuristic (DCS GREEDY) which can be implemented
efficiently for analysis of larger graphs. We give graph dependent bounds on the
quality of the solutions returned by DCS LP and DCS GREEDY. Lastly, we show by
empirical evaluation on several benchmark datasets and real-world datasets that
our methods out-perform prior approaches.

Notation. We represent vectors using lower case bold letters a,b, . . ., etc., and
matrices using upper case bold letters A,B, . . . etc.; with ai referring to ith

element of a, and similarly Aij referring to (i, j)th entry of matrix A. We use
notation [n] to denote the set {1, 2, . . . , n}. For a vector in R

d, we denote the
Euclidean norm by ‖.‖ and the p-norm by ‖.‖p. The inequality a ≥ 0 is true if
it holds element-wise.

Let G = (V,E) be a simple undirected graph of order n with vertex set
V = [n] and edge set E ⊆ V × V . Let A ∈ Sn denote the adjacency matrix of G
where Aij = 1 if edge (i, j) ∈ E, and 0 otherwise. We use shorthand notation ij
to mean (i, j) whenever clear from context. Let Ḡ denote the complement graph
of G. The adjacency matrix of Ḡ is Ā = ee� − I − A, where e = [1, 1, . . . , 1]�

is a vector of length n containing all 1’s, and I denotes the identity matrix. We
denote the indicator vector for some set S ⊆ V as eS which is one for all i ∈ S
and zero in other co-ordinates.

We use notation degG(i) to denote the degree of node i in graph G, and
degG(i, S) to denote the degree of node i in the subgraph (S,E(S)) induced by
vertex set S ⊆ V in graph G. The density δG(S) and relative density ρG(S)
of subgraph (S,E(S)) induced by vertex set S ⊆ V in graph G = (V,E) are
given by δG(S) := |E(S)|

|S| and ρG(S) := |E(S)|/(|S|
2

)
respectively. The induced

subgraph (S,E(S)) is an α-quasiclique if |E(S)| ≥ α
(|S|

2

)
, i.e., if the relative

density ρG(S) of the induced subgraph exceeds a threshold parameter α ∈ (0, 1).
Let δ∗

G := maxS⊆V δG(S) denote the density of the densest subgraph (DS) in G.

1 A relational graph set is defined as a set of simple undirected graphs which share a
common vertex set.

2 The support of an edge e in the relational graph set G denoted by supp(e,G) :=
#{m : e ∈ E(m)} is the number of graphs G(m) ∈ G which contain this edge.
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Given a relational graph set G = {G(m) = (V,E(m))}M
m=1, we use short-

hand notation degm(i), degm(i, S), δm(S), ρm(S) and δ∗
m to denote degG(m)(i),

degG(m)(i, S), δG(m)(S), ρG(m)(S) and δ∗
G(m) , respectively, whenever clear from

context. We use nG :=
∑

m |E(m)| to denote the total number of edges in the rela-
tional graph set. The support of a subgraph H = (VH , EH), VH ⊆ V,EH ⊆ V ×V
in G is given by supp(H,G) := #{m : EH ⊆ E(m)}.

2 Related Work

In this section, we review prior work on finding dense subgraphs and quasicliques.
Section 2.1 discusses approximation algorithms (with known worst-case bounds)
that find the subgraph with maximum density (DS) or its size-constrained vari-
ants (DkS, DalkS, DamkS). In Section 2.2 reviews methods for enumerating fre-
quent dense subgraphs present in a relational graph set.

2.1 Finding a Dense Subgraph in a Single Graph

The problem of finding maximum density subgraph was studied by Goldberg [11]
who introduced a maximum-flow algorithm for this problem (see also [10]).
Kannan and Vinay [18] studied the problem for directed graphs and introduced
an O(log n)-approximation algorithm. Charikar [7] presented a linear program-
ming relaxation from which the optimal solution can be recovered. They also
showed that the related greedy algorithm of [2] yields 2-approximation for the
problem. The work of Khuller and Saha [20] simplified the analysis in [7]. Bah-
mani et al. [4] obtained O(2 + ε)-approximation algorithm for DS in the stream-
ing model which makes O( 1ε log n) passes over the data. Recently, Tsourakakis
et al. [30] defined the notion of optimal α-quasiclique (OQC) which maximizes
the edge surplus given by fα(S) := (|E(S)| − α

(|S|
2

)
); and, obtained a 2-

approximation algorithm for finding optimal quasicliques analogous to Charikar’s
algorithm [7]. Comparing their approach (α = 1/3) with Charikar’s algorithm
on several real-world graphs, the authors argue that OQC yields better results in
terms of lower diameter, higher relative density and higher triangle density of
the extracted subgraphs.

