
Fast Inbound Top-K Query for Random Walk
with Restart

Chao Zhang(B), Shan Jiang, Yucheng Chen, Yidan Sun, and Jiawei Han

Department of Computer Science,
University of Illinois at Urbana-Champaign, Champaign, IL, USA

{czhang82,sjiang18,ychen233,ysun69,hanj}@illinois.edu

Abstract. Random walk with restart (RWR) is widely recognized as
one of the most important node proximity measures for graphs, as it
captures the holistic graph structure and is robust to noise in the graph.
In this paper, we study a novel query based on the RWR measure, called
the inbound top-k (Ink) query. Given a query node q and a number k,
the Ink query aims at retrieving k nodes in the graph that have the
largest weighted RWR scores to q. Ink queries can be highly useful for
various applications such as traffic scheduling, disease treatment, and tar-
geted advertising. Nevertheless, none of the existing RWR computation
techniques can accurately and efficiently process the Ink query in large
graphs. We propose two algorithms, namely Squeeze and Ripple, both
of which can accurately answer the Ink query in a fast and incremen-
tal manner. To identify the top-k nodes, Squeeze iteratively performs
matrix-vector multiplication and estimates the lower and upper bounds
for all the nodes in the graph. Ripple employs a more aggressive strategy
by only estimating the RWR scores for the nodes falling in the vicinity
of q, the nodes outside the vicinity do not need to be evaluated because
their RWR scores are propagated from the boundary of the vicinity and
thus upper bounded. Ripple incrementally expands the vicinity until the
top-k result set can be obtained. Our extensive experiments on real-life
graph data sets show that Ink queries can retrieve interesting results,
and the proposed algorithms are orders of magnitude faster than state-
of-the-art method.

1 Introduction

Graphs have long been considered as one of the most important structures that
can naturally model numerous real-life data objects (e.g., the Web, social net-
work, protein-protein interaction network). In most graph-related applications,
it is fundamental to quantify node-to-node structural proximity. Among existing
structural proximity measures, random walk with restart (RWR) is recognized as
one of the most important, and has been widely adopted in Web search [15], item
recommendation [12], link prediction [13], graph clustering [2], and many other
tasks. Compared with other proximity measures like shortest path, RWR enjoys
the nice property of capturing the holistic graph structure and being robust to
noise in the graph.
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 608–624, 2015.
DOI: 10.1007/978-3-319-23525-7 37

Fast Inbound Top-K Query for Random Walk with Restart 609

To date, much research effort has been devoted to RWR, including its efficient
computation ([6], [16], [5], [7], [18], [8], [14]), top-k search ([7], [10], [3], [17]), and
various mining tasks underpinned by RWR ([13], [2], [12]). However, insufficient
attention has been paid to a fundamental task that arises in many graph-related
applications, which is to determine the source nodes that have a large amount of
information flowing to a given query node. To illustrate, consider a traffic flow
network shown in Figure 1. Assume severe traffic congestion occurs at node q
every day, then the following question is key to improving traffic scheduling and
road network design: how do we find the nodes from which the traffic tends to
flow into q and cause the congestion problem? Using the RWR measure, the node
c is likely to be identified as a major source that causes congestion at q. Even
though c is not the direct in-neighbor of q, there are many short paths from c to
q. Given that c is a busy transportation hub, a large number of vehicles leaving
from c tend to gather at q.

Fig. 1. An example traffic flow network. Each node is a road intersection, and the node
size denotes the daily traffic volume at the intersection. Each edge is a road segment,
and the attached number denotes the proportion of the traffic moving along that edge
from a specific node.

We propose a novel query named the inbound top-k (Ink) query, which seeks
to identify the nodes that have a large amount of information flowing to a query
node based on RWR. Consider a query node q in a graph G. For any other node
u in G, let ru�q be the RWR from u to q. Additionally, each node u has a
nonnegative weight wu.1 Given G, q, and an integer k, the Ink query aims to
find k nodes in G that have the largest scores in terms of wu · ru�q.

The Ink query can be highly useful for a wide spectrum of applications
besides traffic flow analysis. Think of a protein-protein interaction (PPI) network
wherein each node is a protein, and a directed edge indicates one protein has a
signal transduction to another protein to cause its formation or mutation. The
signal transduction between proteins is essential to many biological processes
and diseases (e.g., Parkinson’s disease, cancer). Querying by the characteristic
protein of a disease, the Ink query can identify the top-k proteins that are most
likely to cause the formation of the query protein. Another example application
is targeted advertising. In an online social network like Facebook, suppose a
company (e.g., Walmart) wants to place advertisements on its Facebook page.
With the Ink query, that company can easily identify the top-k Facebook users
1 For instance, in our traffic flow example, wu is the average daily traffic volume at

node u.

610 C. Zhang et al.

that are most likely to visit its page. By statistically analyzing the profiles and
preferences of these users, the company can adapt the advertising content to
attract potential customers more effectively.

