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Abstract. Recently, user influence in social networks has been stud-
ied extensively. Many applications related to social influence depend on
quantifying influence and finding the most influential users of a social
network. Most existing work studies the global influence of users, i.e. the
aggregated influence that a user has on the entire network. It is often
overlooked that users may be significantly more influential to some audi-
ence groups than others. In this paper, we propose AudClus, a method to
detect audience groups and identify group-specific influencers simultane-
ously. With extensive experiments on real data, we show that AudClus
is effective in both the task of detecting audience groups and the task
of identifying influencers of audience groups. We further show that Aud-
Clus makes possible for insightful observations on the relation between
audience groups and influencers. The proposed method leads to various
applications in areas such as viral marketing, expert finding, and data
visualization.
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1 Introduction

Quantifying influence to find the most influential users in social networks is a
fundamental problem of social network studies. Many important applications
such as influencer detection and viral marketing rely on this problem. Most
existing studies quantify the influence of a user as a globally aggregated influence
value. An observation that is often overlooked by these studies is that a social
network contains various groups of users, and the strength of influence of a
user varies drastically over different groups. On one hand, most users have their
influence limited to a small part of the social network. Even the globally most
influential users of a social network have their influence concentrated to some
specific groups of audience. On the other hand, different groups of users in a
social network have their own specific sets of influencers.

Based on this observation, in this paper, we explore group-specific influence.
We attempt to (1) detect audience groups and (2) identify influencers of audience
groups. The tasks have two major challenges. First, to make the results mean-
ingful, audience groups should reflect natural boundaries of influence, i.e. users
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in the same audience group share similar influencers, while users in different
audience groups have different influencers. However, most existing community
detection algorithm is not specifically optimized for detecting such audience
groups. Second, current methods for detecting global influencer do not work
well for the task of detecting group-specific influencers. One can certainly con-
sider each audience group as a network and apply existing influencer detection
algorithms to each network. This naive approach, however, yields to suboptimal
results, because it can only detect influencers within groups, but an influencer
of an audience group may actually be outside that group.

To solve these problems, in this paper, we propose AudClus, a probabilis-
tic mixture model based method to detect audience groups and group-specific
influencers simultaneously. By using information diffusion data, it groups users
into different audience groups according to the users who are influential to them,
and simultaneously quantifies the influence of users with respect to each audience
group. Both the tasks of detecting audience groups and identifying group-specific
influencers benefit from the simultaneous inference.

The main contributions of this paper are summarized as follows.

– We propose AudClus, a probabilistic mixture model based method, to capture
audience groups and group-specific influence. We design an EM algorithm to
infer audience groups and users’ influence over audience groups simultane-
ously.

– AudClus is very flexible in capturing group-specific influence in social net-
works. It does not rely on the structure of social networks or any specific
information diffusion model. It can capture both direct and indirect influence.

– AudClus provides a new tool for analysis and visualization of social influence.
It leads to interesting observations and insightful understandings on the struc-
ture of influence in social networks. It facilitates applications such as finding
experts in specific areas, and targeting specific groups of audience for viral
marketing.

2 Preliminary

A social network is often considered as a graph, with users as nodes, and links
between users as edges. By considering a social network as a graph, graph clus-
tering or community detection algorithms can be used to detect groups from
the social network. For a given social network, different community detection
algorithms may lead to substantially different clustering results. In this paper,
we are interested in detecting audience groups, which reflect users’ behaviors
of being influenced in information diffusion processes. Specifically, users in the
same audience group are influenced by a similar set of influencers, while users
in different groups are influenced by different influencers. To serve this purpose
well, we propose AudClus, a clustering method, which detect groups of users
from information diffusion data, instead of from social network structure.

When information diffuses in a social network, it is carried by actions of users
in the network. An action of a user is, for example, posting a tweet in Twitter,
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or publishing a paper in the citation network. Each action comes with some
information. For example, a tweet can talk about some news and events, and a
paper can propose or adopt some techniques. Information carried by an action
may be introduced into the social network by the current action itself, or it may
be introduced by some previous actions and adopted by the current action. If
a current action adopts information from some previous actions, we say that
information propagates from the previous actions to the current action, and we
define it by an information propagation link from each previous action to
the current action. In this paper, we study the case that the information prop-
agation links are observable in the data. For example, in Twitter, a retweeting
or a replying can be considered as a information propagation link from the orig-
inal tweet to the current tweet, while in the citation network, a citing can be
considered as a link from the reference paper to the current paper.

A diffusion pathway graph contains a set of actions and the information
propagation links between them. Formally, we define a diffusion pathway graph
as follows.

Definition 1. A diffusion pathway graph D = (AD,LD) is a DAG (directed
acyclic graph) of actions. Each action ai ∈ AD is taken by a user denoted by
vai

. Directed links in LD ⊂ AD × AD define the information diffusion links
between actions. A directed link (ai, aj) ∈ LD means that action aj is directly
influenced by action ai. Links in LD should be acyclic. If (ai, aj) ∈ LD, we say
ai is a parent of aj.