When there is a constraint on the size of the subgraph (|S| = k), the problem
of finding the densest k subgraph (DkS) is NP-Hard [2,9]. Feige et al. [9] gave
an O(n1/3−ε)-approximation algorithm for DkS. The best known current bound
for DkS is given by Bhaskara et al. [5] who obtain an O(n1/4+ε)-approximation
algorithm for DkS with any ε > 0 having run time nO(1/ε). Khot [19] showed that
under reasonable complexity assumptions, DkS cannot be approximated within
an arbitrary constant factor. Recently, Papailiopoulos et al. [25] obtained graph-
dependent bounds for DkS based on low-rank approximation of the adjacency
matrix, and experimentally showed that their bounds are tight for several large
real-world graphs.

Two variants of the DkS problem where the size constraint is relaxed were
introduced in [1], namely, densest at-most-k subgraph (DamkS, |S| ≤ k) and
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densest at-least-k subgraph (DalkS, |S| ≥ k). Andersen and Chellapilla [1] gave
an 2-approximation algorithm for DalkS which was subsequently improved in
running time by [20]. Khuller and Saha [20] also showed that DamkS is as hard
as DkS, specifically, an α-approximation for DamkS implies a 4α-approximation
for DkS.

2.2 Finding Cross-Graph Quasicliques

The problem of identifying dense recurrent subgraphs has been studied in several
guises with differing terminologies. Early works on frequent subgraph mining
were based either on the apriori principle or pattern-growth approach [see 15,
forarecentsurvey]. One key bottleneck in general frequent subgraph mining is
handling graph (and subgraph) isomorphism; which is absent in relational graph
sets since the graphs share a common vertex set.

Yan et al. [31] enumerated frequent dense subgraphs in a relational graph
set where each edge has support greater than some threshold (frequent) and the
subgraph has large minimum cut (dense). Zeng et al. [33] studied the problem of
mining frequent quasicliques in a database of vertex labeled graphs by consid-
ering γ-quasicliques induced by node sets S(a) and S(b) in graphs G(a) and G(b)

respectively “γ-isomorphic” if there is a one-to-one mapping between S(a) and
S(b) which preserves their vertex labels. Boden et al. [6] present a method for
enumerating frequent quasicliques (minimum support) in edge-labelled graphs.

Hu et al. [12] presented a method for identifying coherent dense subgraphs
from gene microarray expression datasets by finding dense subgraphs in the
summary graph GS = (VS , ES) where VS ⊂ V × V and nodes (u, v) and
(w, z) have an edge in ES if their support sets in G have high Jaccard simi-
larity. Pei et al. [26] presented an exhaustive approach for enumerating all cross-
graph quasicliques defined as follows: given relational graph set G, parameters
γ(1), γ(2), . . . , γ(M) and min sup ∈ (0, 1]; a vertex set S is a frequent cross-
graph quasiclique (fCGQC) if it has relative density ρm(S) ≥ γ(m) in at least
(M · min sup) graphs.

Li et al. [24] present a method for identifying recurrent dense subgraphs in
weighted graphs based on a non-convex optimization problem which is solved
approximately using multi-state convex relaxation [34]. This is used to identify
several recurrent heavy subgraphs in multiple co-expression networks.

Jethava et al. [13] present a parameter-less algorithm based on a multiple ker-
nel learning (MKL) [3,27] formulation for finding an ordering of vertices which
maximizes the minimum relative density (across all graphs) of the induced sub-
graph. Their approach also provides weak graph-dependent bounds on the den-
sity of the induced subgraphs [see 14, Lemma 11 and Theorem 12]. However,
their method has O(n3) complexity which cannot scale to large graphs.