To the best of our knowledge, no existing methods can accurately and effi-
ciently answer Ink queries. First, methods ([6], [16], [14], [18]) have been pro-
posed to compute the approximate RWR between any two nodes with an error
bound ε. However, it is hard to pre-specify a proper ε for an ad-hoc query node q,
because a pre-specified ε may be either too coarse to generate the correct top-k
results, or too fine to avoid unnecessary computation. Second, the k-dash method
[7] can compute the exact RWR between any two nodes. However, it uses matrix
LU decomposition as a pre-computation step, which has a time complexity of
O(n3) and thus is prohibitively expensive for large graphs. Even assuming the
LU decomposition is done, later we will see, it is costly and unnecessary to com-
pute the RWR scores from all nodes to the query node q in order to answer Ink
queries. Third, techniques ([16], [10], [5], [9], [8]) have recently been reported to
process what we call outbound top-k queries, i.e., which k nodes have the largest
RWR if we start the random walk from node q? These techniques mostly use the
branch-and-bound strategy to prune the search space, but the lower and upper
bounds derived for the outbound top-k query cannot be easily adapted for the
Ink query.

To efficiently answer the Ink query, we propose two branch-and-bound meth-
ods. Our first method, called Squeeze (Section 3) does not directly compute
the exact RWR to q for each node in the graph, but maintains a lower bound
and an upper bound. It then incrementally refines the bounds by performing
matrix-vector multiplication. We prove that the error decreases exponentially
as the iterative process continues, and thus the top-k results can be determined
after a few number of iterations. Our second method, called Ripple (Section
4), is an even more efficient algorithm and thus suitable for extremely large
graphs. Compared with Squeeze, Ripple leverages locality to gain significant
performance improvement. The key observation is that the nodes falling in the
vicinity of q tend to have large RWR scores to q. Hence, Ripple maintains a
dynamic vicinity of q and estimates the RWR scores only for the nodes inside the
vicinity. The outside nodes do not need to be evaluated because their scores are
propagated from the boundary of the vicinity and thus upper bounded. Ripple
progressively expands the vicinity, and refines the error bounds until the result
set can be correctly identified.

Our theoretical analysis shows that both Squeeze and Ripple, without any
pre-computation, can accurately answer the Ink queries in a fast and incremen-
tal manner. In addition, we have conducted extensive experiments on real-life
graph data sets (Section 5). The results demonstrate the Ink query can retrieve
interesting results. Meanwhile, Squeeze and Ripple outperform state-of-the-art
method by orders of magnitude in efficiency.

Fast Inbound Top-K Query for Random Walk with Restart 611

Table 1. Notations used in the paper.

G A graph G = (V, E). P The row normalized transition matrix for G.

n The number of nodes in G. pij The transition probability from node i to j.

m The number of edges in G. c The restart probability (0 < c < 1).

wi The weight of a node i ∈ V . eu n × 1 vector, 1 for u’s element and 0 for the others.

wij The weight of an edge (i, j). ru The RWR score vector for the walk from u.

2 Preliminaries

In this section, we present some preliminaries for the Ink query. Table 1 lists the
notations used throughout this paper.

2.1 Problem Description

Definition 1 (Transition Matrix). For a node i ∈ V , let di =
∑n

j=1 wij

be the total out-degree of i. The transition matrix of G is an n × n matrix
P = [pij]n×n where pij = wij/di if (i, j) ∈ E and 0 otherwise.

Based on the definition of transition matrix, the random walk with restart
(RWR) process is described as follows. Consider a surfer who starts RWR from
the node x0 = u. Suppose the surfer is at node xt = i at step t, she returns to u
with probability c and continues surfing with probability 1 − c. If she continues
the surfing, she randomly moves to i’s neighbor j with probability pij . The
stationary distribution ru of such a process, i.e., the RWR scores of all the
nodes in V , is the solution to the equation:

ru = (1 − c)PTru + ceu. (1)

In ru, the element ru(v) denotes the RWR score from u to v, namely ru�v.
Given a query node q ∈ V , a restart probability c, and an integer k, the Ink
query aims to find a set S ⊆ V such that: (1) |S| = k; and (2) ∀u ∈ S,
∀v ∈ V − S, wuru(q) ≥ wvrv(q).

2.2 Näıve Methods

In this subsection, we describe two näıve methods for answering Ink queries,
and discuss why they are not satisfactory.

Power: Although directly solving Equation 1 costs O(n3), the power iteration
can produce an approximate solution with time complexity O(tm) where t is the
number of iterations. Accordingly, a näıve solution, named Power, can answer
the Ink query in two steps: (1) it computes ru for every node u ∈ V using the
power iteration; and (2) it selects k nodes with the largest weighted RWRs to q.

LU: Another solution, named LU, is adapted from the k-dash method proposed
by Fujiwara et al. [7]. As the solution of Equation 1 is ru = c(I−(1−c)PT)−1eu,

612 C. Zhang et al.

they perform LU decomposition on the matrix W = I − (1 − c)PT = LU in an
offline stage, and store L−1 and U−1 beforehand. Given that ru = cW−1eu =
cU−1L−1eu, the exact RWR score between any two nodes can be computed in
O(n) time based on the matrices L−1 and U−1. Accordingly, LU does not need
to compute the entire proximity matrix to answer the Ink query. Instead, it
computes only one row that corresponds to the RWR scores from all the nodes
to the query node q. Once the n RWR scores are obtained, the top-k nodes can
be easily obtained.

Remark. For every u ∈ V , the Power method needs to compute u’s RWR scores
to all the nodes in V , leading to a time complexity O(tmn), which is intolerable
for large graphs. The LU method can directly compute the exact RWR scores
from all nodes to the query node based on offline matrix decomposition. How-
ever, the time complexity of the on-line retrieval phase is O(n2 + n log k), still
time-consuming for large graphs. Later we will see, it is actually unnecessary
and wasteful to compute the RWRs from all the nodes to q. Moreover, note
that matrix LU decomposition has a time complexity of O(n3) and thus is pro-
hibitively expensive for large graphs. Finally, the matrix W is dependent on the
restart probability c. If the user launches an Ink query with a different c, the
precomputed matrices L−1 and U−1 become useless and need to be recomputed.