The above definition of diffusion pathway graph is very general and flexible
in the sense that it does not make any assumption on the underlying diffusion
process. It can therefore be applied to various information diffusion models,
and different information diffusion models may add different constraints to this
general definition. For example, for an IC model [4,10], the diffusion pathway
graph is actually a forest, since any action can be triggered by only one previous
action, while the diffusion pathway graph for a LT model [5,9] can be any DAG.
Besides, a diffusion pathway graph is not limited to describe the diffusion of one
single piece of information. When the pieces of information are not explicitly
available, it means less effort in preprocessing data. For example, we can directly
construct a diffusion pathway graph from a citation network, with papers as
actions, and citation relations as information diffusion links. We do not need to
extract the pieces of information that is actually spread between papers.

The first goal of AudClus is to detect audience groups based on diffusion
pathway graphs. More formally, given a set of users V and a set of diffusion
pathway graphs D = {D1, · · · ,Dm} with these users, it detects a set of audience
groups C, such that each user u ∈ V is assigned to a group c ∈ C. Notice that
the setting is different from that of traditional community detection problem:
we detect groups of users from diffusion pathway graphs, instead of from the
social network. Unlike social networks, nodes in diffusion pathway graphs are
actions, not users. The difference in problem setting means traditional commu-
nity detection algorithms cannot be directly applied to the task of detecting
audience groups.
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Table 1. Notations

Description

V Set of all users.
C Set of all audience groups.
D Set of all diffusion pathway graphs.
AD Set of actions in diffusion pathway graph D.
LD Set of links in diffusion pathway graph D.
z(v) The audience group user v is assigned to.

Description

k Number of audience groups.
n Number of users.

θvc The influence user v has on group c.
ηvc The conditional probability that v belongs to c.
φc The prior probability of group c.
q Transfer rate parameter in influence backtracing method.

The second goal of AudClus is to identify influencers who are specific to each
audience group. To achieve that, AudClus quantifies the influence from each user
v ∈ V to each group c ∈ C, then it can identify users who are the most influential
to a specific group. As we will show in the next section, the two goals of AudClus
can be achieved simultaneously under a mixture model framework.

We summarize notations in Table 1.

3 The AudClus Method

In this section, we introduce a probabilistic mixture model based method to
detect audience groups of a social network and to quantify group-based influ-
ence for users simultaneously. We will first study a simple case, which we call
single-direct case. In the single-direct case, each action is either spontaneous or
influenced by exactly one previous action, i.e. each action either has no parent
in the diffusion pathway graph or has one single parent, and only the influence
from the parent is considered. We will first show a probabilistic mixture model
for audience clustering for the single-direct case, and then extend the model for
more general cases.

3.1 Audience Clustering for the Single-direct Case

The intuition for audience clustering is that users who are influenced by similar
sets of influencers should be assigned to the same group. The proposed clustering
method originates from the probabilistic mixture model proposed in [15], which
decides the group of a user according to the neighbors whom he is linked to and
assigns users who are linked to similar sets of neighbors into the same group.
The original model in [15] was designed for undirected graph, but we extend it
to make it work with directed graphs such as diffusion pathway graphs. Besides,
in the proposed model, the groups of users are decided by their influencers, not
by their neighbors.

The basic concepts with regard to the proposed clustering model are as fol-
lows. From a set of users V, each user u is assigned to a group c ∈ C, denoted by
z(u). For each group c ∈ C and each user v ∈ V, θvc defines the influence that
user v has on group c. More specifically, for an action taken by users in group
c, θvc is the probability that the action is influenced by some previous actions
taken by user v. Notice that we are considering the single-direct case that each
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action is either spontaneous or influenced by exactly one parent action. For each
action ai that is influenced by a parent action, we regard the user who takes the
parent action as the influencer of ai, denoted by r(ai). r(ai) is generated from a
categorical distribution as follows.

r(ai) ∼ Categorical|V|(θ·z(vai
))

where vai
is the user who takes action ai, and z(vai

) is the group that vai
belongs

to. θ·c = {θvc}v∈V denotes the influence from users in V to group c.
For any group c, θ·c are the parameters for a categorical distribution, which

should satisfy the following normalization condition.
∑

v∈V θvc = 1, ∀c ∈ C
We consider the clustering of users as a probabilistic mixture model. The prior

probability for group c is denoted by φc, satisfying the following normalization
condition. ∑

c∈C φc = 1

We denote with Z the multivariate random variable that consists of z(v)
for all v ∈ V, i.e. Z = {z(v)}v∈V . Similarly, we have Θ = {θvc}v∈V,c∈C and
Φ = {φv}v∈V .