3 Methods

We are interested in finding a set of nodes which induces a dense subgraph
in each of the graphs in G. We formalize this notion by defining the problem
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of densest common subgraph (DCS). Let δG(S) := minG(m)∈G δm(S) denote the
density of the subgraph having minimum density among the subgraphs induced
by S in graphs G(m) ∈ G. In the sequel, we refer to δG(S) as the common density
of vertex set S ⊆ V in graph set G.

Definition 1 (Densest Common Subgraph). Given relational graph set G,
the densest common subgraph is given by:

SDCS := arg max
S⊆V

δG(S), (1)

We use shorthand notation δG := δG(SDCS) to denote the minimum density of
any subgraph induced by SDCS in the graph set G.

The DCS problem is related to the k-multicut (following Goldberg’s construc-
tion [11]) which is known to be NP-Hard for k ≥ 3, and therefore, DCS is sus-
pected to be NP-Hard. However, a formal proof of hardness is non-trivial and it
constitutes an interesting problem for future research.

We can define the LP relaxation (DCS LP) of the DCS problem as:

max t
s.t.

∑n
i=1 yi ≤ 1

∑
ij∈E(m) x

(m)
ij ≥ t ∀E(m), m ∈ [M ]

x
(m)
ij ≤ yi, x

(m)
ij ≤ yj ∀ ij ∈ E(m)

x
(m)
ij ≥ 0, yi ≥ 0 ∀ ij ∈ E(m), ∀ i ∈ [n],

(2)

where (t, {x
(m)
ij }ij∈E(m) , {yi}i∈[n]) denote the primal variables. We make the

following observations:

Lemma 1. For any S ⊆ V , the optimal value of DCS LP in (2) is at least δG(S).
In particular, the optimal value of DCS LP is an upper bound on δG.

Proof. Suppose |S| = k. We construct a feasible solution as follows:

yi =

{
1
k if i, j ∈ S

0 otherwise
, x

(m)
ij =

{
1
k if i, j ∈ S

0 otherwise
.

Then,
∑

ij∈E(m) x
(m)
ij = 1

k

∑
ij∈E(m)(S) 1 = δG(m)(S) and t = δG(S). 	


We consider an algorithm which solves DCS LP and returns S(r) = {i : yi
∗ ≥

r} which maximizes δG(S(r)). Note that there are at most n sets to consider
corresponding to distinct values of y∗

i . The following theorem provides a lower
bound on the quality of the returned subgraph.

Lemma 2. Let (t∗, x(m)
ij

∗
, yi

∗) denote optimal solution for DCS LP (2) and let
S := {i : yi

∗ > 0} denote the set of vertices with non-zeros yi
∗’s with k := |S|

and ymin = mini∈S yi
∗. The following hold:

(a) If yi
∗ = 1

k ∀ i ∈ S, then S is a densest common subgraph, i.e., δG(S) = δG.
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(b) For each graph G(m) ∈ G, there exists S(m) ⊆ S which induces a subgraph
in G(m) with density at least t∗, i.e., δG(m)(S(m)) ≥ t∗.

(c) The density of the subgraph induced by S in any graph G(m) is at least
t∗
2t∗+1�

k , i.e., δG(S) ≥ t∗
2t∗+1�
k .

Proof (of Lemma 2). Without loss of generality, assume x
(m)
ij

∗
= min(yi

∗, yj
∗)

since for any feasible solution (x, y, t), we can construct another solution by
setting x̄

(m)
ij := min(yi, yj) ≥ x

(m)
ij with t̄ ≥ t.

(a) If y∗ = 1
K eS, then t̄ = δG(S). By Lemma 1, t∗ ≥ δG and the result follows.

(b) Following the analysis of Charikar [7, Lemma 2], we define collection of sets
indexed by a parameter r ≥ 0. Let S(r) := {i : yi

∗ ≥ r} and E(m)(r) :=
{ij ∈ E(m) : x

(m)
ij

∗ ≥ r}. Since x
(m)
ij

∗
= min(yi

∗, yj
∗) by construction,

ij ∈ E(m)(r) ⇔ i, j ∈ S(r) .

