
Learning Pretopological Spaces for Lexical
Taxonomy Acquisition

Guillaume Cleuziou1(B) and Gaël Dias2
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Abstract. In this paper, we propose a new methodology for semi-
supervised acquisition of lexical taxonomies. Our approach is based on
the theory of pretopology that offers a powerful formalism to model
semantic relations and transforms a list of terms into a structured term
space by combining different discriminant criteria. In order to learn a
parameterized pretopological space, we define the Learning Pretopolog-
ical Spaces strategy based on genetic algorithms. In particular, rare but
accurate pieces of knowledge are used to parameterize the different crite-
ria defining the pretopological term space. Then, a structuring algorithm
is used to transform the pretopological space into a lexical taxonomy.
Results over three standard datasets evidence improved performances
against state-of-the-art associative and pattern-based approaches.

1 Introduction and Related Work

By coding the semantic relations between terms, lexical taxonomies (LTs) such
as WordNet [7] have enriched the reasoning capabilities of applications in infor-
mation retrieval and natural language processing. However, the globalized devel-
opment of semantic resources is largely limited by the efforts required for their
construction [5]. As a consequence, many research studies have been appearing
to automatically learn LTs. Instead of manually creating LTs, learning them
from texts has undeniable advantages. First, they may fit the semantic compo-
nent neatly and directly within a given domain. Second, the cost per entry is
greatly reduced, giving rise to much larger resources.

The two main stages for the automatic construction of LTs are term extrac-
tion (TE) and term structuring (TS). A substantial amount of works exist on TE
[8], but the present study exclusively focuses on the TS stage. Within this con-
text, similarity-based, pattern-based, set-theoretical and associative approaches
have traditionally been proposed.

Similarity-based or clustering-based approaches [9,10] hierarchically cluster
terms based on similarities of their meanings usually represented by a vector
of quantifiable features. They have the main advantage that they are able to
discover relations which do not explicitly appear in text. They also avoid the
problem of inconsistent chains by addressing the structure of a taxonomy glob-
ally from the outset. However, it is generally believed that these methods can
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not generate relations as accurate as pattern-based approaches [5]. Pattern-based
strategies [5,15] define lexical- syntactic patterns for semantic relations and use
these patterns to discover instances of relations. They are known for their high
accuracy in recognizing instances of relations if the patterns are carefully cho-
sen, either manually or via automatic boostrapping. However, this approach
suffers from sparse coverage of patterns in specific corpora, especially technical
domain ones. Moreover, it may evidence inconsistent concept chains as instances
are extracted in pairs and gathered to form taxonomy hierarchies. Set-theoretic
approaches [3] use formal concept analysis that naturally structures terms with
intensional inclusion relations within a concept lattice. Such term organization
differs from usual lexical taxonomies that provide semantic relations between
terms rather than inclusion relations between formal concepts. This strategy
usually highlights low performance as contextual vector seldom overlap in large
open uncontrolled domains. Finally, associative frameworks [12] use asymmetric
similarities between terms to model the subsumption relation. For that pur-
pose, distributions of terms over document collections are used to discover gen-
eral/specific noun relationships. The main drawback of this approach is that the
subsumption model implicitly hypotheses that general terms are always more
frequent than their specific terms, which is not always satisfied in practice.

Note that these methodologies rely on one exclusive criterion to model the
subsumption (is-a) relation and build the respective taxonomy. In order to take
advantage of multiple criteria, two important works have been proposed [14,16].
Both methodologies first learn an ontology metric, which models the is-a relation
based on vectors of discriminant criteria (e.g. contextual, cooccurrence, syntac-
tic dependency or patterns). This step is obtained by supervised learning over
existing taxonomies. The logistic regression is used by [14] and [16] applies the
ridge regression. Then, the ontology metric guides the incremental taxonomy
acquisition process modeled as an optimization task: 1-objective for [14] and
2-objectives for [16]. The main advantage of these approaches is to model the
is-a relation between terms based on multiple criteria, thus greatly avoiding data
sparseness and low coverage. However, both proposals depend on a supervised
learning stage that relies on large known ontologies such as WordNet or Open
Directory Project. However, in real-world situations, this knowledge is not acces-
sible and only partial (usually small) knowledge of the domain can be accessed.
Moreover, note that these large resources are mainly available for the English
general language. As such, language/domain/genre adaptability is not ensured.

In this paper, we propose a new semi-supervised multi-criteria strategy for
taxonomy induction. The overall idea is (1) to learn a propagation metric1 based
on a set of relevant associative and pattern-based features constrained by small
(yet accessible) pieces of knowledge of the domain and (2) to induce the tax-
onomy based on a pretopological framework which transforms the pretopologi-
cal term space into a directed acyclic graph, the output taxonomy. To achieve
these objectives, we consider pretopology on the multi-criteria analysis point of
view, where criteria are statistical indices (associative approach) and linguistic

1 As opposed to the ontology metric.
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patterns (pattern-based approach) retrieved from a corpus. In particular, we
define the concept of parameterized pretopological space (P-space), where param-
eters express the confidence that exists over each criterion. As such, LT induc-
tion can be viewed as learning the set of parameters (confidences), which best
(1) approximate the expected LT structure and (2) verify a given number of
linguistic patterns constraints. In order to learn the parameters, we define a
new Learning Pretopological Spaces (LPS) strategy based on genetic algorithms,
which leads to induce a LT from an “optimized” P-space. The main advantages
of the LT acquisition methodology presented in this paper, when compared to
state-of-the-art methodologies are enunciated as follows:

(1) We learn a propagation metric, which directly models the is-a relation into
the taxonomy induction process in contrast to [16] and [14] who propose a
two-steps process,

(2) Linguistic patterns, which embody small (yet accessible) pieces of knowl-
edge of the domain constrain the semi-supervised learning process but are
also used as relevant criteria,

(3) We deal with both general and specialized domains where linguistic patterns
fail to retrieve any relation,

(4) Our framework is quasi-independent regarding to language as only few and
simple linguistic patterns and raw texts are required.