2.3 Overview of Squeeze and Ripple

Before presenting the Squeeze and Ripple methods, we first analyze the rela-
tions of the RWR scores from all the nodes to the query node q based on the
Decomposition Theorem proposed by Jeh and Windom [11].

Theorem 1. Given a node u, and Ou, the set of u’s out-neighbors, the RWR
proximity vector from u satisfies ru = (1 − c)

∑

v∈Ou

puvrv + ceu.

Theorem 1 says that, the RWR vector of u can be derived by linearly com-
bining the RWR vectors of u’s out-neighbors, with extra emphasis on u itself.
For any node u ∈ V , we have the RWR score from u to q computed as:

ru(q) =

⎧
⎨

⎩

(1 − c)
∑

v∈Ou

puvrv(q) if u �= q

(1 − c)
∑

v∈Ou

puvrv(q) + c if u = q.
(2)

By writing down the decomposition for every node u in V according to Equa-
tion 2, we obtain a linear system xq that consists of n variables. Specifically,
letting xq be an n × 1 vector such that xq(u) = ru(q) is the RWR score from u
to q, and letting A = (1 − c)P, then

xq = Axq + ceq. (3)

An intuitive idea to answer Ink query is to perform power iteration over
Equation 3 and obtain a good “enough” approximation of xq. Based on this

Fast Inbound Top-K Query for Random Walk with Restart 613

intuition, our first method Squeeze iteratively performs matrix-vector multi-
plication and provides an analytical error bound after each iteration. We prove
that the error shrinks at an exponential rate as the iteration proceeds, hence
Squeeze can prune the unqualified nodes quickly and retrieve the top-k results
after a small number of iterations.

Though Squeeze is simple, performing matrix-vector multiplication over the
whole graph can be costly if the graph is extremely large. Our second method
Ripple addresses this problem by leveraging the locality of RWR. The key
observation is that the nodes around q tend to have large RWR scores. As such,
Ripple employs a local update strategy, which maintains a vicinity around q and
evaluates RWR only for the nodes inside. According to Equation 3, the RWR
scores of the nodes outside the vicinity are propagated from the boundary of
the vicinity and thus upper bounded. By progressively pushing the boundary of
the vicinity, the estimations for the inside nodes become more accurate, and the
upper bound for the outside nodes becomes tighter. Finally, Ripple terminates
the vicinity expansion once the top-k results can be correctly identified.

3 The Squeeze Algorithm

In this section, we describe the details of Squeeze. As aforementioned, the
key idea of Squeeze is to iterate over Equation 3, and analyze the estimation
errors on-the-fly. To begin with, we define the lower bound relation between two
vectors.

Definition 2 (Lower Bound Vector). Let x and y be two n× 1 vectors. x is
a lower bound vector of y if ∀1 ≤ i ≤ n, x(i) ≤ y(i), denoted as x ≺ y.

Squeeze starts with the zero vector x(0)
q = 0, which serves as a lower bound

vector for xq, the solution to Equation 3. Then it iteratively updates the lower
bound vector according to the following equation:

x(i+1)
q = Ax(i)

q + ceq. (4)

In the following, we prove: (1) each iteration produces a tighter lower bound
vector, i.e., x(i+1)

q will be closer to xq, and (2) x(i)
q finally converges to xq.

Theorem 2. Let x(0)
q = 0 and x(i+1)

q = Ax(i)
q + ceq. It is ensured ∀i ≥ 0,x(i)

q ≺
x(i+1)
q ≺ xq; and x(i)

q = xq when i → ∞.

Proof. (1) Given x(0)
q = 0 and Equation 4, we have x(1)

q (u) = c ·I{u=q}(u), where
I is the indicator function. Clearly, x(0)

q ≺ x(1)
q . Further, if x(i−1)

q ≺ x(i)
q , then

∀u,
x(i+1)
q (u) − x(i)

q (u) = (1 − c)
∑

v∈Ou

puv

[
x(i)
q (u) − x(i−1)

q (u)
]

≥ 0.

614 C. Zhang et al.

(2) It is clear that x(0)
q ≺ xq. Suppose x(i)

q ≺ xq, then

x(i+1)
q (u) ≤ (1 − c)

∑

v∈Ou

puvxq(v) + c · I{u=q}(u) = xq(u).

To prove lim
i→∞

x(i)
q = x(i)

q , note that the spectral radius of A satisfies ρ(A) ≤

1 − c < 1. Then lim
i→∞

x(i)
q =

∞∑

i=0

Aieq = c(I − A)−1eq, which is the solution of

Equation 4. �

Theorem 2 tells us that the power iteration over Equation 4 produces a tighter
lower bound after each iteration, and finally converges to the exact value of xq.
Below, we proceed to analyze the RWR upper bound after each iteration.

Theorem 3. ∀u ∈ V,xq(u) ≤ x(i)
q (u) + (1 − c)i.

Proof. ∀i > 0,x(i+1)
q − x(i)

q = A(x(i)
q − x(i−1)

q). Accordingly,

‖x(i+1)
q − x(i)

q ‖ ≤ ‖A‖ · ‖x(i)
q − x(i−1)

q ‖ = (1 − c) · ‖x(i)
q − x(i−1)

q ‖.