Given the parameters Θ and Φ, the joint probability of D and Z is the product
of two probabilities: the probability that each user v is assigned to the group
z(v), and the probability that each action ai influenced by the influencer r(ai).
Formally, the likelihood function of parameters Θ and Φ, are given as follows.

L(Θ,Φ;D,Z) =
( ∏

D∈D
∏

ai∈AD
θr(ai)z(vai

)

)( ∏
v∈V φz(v)

)

=
( ∏

v∈V
∏

u∈V θAvu

vz(u)

)( ∏
v∈V φz(v)

) (1)

where
Avu =

∑
D∈D

∑
ai∈AD,
v(ai)=u

Ir(ai)=v (2)

denotes the number of actions of user u that are influenced by user v in all
diffusion pathway graphs.

Parameter Estimation. We estimate the parameters Θ and Φ by their maxi-
mum likelihood estimation. Notice that the group of each user z(u) is the missing
data that also needs to be inferred. Therefore, the problem of finding maximum
likelihood estimation is formalized as follows:

maxΘ,Φ

∑
Z p(D,Z|Θ,Φ)

We solve this problem by EM algorithm. In the E-step, we calculate expected
value of log-likelihood function, with respect to the conditional distribution Z.
The expected value is defined as follows.

EZ|Θ(t),Φ(t) log L(Θ,Φ;D,Z) =
∑

v∈V

∑

u∈V

∑

c∈C
Avuη(t)

uc log θvc +
∑

v∈V

∑

c∈C
η(t)

vc log(φc)

(3)
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where
η(t)

uc =
(
φ(t)

c

∏

v∈V
(θ(t)vc )Avu

)
/
( ∑

c′∈C
φ
(t)
c′

∏

v∈V
(θ(t)vc′)Avu

)

(4)

is the conditional probability that z(u) = c given D under the current estimations
of parameters Θ(t) and Φ(t).

In the M-step, we update estimation of Θ and Φ to maximize the expected
log-likelihood. By taking partial derivatives of Equation 3, we can find out that
the expected log-likelihood is maximized by the following values of parameters.

θ
(t+1)
vc =

( ∑
u∈V Avuη

(t)
uc

)
/
( ∑

w∈V
∑

u∈V Awuη
(t)
uc

)
(5)

and
φ
(t+1)
c =

( ∑
u∈V η

(t)
uc

)
/
( ∑

c′∈C
∑

u∈V η
(t)
uc′

)
(6)

We repeat the E-step and the M-step until it converges. When it converges,
the influence of user v on group c is defined by θvc, the value that θ

(t)
vc converges

to, while the belongingness of user v to group c is defined by ηvc, the value
that η

(t)
vc converges to. When a non-probabilistic clustering is needed, we assign

user v to the group c with the largest ηvc, i.e. z(v) = arg maxc∈C ηvc.

3.2 Generalized Model

In the previous section, we have introduced the audience clustering algorithm
for the single-direct case that each action either has no parent or has one single
parent in the cascade, and only the influence from the parent is considered.
Many real applications, however, do not satisfy this condition for two reasons.
First, in many diffusions, each action may have multiple parent actions. For
example, in the citation network, each action (paper) can cite multiple previous
papers, thus has multiple parent actions. Second, in many applications, both
direct and indirect influence is important and should be considered. For example,
in the citation network, an influential paper should not only have a large citation
number itself, but also inspires some innovative papers which also have plenty
of citations.

We first propose a partial credit method to generalize the clustering method,
so that actions can have arbitrary number of parents in the diffusion pathway
graph, and then further propose a influence backtracking method to incorporate
both direct and indirect influence under the same model.

Partial Credit Method. In the single-direct case, each action ai has one single
influencer r(ai). If each action can have multiple parents, the assumption will be
violated. However, similar to the partial credit method in [9], we can generalize
the model by letting all parents of an action share the “credit” of influencing
that action. Notice that the likelihood function in Equation 1 actually depends
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on Avu, the number of times that user v influences user u. Thus, we can replace
Avu in Equation 2 with following value.

Avu =
∑

D∈D
∑

aj∈AD,
v(aj)=v

∑
ai∈AD,
v(ai)=u

1
|F (ai)|Iaj∈F (ai) (7)

where F (ai) is set of parents of action ai. In this equation, each parent of action
ai gets 1

|F (ai)| credit for influencing action ai.

Influence Backtracking Method. We now introduce an influence backtrack-
ing method to measure the influence between actions in a diffusion pathway
graph. The benefits of influence backtracking method are as follows: (1) the
same as the partial credit method, each action can have arbitrary number of
parents; (2) both direct and indirect influence is captured by the same measure-
ment. By incorporating the influence backtracking method, the AudClus model
can be generalized to all diffusion pathway graphs under the flexible definition
as in Definition 1.