Now,
∫ ∞
0

|S(r)|dr =
∑

i yi
∗ ≤ 1 and

∫ ∞
0

|E(m)(r)|dr =
∑

ij∈E(m) x
(m)
ij

∗ ≥ t∗.

Then, for each G(m) ∈ G, there exists r(m) such that |E(m)(r(m))|
|S(r(m))| ≥ t∗.

Otherwise, it leads to the following contradiction:

t∗ ≤
∫ ∞

0

|E(m)(r)|dr < t∗
∫ ∞

0

|S(r)|dr ≤ t∗

We define S(m) := S(r(m)) ⊆ S which induces a subgraph of density at least
t∗ in graph G(m) ∈ G.

(c) We observe |S(m)| ≥ �2t∗ + 1 since δm(S(m)) ≥ t∗. Consequently, for each
graph G(m) ∈ G,

δm(S) =
|E(m)(S)|

k
≥ |E(m)(S(m))|

k
=

|S(m)|
k

δm(S(m)) ≥ �2t∗ + 1
k

t∗ . 	


The LP optimal t∗ is at most δG
min := minG(m) δG(m) where δG(m) denotes

the density of the densest subgraph in G(m). This yields an upper bound on
the integrality gap of DCS LP given by δG

min

δG
. The LP solution is particularly

interesting whenever y∗ = 1
|S|eS since we get proof of optimality in that case. In

the general case, DCS LP can exhibit both integrality gap higher than 1 and an
approximation ratio lower than 1 (obtained by δG(S)) in contrast to Charikar’s
LP in the densest subgraph problem (Section 4.1).

Furthermore, solving DCS LP has running time polynomial in the number of
edges in the graph set (nO(1)

G
) which cannot be scaled to large graphs having

more than a few hundred thousand edges. In the next section, we consider a
simple greedy algorithm for finding common dense subgraphs in large graphs.
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Algorithm 1 (S, r) = DCS GREEDY(G)
1: Initialize V1 := V
2: while δG(Vt) > 0 do
3: mt := arg minm δm(Vt) {G(m) with min. density induced subgraph}
4: V ′ := {i ∈ Vt : degmt

(i, Vt) > 0} {Non-isolated nodes in G(mt)(Vt)}
5: it := arg mini∈Vt degmt

(i, Vt) {minimum degree node in G(mt)(Vt)}
6: For all m, assign all edges (it, j) ∈ E(m) and (j, it) ∈ E(m) to node it.
7: Set deg+

t := maxm degm(it, Vt) {Max. degree of it in any G(m)(Vt)}
8: Set deg−

t := mini∈V ′ degmt
(i, V ′) {Min. non-zero degree in G(mt)(Vt)}

9: Set kt =
deg+t
deg−

t

and rt = kt
|Vt|
|V ′| {deg+

t ≤ 2rt δG(Vt)}
10: Vt+1 ← Vt\it
11: t ← t + 1
12: end while
13: S′ := Vt {Clean-up phase}
14: while |S′| > 0 do
15: Choose random i′ ∈ S′

16: ∀m, assign edges (i′, j) ∈ E(m)(S′) and (j, i′) ∈ E(m)(S′) to i.
17: S′ ← S′\i′

18: end while
19: return S := arg maxVt δG(Vt) and r := maxt rt

3.1 A Greedy Algorithm for Densest Common Subgraph

In this section, we consider a peeling algorithm (DCS GREEDY) for solving dens-
est common subgraph problem. The algorithm iteratively constructs vertex set
Vt+1 at each time t by removing the node it from Vt where it is the minimum
degree node in the subgraph G(mt)(Vt) where G(mt)(Vt) has the minimum den-
sity among the subgraphs induced by Vt in graph set G. All edges (it, j) and
(j, it) present in induced subgraphs G(m)(Vt) are assigned to node it. The set Vt

which maximizes δG(Vt) is returned as solution. Algorithm 1 gives the complete
pseudocode for DCS GREEDY.

We now consider an analysis of the above algorithm. We have the following
invariant: after each iteration t, the set of edges E(m)

⋂
(Vt × Vt) are unassigned

while all other edges are assigned to a node in V \Vt. At the termination of
the algorithm, either all edges (i, j) ∈ E(m) ∀m are assigned to i, or all edges
(i, j) ∈ E(m) ∀m are assigned to j.