Recursively applying the above inequality gives us ‖x(i+1)
q −x(i)

q ‖ ≤ (1−c)i‖x(1)
q −

x(0)
q ‖ = (1 − c)ic. Moreover, ∀m > i,

‖x(m)
q − x(i)

q ‖ = ‖
m−1∑

j=i

(x(j+1)
q − x(j)

q)‖ ≤
m−1∑

j=i

‖x(j+1)
q − x(j)

q ‖

≤(1 − c)ic
m−i−1∑

j=0

(1 − c)j = (1 − c)ic
1 − (1 − c)m−i

1 − (1 − c)
.

By setting m → ∞, we have ‖xq − x(i)
q ‖ ≤ (1 − c)i. �

Theorem 2 and 3 guarantee that after iteration i, ∀u ∈ V , x(i)
q (u) ≤ xq(u) ≤

x(i)
q (u) + (1 − c)i. Better still, the gap (1 − c)i between the lower and upper

bounds decreases exponentially as the iteration proceeds, which allows us to
quickly identify the top-k results. Algorithm 1 sketches Squeeze. As shown, we
first set xq = 0, and initialize a candidate set R that consists of all the nodes in
V . Then we gradually refine xq using power iteration (line 4), and select the k-th
largest weighted RWR as the threshold τ (line 5). All the nodes whose weighted
RWRs are smaller than τ can be safely pruned (lines 7-9). Squeeze terminates
when the candidate set R contains only k nodes.

4 The Ripple Algorithm

In this section, we present the Ripple method, which employs a local update
strategy to efficiently process Ink queries.

Fast Inbound Top-K Query for Random Walk with Restart 615

Algorithm 1. The Squeeze algorithm.
Input: query node q, number k, graph G = (V, E), restart probability c
Output: the top-k result set R

1 R ← V , i ← 0, xq ← 0;
2 Construct the transition matrix P;
3 while |R| > k do
4 xq ← Axq + ceq;
5 τ ← k-th largest score in terms of wu · xq(u);
6 i ← i + 1;
7 foreach u ∈ R do
8 if wu · [xq + (1 − c)i] < τ then
9 Remove u from R;

4.1 Algorithm Sketch

Given a query node q, we use Nq to denote a set of nodes falling in the vicinity of
q, and Fq to denote the nodes falling outside, i.e., Fq = V −Nq. Further, we call
node u ∈ Nq a boundary node if there exists a node v ∈ Fq such that v is an in-
neighbor of u, and use Bq to denote the set of boundary nodes. The key insight
of Ripple is that the nodes close to q tend to have large RWR scores. Hence,
starting from a small vicinity around q, Ripple estimates the RWRs for only the
nodes in the vicinity. For the outside nodes, Ripple maintains one generic upper
bound for them. As the vicinity is gradually expanded, the RWR estimations for
the inside nodes as well as the upper bound for the outside nodes become more
and more accurate. The expansion terminates when the estimations are accurate
enough to produce the top-k results.

Algorithm 2 gives a sketch of Ripple. As shown, we initialize Nq and Bq

to {q}, and iteratively select at most s boundary nodes with the largest RWRs
(lines 3-6), where s is a pre-specified parameter of Ripple. Later we will see, the
rationale of selecting the high-score boundary nodes is that such nodes determine
the estimation error for the nodes in Nq, as well as the RWR upper bound for
the nodes in Fq. We expand Nq by incorporating the in-neighbors of the selected
nodes (lines 7-8). After each expansion, we iterate over the nodes in Nq for t
times to refine their RWR estimations (lines 10-12). The RWR scores for all the
nodes in Fq are set to 0 and do not need to be computed. Once the update
operation is done, we select the k-th largest weighted RWR as the threshold τ ,
and prune the nodes whose upper bound scores are smaller than τ (lines 14-17).
Such a process repeats until there are only k nodes left in R.

Figure 2 shows a concrete example of Ripple. Suppose c = 0.2, s = 2, and
t = 2. First, the vicinity and boundary node sets are set to Nq = Bq = {q}.
In the first round, q is the only node Bq. Hence, we expand q and obtain Nq =
{2, 6, 7, 10} and Bq = {2, 7, 10}. After the expansion, starting from xq = 0,
Ripple updates the RWR for the nodes in Nq using 2 iterations, and obtains
xq(2) = 0.16,xq(6) = 0.2,xq(7) = 0.04,xq(10) = 0.16. In the second round,

616 C. Zhang et al.

Algorithm 2. The Ripple algorithm.
Input: query node q, number k, graph G = (V, E), restart probability c,

number of to-expand nodes s, number of iterations t after expansion
Output: the top-k result set R

1 R ← V , Nq ← {q}, Bq ← {q}, xq ← 0;

2 while |R| > k do
3 if |Bq| ≥ s then
4 E ← s nodes in Bq with the largest RWRs;
5 else
6 E ← Bq;

7 foreach u ∈ E do
8 Add u’s in-neighbors into Nq;

9 Update Bq;
10 for i = 1 to t do
11 foreach u ∈ Nq do
12 xq(u) = (1 − c)

∑

v∈Ou

puvxq(u) + c · I{u=q}(u);

13 τ ← k-th largest weighted RWR for the nodes in Nq;
14 foreach u ∈ R do
15 xq(u) ← the RWR upper bound;
16 if wu · xq(u) < τ then
17 Remove u from R;

18 return R;

(a) Initialization. (b) One round of expan-
sion.

(c) Two rounds of expan-
sion.