The intuition of influence backtracking is measuring influence by the amount
of information that is brought into the social network by an action and is adopted
by following actions. Consider the scenario of an author writing a blog post. The
author gets some information from some other blog posts, and brings in some
new ideas at the same time. Therefore, some information in this new blog post
originates from previous blog posts, which are listed as references of this post,
and some may be traced back even further to references of the references. For
each piece of information carried by action ai, we can trace back the diffusion
pathway graph to find out which action brings that piece of information to the
network.

To simulate this process, for each piece of information in an action ai, we use
a reverse random walk to trace back which action brings this piece of information
to the network. The reverse random walk is defined as follows:
1. It starts at the node ai.
2. When it arrives at a node aj with no parents, the random walk terminates
at aj .
3. When it arrives at a node aj with some parents, with probability 1 − q the
random walk terminates at the node aj , and with probability q the random walk
continues. If it continues, it has equal probability to walk to each parent of aj .
If the random walk terminates at the action aj , it represents that the piece of
information originates from action aj . We call q the transfer rate parameter of
influence backtracking.

Since the diffusion pathway graph is an acyclic graph of actions, it is easy
to calculate the probability that the random walk terminates at action aj . The
probability can be calculated recursively by the equation as follows.

Q(aj , ai) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if F (ai) = ∅, i = j

0 if F (ai) = ∅, i �= j

1 − q if F (ai) �= ∅, i = j
q

|F (ai)|
∑

ak∈F (ai)
Q(aj , ak) if F (ai) �= ∅, i �= j.
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where F (ai) is set of parents of ai.
Suppose that there are M pieces of information in an action ai. We use the

random walk to trace back where each piece of information is from. When M
is large enough, the fraction of information pieces that are carried by action ai

and originate from action aj is approximately Q(aj , ai). Thus, for an action ai

and a previous action aj , we regard Q(aj , ai) as the part of ai that is influenced
by aj , and replace Avu, the number of actions of user u that are influenced by
actions of v in Equation 2, by the value as follows.

Avu =
∑

D∈D
∑

aj∈AD,
v(aj)=v

∑
ai∈AD,
v(ai)=u

Q(aj , ai) (8)

4 Experiment

4.1 Experiment Setup

Datasets We experiment with two real-world datasets.

– Citation Dataset. This is the citation network dataset released by Arnet-
Miner [17]. The publication data are extracted from DBLP, ACM and other
sources. Since the influence of authors changes over time, to reflect current
landscape of influence, we have removed publications before year 2000. We
have also filtered out authors who have less than 5 publications. After pre-
processing, the dataset contains 368,101 publications of 113,006 authors, and
592,889 citation links. It also contains conference information of publications,
which we use for clustering evaluation. The original dataset considers venues
such as CoRR as “conferences”. It also contains some less competitive con-
ferences which have far more larger number of accepted papers than normal
conferences. We use the conference list provided by Microsoft academic search
(http://academic.research.microsoft.com/) to clean the data. We only con-
sider the top 100 computer science conferences listed by Microsoft academic
search in the experiment.

– Meme Dataset. This is the meme dataset from Memetracker [11]. It contains
posts from news websites and blogs, and links between then. We use the meme
dataset crawled at August 2008. We consider websites as nodes (“users”) of
the network, and posts in websites as actions. Diffusion pathway graphs are
generated from links between posts. We have removed websites with less than
5 posts. After preprocessing, the dataset contains 40,072 websites, 394,636
pages, and 1,394,710 links.

Methods. For quantitative evaluation, we compare following proposed methods
and baselines.

– AC-i. AudClus with information backtracking.
– AC-p. AudClus with partial credit.
– MD. Mixture model proposed in [15]. We construct a directed network of

users by adding a directed link from user v to user u, if there is some actions
of user u linked to some actions of user v in some diffusion pathway graphs.
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– FG. Fast greedy algorithm in [6]. It is a modularity based community detec-
tion algorithm. The algorithm is implemented in the igraph network analysis
package [7]. Similar to MD, we construct a directed network of users from
diffusion pathway graphs, but each edges in the user network weighted by the
number of links between actions of the two users.

4.2 Qualitative Analysis and Case Studies

Citation Dataset. We begin with a qualitative analysis on the citation dataset.
As we will show later, AC-i achieves best quantitative evaluation result among
all algorithms, and it achieve best result with q = 0.3 and k = 35 for the citation
dataset. We conform to this setting for this part of experiment.

In Table 2, we show an overview of the audience groups. For each group, we
show its top 3 most common conferences, and its top one influencer. We assign
each user v to the group that he has the largest belongingness ηvc. We identify
frequent conferences of a group by counting the number of users in that group
who have published papers in each conference, and finding the top 3 conferences
with the largest counts. We identify the top influencer of a group by finding the
user with the largest influence θvc.