Let d
(m)
max denote the maximum number of edges (i, j) or (j, i) assigned to

any node i in graph G(m) and let dminmax denote the minimum value of d
(m)
max

among all graphs G(m) ∈ G. The following holds:

Lemma 3. For any S ⊆ V , the value δG(S) is at most dminmax. In particular,
dminmax is an upper bound on δG.

Proof (Sketch). Each edge in E(m)(S) is assigned to a vertex in S, and therefore,
|E(m)(S)| ≤ d

(m)
max · |S|. Consequently, δG(S) ≤ dminmax. 	
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The greedy algorithm of Charikar [7] yields a 2-approximation for the densest
subgraph problem due to the following property: in the densest subgraph, the
degree of the minimum degree subgraph is at least the average degree otherwise
it can safely be removed to yield an even denser subgraph. This property is not
true for DCS. The following result gives an lower bound on the quality of the
solution returned by DCS GREEDY.

Lemma 4. The value dminmax is at most (2r · δG(S)) where (S, r) is the solution
returned by the DCS GREEDY algorithm. In particular, δG ≤ (2r · δG(S)).

Proof. Let m′ = arg min d
(m)
max and i′ denote the node in graph G(m′) which has

the maximum number of edges assigned to it. Let t′ denote the iteration in which
node i′ is removed from Vt′ during the execution of DCS GREEDY. By construction,
edges are assigned to any node only when it is removed from the graph and
therefore, dminmax = deg+t′ . Further, by definition of deg−

t , we have deg−
t ≤

2 |E(mt)(V ′)|
|V ′| = 2 δG(Vt)

|Vt|
|V ′| . Combining, we get

dminmax = deg+t′ ≤ 2rt′ δG(Vt′) ≤ 2r δG(S). 	

The DCS GREEDY algorithm can be efficiently implemented in O(n+nG) time

by maintaining a list of node degrees for each graph G(m) and updating the
neighbours of a node v in the degree list whenever node v is removed.

3.2 Densest Common at Least-k Subgraph (DCalkS)

We next consider the Densest Common at least-k Subgraph (DCalkS) problem
which imposes constraint on the minimum size of the induced subgraphs.

Definition 2 (Densest Common at Least-k Subgraph). Given relational
graph set G, the densest common at least-k subgraph (DCalkS) is given by,

H := arg max
S⊆V :|S|≥k

δG(S). (3)

In the sequel, we use the shorthand notation nh := |H| and δ≥k := δG(H) to
denote the cardinality of the DCalkS subgraph and the minimum density of any
subgraph by H induced in any graph G(m) ∈ G respectively.

We note that DCalkS is NP-Hard (by restriction to DalkS whenever |G| = 1)
since DalkS is known to be NP-Hard [20, Theorem 3.1]. Consider the linear
program P2(c) given by:

max t
s.t.

∑n
i=1 yi = 1

∑
ij∈E(m) x

(m)
ij ≥ t ∀E(m), m ∈ [M ]

x
(m)
ij ≤ yi, x

(m)
ij ≤ yj ∀ ij ∈ E(m)

x
(m)
ij ≥ 0, yi ≥ 0, yi ≤ 1

c ∀ ij ∈ E(m), ∀ i ∈ [n] .

(4)

where c ≥ k is our guess for the size of the optimal DCalkS solution (nh). The
following result is a direct consequence of Lemma 1.
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Lemma 5. For any S ⊆ V with c := |S| ≥ d, the optimal value of P2(d) is at
least δG(S). In particular, the optimal value P2(k) is an upper bound on δ≥k.

We consider an algorithm (DCalkS-LP) which solves P2(k) and returns {i : yi
∗ >

0}. Then, the following holds:

Lemma 6. Let (t∗, x(m)
ij

∗
, yi

∗) denote optimal solution for P2(k) in (4) and let
S := {i : yi

∗ > 0} denote the set of vertices with non-zeros yi
∗’s with l := |S| ≥ k.

Then,

(a) if yi
∗ = 1

l ∀ i ∈ S and zero otherwise, then δG(S) = δ≥k, i.e., S is a densest
common at least-k subgraph; and,

(b) the density of the subgraph induced by S in any graph G(m) is at least
t∗
2t∗+1�

l , i.e., δG(S) ≥ t∗
2t∗+1�
l .