Fig. 2. Illustration of the Ripple algorithm. The nodes in the gray area are the vicinity
nodes, and the double-ringed ones are the boundary nodes.

Ripple expands node 2 and 10, and derives Nq = {2, 3, 6, 7, 9, 10} and Bq =
{3, 7, 9}. With the previous xq, Ripple updates the new Nq using 2 iterations,
and obtains xq(2) = 0.16,xq(3) = 0.08,xq(6) = 0.2,xq(7) = 0.056,xq(9) =
0.128,xq(10) = 0.16. The expansion process continues until the top-k nodes are
obtained.

Several questions remain to be answered for Algorithm 2: (1) how do we
compute the lower and upper bounds for the nodes in Nq and Fq? and (2) what

Fast Inbound Top-K Query for Random Walk with Restart 617

is the reason of selecting high-score boundary nodes when expanding Nq? In
what follows, we answer these questions in detail.

4.2 The Lower Bound

We first prove the RWR estimation is a lower bound when we set the RWR
scores of the nodes in Fq to 0 and propagate the RWR scores only among the
nodes in Nq.

Theorem 4. Let xq be the solution to the equation xq = Wxq + ceq, where
W is constructed from A by setting the rows of nodes in Fq to all zeros, then
xq ≺ xq.

Proof. The power method gives xq = lim
i→∞

c
i−1∑

j=1

Wjeq and xq = lim
i→∞

c
i−1∑

j=1

Ajeq.

It suffices to prove ∀i ≥ 1,Wieq ≺ Aieq, which can be easily proved by
induction. �

4.3 The Upper Bound

We proceed to analyze the RWR upper bounds. Let M = max
u∈Bq

xq(u). Lemma 1

and Lemma 2 show that M determines the upper bound for the nodes in both
Fq and Nq.

Lemma 1. ∀u ∈ Fq,xq(u) ≤ (1 − c)M .

Proof. When iterating over Equation 3 with x(0)
q = 0, Theorem 2 ensures ∀u ∈

Bu,∀i ≥ 0,x(i)
q (u) ≤ xq(u) ≤ M . Now consider any node u ∈ Fq: (1) when

i = 0, x(0)
q (u) = 0 ≤ (1 − c)M clearly holds. (2) ∀i ≥ 1, assume ∀v ∈

Fq,x
(i−1)
q (v) ≤ (1 − c)M . Since ∀v ∈ Bq,x

(i−1)
q (v) ≤ M , it is ensured x(i)

q (u) =
(1 − c)

∑

v∈Bq

puvx
(i−1)
q (v) + (1 − c)

∑

v∈Fq

puv(1 − c)x(i−1)
q (v) ≤ (1 − c)M . �

Lemma 2. ∀u ∈ Nq,xq(u) ≤ xq(u) + (1 − c)2M .

Proof. Let dq = xq − xq. ∀u ∈ Nq, it suffices to prove dq(u) ≤ (1 − c)2M .
Consider an n × 1 vector rF , where the entries of the nodes in Fq are set to
their accurate RWR scores, and the entries of the nodes in Nq are set to zeros.
Then dq = Wdq + rF . By setting d(0)

q = rF and using power iteration, we have
dq = lim

t→∞ d(t)
q . Note that ∀u ∈ V,d(0)

q (u) ≤ (1 − c)M . The induction ensures

lim
t→∞ d(t)

q (u) ≤ (1 − c)2M . �

Lemma 2 provides a generic upper bound for the vicinity nodes. In the follow-
ing, we introduce the concept of outward hop, which allows us to derive tighter
upper bounds for the vicinity nodes.

618 C. Zhang et al.

Definition 3 (Outward Hop). For a node u ∈ Nq, the outward hop of u,
denoted as Hop(u), is the minimum number of steps that takes u to any node in
Fq.

The RWR estimation errors are propagated inwards layer by layer among the
vicinity nodes. Hence, a larger outward hop implies a larger estimation error, as
shown below.

Lemma 3. Given a node u ∈ Nq, let Hop(u) = h, then xq(u) − xq(u) ≤ (1 −
c)h+1M .

Proof. This lemma can be proved using induction, we omit the details to save
space. �

Lemma 1 and 3 give us the RWR upper bounds for the nodes in Fq and Nq in
terms of M , which is the maximum accurate RWR among the boundary nodes.
Nevertheless, M is actually unknown to Ripple. Assume Ripple performs t

power iterations over Nq to obtain an approximate vector x(t)
q , we now establish

the connection between M and x(t)
q , and discuss how to compute the upper

bounds based on x(t)
q .

Lemma 4. Let ΔN = max
u∈V

[
x(1)
q (u) − x(0)

q (u)
]
, M (t) = max

u∈V
x(t)
q (u). We have

M ≤ 1
2c − c2

[
M (t) + (1 − c)t · ΔN/c

]
.

Proof. Similar to Theorem 3, it can be shown ∀u ∈ V, xq(u) − x(t)
q (u) ≤ (1 −

c)t · ΔN/c. Let M = max
u∈Bq

xq(u) and w ∈ Bq be the node corresponding to M .

Then
M − M (t) ≤ M − x(t)

q (w) ≤ (1 − c)t · ΔN/c. (5)

Further let v ∈ Bq be the node corresponding to M . By Lemma 2, we know
M − xq(v) ≤ (1 − c)2M , which gives M ≤ xq(v)/(2c − c2). Combining this with
Equation 5 completes the proof. �

Theorem 5. ∀u ∈ Fq, we have

xq(u) ≤ 1 − c

2c − c2

[
M (t) + (1 − c)t · ΔN/c

]
.