The list of top frequent conferences for groups provides intuitive observations
on the clustering quality. First, the frequent conferences for a certain group are
usually conferences that are related to the same research area. For example, the
top 3 frequent conferences for group 5 (KDD, CIKM, ICDE) are conferences
related to the data mining area, while those for group 8 (ICIP, CVPR, ICCV)
are related to the computer vision area. Second, different groups tend to have
different list of frequent conferences. No two groups share exactly the same
frequent conference list. Most overlaps of frequent conferences between groups
can be explained by the phenomenon that a conference is often related to more
than one research areas. For example, the top 3 frequent conferences of group 3
are ICDE, VLDB and CIKM, and CIKM and ICDE are also the 2nd and 3rd
most frequent conferences for group 5, respectively. The explanation for it is as
follows: (1) group 3 reflects the database area, while group 5 reflects the data
mining area. (2) CIKM and ICDE accept papers in both the database and data
mining areas.

To get a detailed observation on the extracted audience groups, we show
longer lists for top influencers and top frequent conferences for group 5 in Table
5. Values in parentheses after names of influencers are θvc for that influencer.
Values in parentheses after conference are the percentage of users in the group
who have publications in the conference. It is very obvious that the top frequent
conferences are related to the data mining area and the top influencers are indeed
influential researchers in that area.

In Figure 1, we display another case study. In Figures 1(a) and 1(b), we
show the influence spread (θvc) and belongingness distribution (ηvc) of author
Jiawei Han over all groups. As shown by the figures, the belongingness of Jiawei
Han almost completely concentrates to group 5. However, the influence of Jiawei
Han spreads over several groups, although his influence on group 5 is much larger
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Table 2. Audience groups

Most common conf. Top Influencer

0 SC, ICS, ICPP Jos E. Moreira
1 ICC, WCNC, ICASSP Anil K. Jain
2 ICSE, HICSS, ECOOP Barry W. Boehm
3 ICDE, VLDB, CIKM David J. DeWitt
4 PODC, ICDCS, ICC Sanjay Jain
5 KDD, CIKM, ICDE Jiawei Han
6 CDC, EUROCRYPT,CRYPTO Moni Naor
7 SODA, ICRA, ICIP Joseph S. B. Mitchell
8 ICIP, CVPR, ICCV David J. Hawkes
9 CAV, CONCUR, LICS Moshe Y. Vardi
10 IJCAI, AAAI, KR Endre Boros
11 NIPS, ICML, IROS Kalyanmoy Deb
12 ICRA, IROS, CHI David H. Laidlaw
13 DAC, ICCAD, DATE David Blaauw
14 ACL, SIGIR, COLING Andrew McCallum
15 IJCAI, HICSS, AAAI Gheorghe Paun
16 CHI, CSCW, UIST Benjamin B. Bederson
17 ICIP, ICPR, ICASSP Anil K. Jain
18 ITC, DATE, DAC Krishnendu Chakrabarty
19 ICRA, IROS, ICPR Sebastian Thrun
20 DATE, DAC, ISCAS Margaret Martonosi
21 HPDC, SC, ICPP Ian T. Foster
22 IJCAI, AAAI, ICALP Jack H. Lutz
23 AAAI, IJCAI, ICRA Milind Tambe
24 SC, POPL, LICS William Gropp
25 ICC, IROS, INFOCOM Edward R. Dougherty
26 ICASSP, ISCAS, ICC Aapo Hyvrinen
27 WWW, CIKM, ICDE Ian Horrocks
28 HICSS, ICC, ICRA Viswanath Venkatesh
29 CDC, ICC, HICSS Wil M. P. van der Aalst
30 ICC, INFOCOM, WCNC Donald F. Towsley
31 ICIP, ICPR, ICC Etienne E. Kerre
32 ICASSP, ACL, IROS Andreas Stolcke
33 OR, SODA, ICC David E. Goldberg
34 SODA, STOC, FOCS Christos H. Papadimitriou

Table 3. Running time of algorithms (in
seconds)

AC-i AC-p MD FG

Preprocessing time 263.5 123.2 69.9 77.4
Inference time 104.94 39.5 34.3 7182.4

Table 4. Case study: top influential
websites

First group(political news)

website description

1 telegraph.co.uk newspaper
2 foxnews.com news channel
3 nydailynews.com newspaper
4 msnbc.msn.com news channel
5 timesonline.co.uk newspaper
6 nypost.com newspaper
7 news.bbc.co.uk news channel
8 cnn.com news channel
9 politicalticker.blogs.cnn.com political news blog
10 troktiko.blogspot.com political news blog

Second group (technology)

website description

1 blog.wired.com technology magazine
2 gizmodo.com technology blog
3 digg.com news aggregator (technology)
4 telegraph.co.uk newspaper
5 arstechnica.com technology news
6 universetoday.com technology news
7 sciencedaily.com technology news
8 engadget.com technology blog
9 msnbc.msn.com news channel
10 scienceblogs.com technology blog

Table 5. Case study: data mining
group (group 5)