Proof (Sketch). The proof is analogous to the proof for Theorem 2. 	


4 Experiments

We compare our approach (DCS LP and DCS GREEDY) with MKL-based formula-
tion (MKL) in [13] and the greedy algorithm (CHARIKAR) of [7]. In order to compare
with [13], we construct the sets S(r) = {i ∈ V : α∗

i ≥ r} where α∗ is the solution
of the MKL optimization in [13] and choose the set which maximizes δG(S(r)),
i.e., SMKL := arg maxS(r) δG(S(r)). We run the greedy algorithm (CHARIKAR) to
find a dense subgraph in the intersection graph G∩.

The tensor-based approach in [24] is not considered since it has significantly
higher computational complexity (e.g., the authors report a running time of
200 hours on a high-performance computing node for analysis of co-expression
networks [See 24, SupplementaryText,S6]).

All experiments were implemented in Matlab r2014a and run on a laptop
having 2.8GHz Intel Core i5 processor and 16GB RAM. The greedy algorithm
was coded in Matlab while the linear programs were solved using Gurobi 6.0
solver using its Matlab API. Gurobi 3 is a state-of-the-art commercial solver
for linear and non-linear optimization implemented in C programming language
with APIs for several other programming languages.

4.1 Synthetic Dataset

We investigate the integrality gap and approximation ratio of DCS LP by con-
sidering small graphs for which we can find the DCS solution by exhaustive
search. Each graphset consists of m graphs each of which is generated inde-
pendently as follows: We generate an Erdös-Renyi random graph G(n, p) and
then plant a clique of size k randomly. We generate a dataset having 100 such
graphsets with the following parameters: m = 3, n = 20, p ∼ Uniform(0, 0.5)
and k ∼ Uniform[1, . . . , n/2].
3 http://www.gurobi.com

http://www.gurobi.com


650 V. Jethava and N. Beerenwinkel

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14
0

10

20

30

40

50

60

70

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

10

20

30

40

50

60

70

80

(a) Integrality gap ( t∗
δG

) (b) Approximatio ratio ( δG(SDCS LP)
δG

)

Fig. 1. Properties of DCS LP

Figure 1 shows the histogram of (a) the LP objective value t∗, and, (b) the
common density of subgraph obtained by rounding the LP solution S = {i :
y∗

I > 0} relative to the optimum solution δG, respectively. DCS LP recovers the
optimum solution in 70% of the cases but in general, it can and does exhibit
both integrality gap t∗ > δG and sub-optimal rounding δG(S) < δG.

4.2 Real-World Datasets

We consider the following datasets for evaluation of our methods:

– dimacs. The DIMACS 1994 dataset 4 is a comprehensive benchmark for
testing of clique finding and related algorithms. Each of the graph families
in DIMACS (brock, c-fat, p hat, san, sanr) is motivated by carefully selected
real world problems e.g. fault diagnosis (c-fat), etc.; thus covering a wide
range of practical scenarios [17]. This was used for experimental evaluation
in [13] and we repeat their experimental setup.

– snap-as. We consider the graph sets Oregon-1 and Oregon-2 from SNAP
network database 5 [22,23] related to autonomous systems. Each dataset
consists of M = 9 graphs having ∼ 11000 nodes and 20000 − 30000 edges.

– snap-amazon. This dataset consists of directed graphs amazon0312, ama-
zon0505 and amazon0601 available from SNAP network database which con-
sist of Amazon product co-purchasing networks on specific dates. We make
the graphs undirected (by introducing edges (j, i) whenever (i, j) is present)
and consider the nodes which are present in all three graphs. This yields a
graph set having n = 400727 nodes and nG = 7157921 edges in total.

4 ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/
5 http://snap.stanford.edu/data/

ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/
http://snap.stanford.edu/data/
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Table 1. Comparison of DCS LP and DCS GREEDY with MKL [13] and CHARIKAR [7] for
finding DCS in dimacs and snap-as datasets. M , n, nG denote resp. the number of
graphs, number of nodes in each graph, and the total number of edges summed over
all the graphs in the graph set. |S| and δG(S) denote the size and common density of
the induced subgraph found by each method. δ∩(S) (in CHARIKAR) is the density of the
subgraph in the intersection graph G∩ and t∗ denotes the optimum of DCS LP. X marks
the instances where the DCS LP failed to converge within 2 hours.