∀u ∈ Nq, let Hop(u) = h, we have

xq(u) ≤ x(t)
q (u) +

(1 − c)h+1

2c − c2
· M (t) +

(1 − c)h+t+1 + (2c − c2)(1 − c)t

2c2 − c3
· ΔN

Proof. The first claim is obvious from Lemma 1 and 4, and the second claim is
obvious from Lemma 3 and 4. �

Fast Inbound Top-K Query for Random Walk with Restart 619

5 Experiments

In this section, we evaluate the empirical performance of the proposed methods.
All algorithms were implemented in JAVA and the experiments were conducted
on a machine with Intel Xeon E5-2680 and 64GB memory.

5.1 Experimental Setup

Data Sets. Our experiments are based on two real graph data sets. Our first
data set, referred to as 4SQ, is collected from Foursquare during a three-month
period. The 4SQ data set consists of the check-in histories of 14,909 users living
in New York. In 4SQ, each node is a place, and the node weight is set to the total
number of visitors to reflect the popularity of the place. Meanwhile, there is a
directed edge between two places if the check-ins at the two places occur within
3 hours. The weight of the edge is the number of users whose check-in history
matches the transition. The 4SQ data set contains 48,564 nodes and 123,452
edges in total. The second data set, referred to as Wiki, is extracted from the
Wikipedia graph. We have removed the non-English Wikipedia pages as well as
the noisy pages that have less than 3 in-links. In the result Wiki data set, each
node is a Wikipedia page, and the node weight is set to the number of in-links
to reflect the importance of that page. Each edge is a directed link from one
Wikipedia page to another, and all the edges have an equal weight. There are
totally 4,382,715 nodes and 102,260,837 edges in the Wiki data set.

Compared Method. We described two näıve methods in Section 2.2, namely
Power and LU. However, the time cost of Power is too expensive for our used
data sets. Hence, we use the LU method for comparison in our experiments.
LU involves an offline stage that performs matrix decomposition and an on-line
stage that retrieves the top-k results, we only include the on-line retrieval time
when measuring the performance of LU.

5.2 Illustrating Cases

In this subsection, we issue several test Ink queries on our data sets, and com-
pare the results retrieved by the Ink query and those by the outbound top-k
query [7].

Table 2 shows the inbound and outbound top-5 results for the queries “Yan-
kee Stadium” and “Columbia University” on 4SQ,2. As shown, the results
returned by the outbound top-k query are mostly famous places in New York,
such as the Metropolitan Museum of Art and the Radio City Music Hall. As
such places are structural hubs in the graph, the random walk from the query
node is thus very likely to reach them, making their outbound RWR scores high.
In contrast, the results returned by the Ink query are less famous places but
have strong correlations with the query place. For example, the top result for
the query “Yankee Stadium” is Yankee Tavern, which is a local pub close to the
2 We do not include the query itself in the top-k results, same for the Wiki data set.

620 C. Zhang et al.

Table 2. A Comparison of the Inbound and Outbound Top-k Queries on 4SQ (c =
0.15 k = 5).

Query
Inbound Top-5 Results Outbound Top-5 Results

Rank Place Name Rank Place Name

Yankee Stadium

1 Yankee Tavern 1 The Metropolitan Museum of Art
2 Stan’s Sports Bar 2 Madison Square Garden
3 Billy’s Sports Bar 3 The Central Park
4 New York Penn Station 4 Grand Central Terminal
5 Grand Central Terminal 5 Brooklyn Museum

Columbia University

1 Morningside Park 1 Central Park
2 Seeley Mudd Hall 2 116th St/Columbia University MTA Subway
3 Whole Foods Grocery 3 Newark Liberty International Airport
4 Dinosaur Bar-B-Que 4 Grand Central Terminal
5 Starbucks 5 Lincoln Tunnel

Table 3. A Comparison of Inbound and Outbound Top-k Queries on Wiki (c =
0.15 k = 5).

Query
Inbound Top-5 Results Outbound Top-5 Results

Rank Page Title Rank Page Title

Information Retrieval

1 IDF 1 Computer Science
2 Index Term 2 Information Science
3 Keyword (Internet Search) 3 Linguistics
4 Precision and Recall 4 Association for Computing Machinery
5 Recall (Information Retrieval) 5 Mathematics

Microsoft Office

1 Microsoft Excel 1 2006
2 Microsoft Word 2 2007
3 Microsoft Windows 3 2008
4 Microsoft Office 2007 4 Microsoft
5 Microsoft FrontPage 5 Microsoft Office 2007

stadium. Yankee fans may love to gather together at the pub to have some beer
and talk about their favorite players.

Table 3 shows the results for the queries “Information Retrieval” and
“Microsoft Office” on Wiki. Again, we observe that the outbound top-k query
tends to retrieve the pages that are popular, whereas the inbound top-k query
obtains the pages that are more specific and strongly correlated to the query. For
example, given the query “Information Retrieval”, the results returned by Ink
are all terminologies in the field of information retrieval, such as IDF and index
term. In contrast, the outbound top-5 query returns general but more famous
pages like Computer Science.