Top influencers Frequent conference

1 Jiawei Han (0.0251) KDD (38.5%)
2 Jian Pei (0.0194) CIKM (33.0%)
3 Charu C. Aggarwal (0.0096) ICDE (29.2%)
4 Mohammed Javeed Zaki (0.0075) VLDB (15.2%)
5 Philip S. Yu (0.0060) WWW (11.8%)
6 Ramesh C. Agarwal (0.0060) AAAI (9.4%)
7 Johannes Gehrke (0.0035) ICML (8.8%)
8 Ke Wang (0.0043) IJCAI (8.7%)
9 George Karypis (0.0041) SIGIR (8.0%)
10 Rakesh Agrawal (0.0035) ICC (6.0%))

than his influence on other groups. Similar observations hold for other users in
the network as well: a user who is influential to a group does not have to be
a member of that class; a user can have influence over more than one groups;
however, the strength of influence can be very different in different groups.

Meme Dataset. For the meme dataset, we use AC-i with q = 0.3 and k =
10. Since there is no information like conferences in the citation network, it
is hard to summarize the category or area of each group. Instead, we show a
case study with that dataset. In Table 4, we show the top influencer of two
groups. For the first group, the top 8 influencers are either newspapers or news
channels, and political news is a major topic covered by these newspapers and
channels. The last 2 are political news blogs. For the second group, most of the
top influencers are technology news websites, except for msnbc.msn.com. Notice
that msnbc.msn.com appears in the top influencer lists of both groups, but it is
more influential on the first group than on the second group. It conforms to the
intuition that MSNBC is a more influential source for political news than it is
for technology news.
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4.3 Quantitative Analysis

Clustering Evaluation. In this section, we evaluate the quality of clustering
quantitatively. For both datasets, the ground truth of groups is not available.
However, for the citation dataset, we can use the conferences of an author’s
papers to roughly identify the group of authors. Thus, we can conduct quanti-
tative evaluation of clustering on the citation dataset.

We use three measurements for the evaluation of clustering: purity, mutual
information (MI), and normalized mutual information (NMI). The three mea-
surements are often used for evaluation of clustering quality. They are usually
defined for datasets with a set of explicit classes and each node is assigned to
exactly one class. In the citation datasets, conferences of authors’ identify the
areas of study and can be used for the evaluation. However, unlike datasets with
explicit classes, each author in the citation dataset can publish in multiple con-
ferences. To make the evaluations work for the citation dataset, we use modified
definitions of purity, MI, and NMI as follows:

– Purity. We first find most frequent conferences for each group as we did
in the last section, and then defined purity(m) as the fraction of users who
have published in at least one of the top m most frequent conferences of their
groups.

– MI. For each conference e, we divide users into positive class (users who
published in this conference), and negative class (users who did not pub-
lish in this conference). We then calculate the mutual information between
positive/negative classes and groups of users. Formally, the mutual informa-
tion is defined as I(f, C) =

∑
le={0,1}

∑
c∈C

Nlec

N log NlecN
Nle·N·c

, where le = 1 and
le = 0 represent the positive and negative classes, respectively. Nlec is the
number of users in group c that belong to the positive or negative class.
Nle· =

∑
c∈C Nlec is the total number of users belong to the positive or nega-

tive class. N·c =
∑

le∈{0,1} Nlec is the total number of users in group c. N is
the total number of users. For each conference e, we calculate the mutual infor-
mation according to the equation above, and then we calculate the average
value over all conferences.

– NMI. When the number of groups k is large enough, it is easy for a clustering
method to achieve high values of purity and MI. Normalized mutual informa-
tion (NMI) can be used to tradeoff the clustering quality against the increas-
ing number of groups. For a conference e, the normalized mutual information
between it and clustering C is defined as NMI(e, C) = I(e, C)/

√
H(e)H(C),

where H(e) = −∑
le={0,1}

Nle·
N log(Nle·

N ) is the entropy for conference e, and
H(C) = −∑

c∈C
N·c
N log(N·c

N ) is the entropy for clustering. Similar to MI, we
use the average value over all conferences to evaluate the clustering.

Since the result clusterings of AC-i, AC-p and MD are influenced by the
random values we use to initialize parameters, we run each of them 10 times for
each setting and show both mean value and standard deviation.
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(a) Influence (b) Belongingness