G M n nG MKL [13] DCS LP DCS GREEDY CHARIKAR [7]

|S| δG(S) |S| δG(S) t∗ |S| δG(S) |S| δG(S) δ∩(S)

c-fat200 3 200 13242 100 7.93 101 8.01 8.08 102 8.04 199 7.63 1.81
c-fat500 4 500 83416 140 9.65 140 9.65 9.65 140 9.65 140 9.65 9.65
brock200 4 200 29753 200 25.33 200 25.33 25.33 200 25.33 149 19.31 1.93
brock400 4 400 80245 400 50.04 400 50.04 50.04 400 50.04 110 14.08 1.20
brock800 4 800 447753 800 139.29 X X X 800 139.29 783 136.41 5.99
p hat300 3 300 66251 300 36.44 286 36.65 36.65 286 36.65 286 36.65 36.65
p hat500 3 500 188315 500 63.14 489 63.21 63.21 489 63.21 489 63.21 63.21
p hat700 3 700 365737 700 87.14 X X X 679 87.27 679 87.27 87.27

p hat1000 3 1000 738798 1000 122.25 X X X 973 122.41 973 122.41 122.41
p hat1500 3 1500 1701127 1500 189.95 X X X 1478 190.05 1478 190.05 190.05

san200 5 200 17910 200 9.95 200 9.95 9.95 200 9.95 2 0.50 0.50
san400 3 400 119700 400 19.95 400 19.95 19.95 400 19.95 176 9.14 0.66
sanr200 2 200 8069 200 10.19 199 10.19 10.19 199 10.19 170 9.23 3.17
sanr400 2 400 63747 400 59.83 400 59.83 59.83 400 59.83 399 59.71 29.97

Oregon-1 9 11492 203127 54 11.37 76 12.03 12.03 76 12.03 64 11.28 10.09
Oregon-2 9 11806 284031 173 22.35 X X X 119 22.45 115 21.23 17.57

Table 1 shows the results for dimacs and snap-as datasets. In all instances
(except c-fat200) where DCS LP finishes within time, the DCS LP solution is opti-
mal as verified by t∗ = δG(S). Further, DCS GREEDY also finds the optimal solution
in these instances. Both our methods out-perform MKL and CHARIKAR in all graph
sets. This is especially striking in the case of san and sanr graph sets where the
greedy algorithm (CHARIKAR) yields very poor results – highlighting the fact that
taking the intersection of the graphs is unsuitable.

We note that the high computational complexity of DCS LP (nO(1)
G

) and MKL
(O(n3)) prohibits their use for finding the densest common subgraph in the snap-
amazon graph set. The DCS GREEDY algorithm finds a subgraph with δG(S) =
5.90251 while CHARIKAR finds a subgraph with δG(S) = 2.5.

5 Discussion

This paper formalizes the Densest Common Subgraph (DCS) problem which
extends the notion of densest subgraph to a relational graph set. We present
an extension of Charikar’s linear programming approach [7] to the problem of
finding the densest common subgraph in a relational graph set.
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The LP-based approach recovers the densest common subgraph in many cases
(with proof of optimality). In other cases, it provides an upper bound on the
common density (e.g. in the case of c-fat200 graph set in the experiments) and
a good starting point for further heuristic search approaches. We note that in
the worst-case, the approximation guarantee is O( n

δG
) – which can be trivially

obtained by taking original vertex set V as a solution. A tighter analysis of the
LP relaxation can reveal more insight into the problem.

Our greedy algorithm DCS GREEDY can be scaled to large graphs which is
not possible with existing methods. Further, it substantially improves over the
greedy approach (CHARIKAR) which only considers the integrated graph by taking
intersection of the different edge sets. We note that the DCS GREEDY algorithm is
closely related to the dual LP. Designing a combinatorial primal-dual algorithm
can lead to better results and will be addressed in future work.
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