5.3 Efficiency Study

In this subsection, we study the efficiency of the proposed algorithms. An Ink
query consists of two parameters: (1) the number k; and (2) the restart prob-
ability c. We set their default values as k = 20 and c = 0.15. We evaluate the
effect of one parameter while the other is fixed at its default value, and run 1000
randomly generated queries with their average cost reported. LU and Squeeze
are parameter-free, while Ripple has two parameters to tune: (1) s, the number
of boundary nodes for expansion; and (2) t, the number of iterations after each
expansion. We first fix s = 30 and t = 1 when comparing Ripple with the other
two methods. Then we study the effect of s and t on the performance of Ripple.

Fast Inbound Top-K Query for Random Walk with Restart 621

Varying k. Figure 3 shows the running time of the three methods when k varies
on 4SQ. As shown, k does not affect the running time of LU much, as the major
cost of LU is the computation of the RWR scores of all the nodes in the graph.
In contrast, the running time of Squeeze and Ripple increases with k, but at
a quite slow rate. This phenomenon could be explained by the fact that, as k
increases, the score gap between the k-th and the (k + 1)-th objects tends to
become smaller. As a result, both Squeeze and Ripple need more iterations
to retrieve the top-k results. Comparing the performance of the three methods,
we find both Squeeze and Ripple outperform LU significantly even though the
pre-computation time of LU has already been excluded. This fact suggests the
branch-and-bound strategies used by Squeeze and Ripple are quite effective,
they can largely prune the search space to avoid unnecessary RWR computations.
Figure 3(b) shows the running time of Squeeze and Ripple on Wiki. We do
not have the result of LU because the offline matrix decomposition stage fails to
complete within one week on Wiki. Similarly, Ripple needs more iterations to
produce the top-k results than Squeeze, but it takes much less time. Moreover,
the performance gap between Ripple and Squeeze is even larger on Wiki than
on 4SQ. This is explained by the fact that Ripple is a local search algorithm
and is not so sensitive to the data set size. Therefore, Ripple is suitable for
extremely large graphs.

(a) Varying k on 4SQ. (b) Varying k on Wiki.

Fig. 3. Running time v.s. k.

Varying c. Figure 4 shows the running time of the three methods on 4SQ when
c varies from 0.05 to 0.2. The running time of Squeeze and Ripple decreases
exponentially with c, which is in line with our expectation. As shown in Theorem
3, the error bound of Squeeze after i iterations is (1 − c)i. For a larger c,
Squeeze needs much less iterations to produce the top-k results. Similarly, for
Ripple, Theorem 5 suggests that the error bounds for both inside and outside
nodes are much tighter under a larger c, thus the number of iterations are fewer.
To understand this phenomenon from another perspective, Ripple leverages
RWR locality to answer Ink queries. When c is large, the random surfer has a
higher probability to jump back to the start node, thus the nodes close to the
query node are more likely to appear in the correct top-k results, making the
vicinity-based estimation prune the search space more effectively.

622 C. Zhang et al.

(a) Varying c on 4SQ. (b) Varying c on Wiki.

Fig. 4. Running time v.s. c.

(a) Varying s on 4SQ. (b) Varying t on 4SQ.

Fig. 5. Effects of s and t on Ripple.

Effects of s and t. Figure 5 shows the effects of s and t on Ripple using 4SQ
(the results on Wiki are omitted to save space). As shown, when s increases from
10 to 100, the running time of Ripple first decreases and then gradually becomes
stable. From Figure 5(b), we observe that the running time of Ripple is stable
when t is small. However, the running time increases quite rapidly when t is too
large. This suggests that iterating over a small vicinity for too many times cannot
improve the efficiency of Ripple, but only incurs unnecessary computations. In
practice, it is better to set t to a small value so that only a few iterations are
performed before a new vicinity set is generated.

6 Related Work

The efficient computation of RWR has received a substantial amount of atten-
tion over the past decade. Though obtaining the closed-form solution of RWR
requires the inversion of a matrix (Equation 1) and time-consuming, two popu-
lar strategies are widely adopted to address this problem: Monte Carlo sampling
[3], [4] and power iteration [15]. Other techniques for efficiently approximating
RWR have also been proposed. Tong et al. [16] introduced an efficient and novel
algorithm for computing approximate RWR scores. Their method relies on a
pre-processing step, which obtains the low-rank approximation of a large and
sparse matrix. Zhu et al. [18] proposed to compute the approximate PPR vector
using the inverse P-distance [18]. The key idea is to partition all random walk

Fast Inbound Top-K Query for Random Walk with Restart 623

tours into different layers according to their contributions, and given priority to
those important layers when computing the PPR vector. Methods [1] have also
been proposed to compute the approximate RWR scores from all the nodes to a
given query node. Unfortunately, these approximate algorithms cannot be easily
applied to answer the Ink queries as it is hard to pre-specify the desired error
bound for an ad-hoc query. Moreover, as suggested by Ripple, computing the
RWR scores from all the nodes is actually unnecessary.

Along another line, much attention has been paid to the outbound top-k
search problem. The goal is to retrieve the k nodes with the highest RWR/PPR
scores from a query node. Most of the existing techniques for answering out-
bound top-k search resort to the branch-and-bound strategy to prune the search
space. Specifically, Gupta et al. [10] proposed the Basic Push Algorithm, which
computes PPR bounds based on bookmark coloring. Bahmani et al. [5] pro-
posed a Monte Carlo based method for finding approximate top-k neighbors.
Their results demonstrate that, by precomputing and storing a number of short
random walk tours for all the nodes in the graph, the top-k neighbors can be
fast approximated with satisfactory accuracy. Fujiwara et al. [7] proposed the
k-dash algorithm to identify the top-k nearest neighbors of a query node based
on matrix LU decomposition. They later proposed an method [8] that does not
rely on offline pre-computation, but estimates the lower and upper bounds in an
on-line manner. However, the lower and upper bounds derived for the outbound
top-k query cannot be easily adapted for our Ink query.