Fig. 1. Case study: Jiawei Han

(a) MI (b) NMI

Fig. 2. MI and NMI

Figure 3 illustrates purity evaluation for all algorithms (for AC-i, q is set to
0.3). In Figures 3(a), 3(b) and 3(c), we show purity(m) with m = 1, 3, 5, respec-
tively, for varying number of groups. In each case, when k increases, purity(m) for
AC-i, AC-p and MD first increases with increasing k, and then stays around a
certain value or even drops slightly when k is large. For FG, purity(m) increases
slightly when k increases. For each case, AC-i and AC-p consistently outper-
form MD. It suggests that by considering diffusion pathway graphs of actions,
the proposed mixture model based algorithms AC-i and AC-p improves over
MD, which is also a mixture model based algorithms but considers the links
between users only. Further more, AC-i achieves better clustering quality than
AC-p and MD. That is because AC-i quantifies both the direct and indirect
influence simultaneously, while AC-p and MD consider direct influence only.
Clustering quality of AC-p and FG are comparable, with AC-p slighter better
for purity(1), and FG better for purity(3) and purity(5). This is is more clearer
in Figure 3(d), in which we show purity(m) with varying m for k = 35. As
illustrated Figure 3(d), when m, the number of top conferences of each group,
increases, purity(m) for all algorithms goes up steadily. For each m, AC-i always
achieves best purity(m) among four algorithms, while MD always has lowest
purity(m). AC-p and FG has similar purity(m) for m = 1. When n increases,
FG achieves better clustering quality than AC-p. However, as we will show
later, FG is much slower than mixture model based algorithms (AC-p, AC-i,
and MD).

Figure 2(a) illustrates the MI measurement for algorithms. In the figure, k
is illustrated on the X-axis, while MI is illustrated on the Y-axis. As shown by
the figure, when k increases, the MI for AC-i, AC-p and MD first increases
and then stays stable. while the MI for FG only slightly increases as k increases
from 5 to 50. AC-i achieves best clustering quality among the three algorithms,
and AC-p and FG outperform MD.

Figure 2(b) illustrates the NMI measurement. Comparing with the MI mea-
surement in Figure 2(a), the normalization makes NMI favors clustering with
smaller k. For AC-i, the maximum of NMI is achieved at k = 35, while for AC-
p, it is achieved at k = 15. Comparing with the curve of FG in Figure 2(a), we
can find out that the clustering of FG actually has an almost fixed entropy H(C)
when k increases. That suggests that FG does not make fully use of increasing
number of groups k, and assign most of users to a handful of groups.
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(a) purity(1) (b) purity(3) (c) purity(5) (d) purity(m)

Fig. 3. Clustering evaluation with purity

(a) MI (b) NMI (c) purity(1) (d) purity(5)

Fig. 4. Selection of parameter q

Running Time. Table 3 lists the running time for four algorithms. The running
time for each algorithm has two parts: the preprocessing time and the inference
time. For AC-i and AC-p, the preprocessing time is the time spent on calcu-
lating Avu for all pair of users. For MD and FG, the preprocessing time is the
time spent on constructing user networks. For each algorithm, the inference time
is the time spent on generating the clustering. In Table 3, we show the prepro-
cessing time and the inference time for the citation network for the case k = 50.
As shown in the table, comparing with MD, both the preprocessing time and
the inference time of AC-i and AC-p are increased as they consider actions for
clustering inference. AC-i takes more time than AC-p because both direct and
indirect influences are considered by AC-i. Although the preprocessing time of
FG is similar to that of MD, the inference time is significantly longer than
those of other algorithms. That is because, as a modularity-based community
detection algorithm, FG invokes time-consuming calculation on graphs. Never-
theless, as we showed in the previous section, the clustering quality of AC-p is
similar to FG, and the clustering quality of AC-i is significantly better than
that of FG.

Selection of Parameter q. The clustering quality of AC-i depends on the
transfer rate parameter q. In Figure 4, we illustrate the clustering quality of AC-
i with varying q. Figures 4(a), 4(b),4(c) and 4(d) show the clustering evaluation
with MI, NMI, purity(1), and purity(5), respectively. For each measurement,
we show the curves for k = 10, 30 and 50. In each case, when q varies from 0.1
to 0.5, the clustering quality first increases then decreases. The explanation is
as follows: when q is too small, the indirect influence is underestimated; when q
is too large, the indirect influence is overestimated by the algorithm. For each
case, AC-i achieves the best clustering quality when q = 0.3.
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(a) Citation (b) Meme

Fig. 5. User influence spread over groups

(a) Citation (b) Meme

Fig. 6. Fraction of external influencers

4.4 Observations on Group-Specific Influence

Influence Spread of Users. First, we study how the influence of users spreads
over groups. To illustrate that, we first normalize the influence of each user
v over groups with his overall influence, i.e. θvc/

∑
c′∈C θvc′ , and rank groups

according to the normalized influence v has on the groups. We then show the
average normalized influence users have on their first ranked groups, second
ranked groups, etc. As illustrated by the figure, the influence spread of users
tends to concentrate to the first ranked groups. For the citation dataset, on
average, more than 65% of a user’s influence concentrates to the first ranked
group. Nevertheless, users can still have significant influence on a few other
groups. For example, in the citation dataset, on average, the second ranked group
for a user has 15% influence of that user. These results confirm the intuition that
the strength of influence of a user varies drastically over audience groups, but
the influence is not limited to the group that the user belongs to.

The second question we are interested in is whether the overall influence
of users is correlated with the extent that their influence spreads on different
groups. To answer this question, we first quantify the extent of influence spread
of a user by the entropy of user influence distribution. With larger entropy,
the influence of that user tends to spread over different groups more evenly. In
Figure 7, we illustrate the entropy of influence spread for users with increasing
overall influence. Each point in the figure represents a small range of user overall
influence, illustrated on the X-axes. The average entropy for users whose overall
influence is within that range is illustrated on the Y-axes. As shown by the figure,
comparing with users who has larger overall influence, users with smaller overall
influence are more likely to have their influence concentrated to fewer groups.

Fraction of External Influencers. The other question about the influencers
of groups that we study is: given an audience group, among the top m influencers
of the group, how many of them belong to this group, and how may of them
belong to other groups. Figure 6 illustrates the fraction of external influencers.
In the figure, X-axes illustrate m, the number of top influencers of a group,
while Y-axes illustrate the fraction of external influencers, i.e. the fraction of
top influencers who does not belong to the group. (We show average value of
that fraction over all groups). For both the citation and meme datasets, the
fraction of external influencers increases as m increases, which suggests that
influencers with larger influence on a group are more likely to be a member of that
group. Moreover, the fraction of external influencers is larger in the meme dataset
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(a) Citation (b) Meme

Fig. 7. Entropy of influence spread distri-
bution vs. overall influence

3: ICDE, VLDB, CIKM

5: KDD, CIKM, ICDE

10: IJCAI, AAAI, KR

11: NIPS,ICML, IROS
14: ACL, SIGIR, COLING

22: IJCAI, AAAI, ICALP

23: AAAI, IJCAI, ICRA

27: WWW, CIKM, ICDE

Fig. 8. Visualization for influence
between some groups in the citation
dataset

than in the citation dataset. The difference can be explained by the inherent
difference between citation networks and website networks: academic authors
usually specialize in one or a few areas and seldom have large influence outside
the area they specialize in, while many influential websites are comprehensive
websites that cover various topics.

Visualization of Influence between Groups. At last, as an example for
possible applications of AudClus in influence visualization, in Figure 8, we show
the influence between 7 groups in the citation dataset. To quantify the influence
from group ci to group cj , we calculate the average influence users in ci have on
group cj , i.e. Inf(ci, cj) =

∑
z(v)=ci

θvcj/|Nci | where Nci is the total number of
users in ci. We selected the groups that are related to database, data mining,
and machine learning areas. For each group, we show its index, as well as the
top 3 most frequent conferences. The complicated relation between those areas
is clearly illustrated by the figure. For example, the research area of data mining
(group 5) is strongly influenced by the areas of database (group 3), natural
language processing (group 11), and machine learning theory (group 14). On
the other hand, the area of data mining (group 5) also has large influence back
to the database area (group 3), while it has less influence to the natural language
processing and machine learning theory areas.

5 Related Work

Quantifying Influence. There has been extensive work on the problem of quan-
tifying influence and detecting the most influential users. Some work regarded
influence as the outcome of information diffusion processes, like the independent
cascade (IC) model [4,10] and the linear threshold (LT) model [5,9]. This line of
work proposed methods for finding a set of users such that the expected influ-
ence is maximized under a given information diffusion model. Another line of
work conducted empirical studies to quantify the influence of users [1,3]. Topic-
dependent influence was also studied frequently in recent years [13,16].
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Information Diffusion and Community. Recently, researchers have taken
notice of the relation between information diffusion and community structures
in social networks. [12,18] proposed community-based greedy algorithms to speed
up influence maximization on social networks. [8] generalized the influence max-
imization problem to the group level. Latest work in [2,14] analyzed social influ-
ence on the community level, which were closely related to our work in this paper.
[14] proposed a hierarchical method to summarize social influence by reciprocal
influence strength between communities. [2] proposed a stochastic mixture mem-
bership generative model to detect cascade-based community. The tasks that we
work on are different from [2,14] in following aspects. First, our method focuses
on detecting audience groups, while the previous models grouped users based
on how they influence others and how they are influenced by others mixedly.
Second, our method captures the influence of each user to each audience group.
Therefore, it works for the task of identifying the most influential users to groups.
The previous models only captured the influence between groups, and could not
be used to identify the most influential users.

Since influence between users is inherently asymmetric, most traditional com-
munity detection algorithms designed for undirected network do not work well
for the study of social influence. [15] proposed a community detection method
based on probabilistic mixture model. It is a very flexible model that can be
naturally extended to detect role-based groups, such as audience groups.

6 Conclusion

In this paper, we study audience groups in networks and group-specific influence
of users. We propose AudClus, a mixture model based algorithm to detect audi-
ence groups and quantify group specific influence simultaneously. We also invent
an influence backtracking method to capture both direct and indirect influence.
We show qualitative and quantitative evaluations on real-world datasets. The
proposed AudClus algorithm provides a new approach to understand the struc-
ture of influence in social networks, which leads to many insightful observations.
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