7 Conclusions

We proposed the Ink query based on random walk with restart, which retrieves
the top-k nodes that have high weighted RWR scores to a given query node. To
efficiently process the Ink query, we designed the Squeeze and Ripple meth-
ods. Squeeze iteratively performs matrix vector multiplication and dynami-
cally updates the lower and upper RWR bounds to generate the top-k result
set. Ripple exploits RWR locality by maintaining a vicinity around the query
node, and incrementally expands the vicinity to refine the RWR estimations.
Our experimental results have demonstrated that both methods can answer Ink
queries efficiently on large real-life graphs, while Ripple is especially suitable
for extremely large graphs. Interesting future work includes investigating how
the Ink query can benefit higher-level tasks such as link prediction, and how to
adapt the Ripple method to a distributed version.

Acknowledgments. We thank the reviewers for their insightful comments. This work
was sponsored in part by the U.S. Army Research Lab. under Cooperative Agree-
ment No. W911NF-09-2-0053 (NSCTA), National Science Foundation IIS-1017362, IIS-
1320617, and IIS-1354329, HDTRA1-10-1-0120, and grant 1U54GM114838 awarded by
NIGMS through funds provided by the trans-NIH Big Data to Knowledge (BD2K) ini-
tiative, and MIAS, a DHS-IDS Center for Multimodal Information Access and Synthesis
at UIUC.

624 C. Zhang et al.

References

1. Andersen, R., Borgs, C., Chayes, J.T., Hopcraft, J., Mirrokni, V.S., Teng, S.-H.:
Local computation of pagerank contributions. In: Bonato, A., Chung, F.R.K. (eds.)
WAW 2007. LNCS, vol. 4863, pp. 150–165. Springer, Heidelberg (2007)

2. Andersen, R., Chung, F.R.K., Lang, K.J.: Local graph partitioning using pagerank
vectors. In: FOCS, pp. 475–486 (2006)

3. Avrachenkov, K., Litvak, N., Nemirovsky, D., Smirnova, E., Sokol, M.: Quick detec-
tion of top-k personalized pagerank lists. In: Frieze, A., Horn, P., Pra�lat, P. (eds.)
WAW 2011. LNCS, vol. 6732, pp. 50–61. Springer, Heidelberg (2011)

4. Bahmani, B., Chakrabarti, K., Xin, D.: Fast personalized pagerank on mapreduce.
In: SIGMOD Conference, pp. 973–984 (2011)

5. Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized pager-
ank. PVLDB 4(3), 173–184 (2010)

6. Fogaras, D., Rácz, B., Csalogány, K., Sarlós, T.: Towards scaling fully personalized
pagerank: Algorithms, lower bounds, and experiments. Internet Mathematics 2(3),
333–358 (2005)

7. Fujiwara, Y., Nakatsuji, M., Onizuka, M., Kitsuregawa, M.: Fast and exact top-k
search for random walk with restart. PVLDB 5(5), 442–453 (2012)

8. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Mishima, T., Onizuka, M.: Efficient
ad-hoc search for personalized pagerank. In: SIGMOD Conference, pp. 445–456
(2013)

9. Fujiwara, Y., Nakatsuji, M., Yamamuro, T., Shiokawa, H., Onizuka, M.: Efficient
personalized pagerank with accuracy assurance. In: KDD, pp. 15–23 (2012)

10. Gupta, M.S., Pathak, A., Chakrabarti, S.: Fast algorithms for topk personalized
pagerank queries. In: WWW, pp. 1225–1226 (2008)

11. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW, pp. 271–279
(2003)

12. Konstas, I., Stathopoulos, V., Jose, J.M.: On social networks and collaborative
recommendation. In: SIGIR, pp. 195–202 (2009)

13. Liben-Nowell, D., Kleinberg, J.M.: The link prediction problem for social networks.
In: CIKM, pp. 556–559 (2003)

14. Lofgren, P., Banerjee, S., Goel, A., Comandur, S.: FAST-PPR: scaling personalized
pagerank estimation for large graphs. In: KDD, pp. 1436–1445 (2014)

15. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford University (1998)

16. Tong, H., Faloutsos, C., Pan, J.Y.: Fast random walk with restart and its applica-
tions. In: ICDM, pp. 613–622 (2006)

17. Yu, A.W., Mamoulis, N., Su, H.: Reverse top-k search using random walk with
restart. PVLDB 7(5), 401–412 (2014)

18. Zhu, F., Fang, Y., Chang, K.C.C., Ying, J.: Incremental and accuracy-aware
personalized pagerank through scheduled approximation. PVLDB 6(6), 481–492
(2013)

	Fast Inbound Top-K Query for Random Walk with Restart
	1 Introduction
	2 Preliminaries
	2.1 Problem Description
	2.2 Naïve Methods
	2.3 Overview of Squeeze and Ripple

	3 The Squeeze Algorithm
	4 The Ripple Algorithm
	4.1 Algorithm Sketch
	4.2 The Lower Bound
	4.3 The Upper Bound

	5 Experiments
	5.1 Experimental Setup
	5.2 Illustrating Cases
	5.3 Efficiency Study

	6 Related Work
	7 Conclusions
	References