In the remainder of this paper, we first define the required notions of our
pretopological framework and its usage for multi-criteria analysis (Section 2).
Then, in Section 3, we define the concept of parameterized pretopological space
(P-space) and propose the learning pretopological spaces (LPS) strategy based
on genetic algorithms in the context of taxonomy induction. In Section 4, we
evaluate our framework on the LT reconstruction task, considering both gen-
eral (i.e. WordNet) and specialized domains (i.e. UMLS). Finally, in Section 5,
concluding statements are enunciated.

2 Pretopological Framework

Pretopology [1] is a theory that generalizes both topology and graph theories
and is commonly used to model complex propagation phenomena thanks to a
pseudo-closure function. Let’s consider a non-empty set E and its powerset P(E).
A pretopological space2 is noted (E, a), where a(.) is a pseudo-closure function
described in Definition 1.

Definition 1 (Pseudo-closure). A pseudo-closure is a function a(.) : P(E) →
P(E), which respects the following three conditions:

i) a(∅) = ∅,
ii) ∀A ∈ P(E), A ⊆ a(A),
2 Note that in this paper, we always consider V -type spaces, as they present good

structuring properties.
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iii) ∀A,B ∈ P(E), A ⊆ B ⇒ a(A) ⊆ a(B).

So, the pseudo-closure function behaves as an expansion operator that
enlarges any non-empty subset A ⊂ E. As a consequence, successive applica-
tions of a(.) on A lead to a fix-point called closed subset and noted FA. Two
other concepts are required to introduce our model: elementary closed subset
and maximal elementary closed subset formalized in Definitions 2 and 3 respec-
tively.

Definition 2 (Elementary Closed Subset). An elementary closed subset
F{x}, is the closure of a singleton {x} with x ∈ E.

Definition 3 (Maximal Elementary Closed Subset). A maximal elemen-
tary closed subset is an elementary closed subset, maximal in terms of inclusion
with respect to all possible elementary closed subsets in E.

These definitions give us two key concepts on a structuring point of view: (1)
an elementary closed subset F{x} refers to the subset of items reachable from x
and (2) when F{x} is maximal, it means that x is only reachable from items y
with an identical elementary closed subset (F{x} = F{y}), thus capturing a kind
of equivalence class.

2.1 Pretopology and Multi-criteria Analysis

Pretopology can be used in the context of multi-criteria analysis since it allows
complex but efficient aggregation of several criteria at the pseudo-closure func-
tion level. So, considering (1) a set of K criteria providing different views on
the manner a discrete set E is structured and (2) each criterion defining one
neighborhood relation on E and Nk(x) the kth neighborhood of x, the fam-
ily of neigborhoods N = {N1, . . . , NK} suggests a multi-criteria environment.
Note that to be consistent with the formal definition of neighborhoods [1], we
constrain any Nk(x) to contain x itself:

∀k = 1, . . . ,K, ∀x ∈ E, x ∈ Nk(x). (1)

A usual pseudo-closure definition for neighborhood aggregation, which satis-
fies the V -type space conditions is given by

∀A ∈ P(E), a(A) = {x ∈ E| ∀ Nk ∈ N , Nk(x) ∩ A 
= ∅}. (2)

Such a pseudo-closure expands a subset A to an item x if and only if all
neighborhoods (criteria) of x intersect A. It is important to note that when A is
not reduced to a singleton, the agreement can be reached by intersections that
concern different items of A. Thus, a complex propagation process is defined at
the subset level rather than at the element level and there is no way to reproduce
such a process on a single neighborhood structure that would result from the a
priori aggregation of the different criteria3.
3 Proof of this statement is out of the scope of this paper.
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2.2 Pretopology and LT Acquisition

It is well-established that known LTs such as WordNet or Cyc share some specific
common structure. As a consequence, a learned LT should ideally satisfy the
following two structural requirements:

(1) a DAG structure: each node must be characterized by two disjoint sets of
predecessors and successors with no cycles,

(2) aggregating nodes: each node must contain one or several terms from the
vocabulary E.

Such a structure can be obtained based on a pretopological term space with
the structuring algorithm proposed by [6]. In our specific case, we propose a top-
down version of this algorithm. So, instead of considering minimal closed subsets,
we consider maximal ones. The basic idea of the algorithm for LT induction is
defined in Figure 1 and illustrated in Figure 24.

1. Determine elementary closed subsets associated to each element x of E giving
rise to the family of closures Fe(E, a).

2. Find the family of maximal elementary closed subsets FM(E, a). This means
enumerating all the maximal elementary closed subsets by inclusion in Fe(E, a).
Any element F ∈ FM(E, a) is then a core.

3. Within each core, recursively determine the largest elementary closed subsets of
E in terms of inclusion, until no other can longer be found. The recursive process
allows to generate, from each core, a set of homogeneous parts by successive
reductions and outputs the final LT.

Fig. 1. LT induction algorithm.
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Fig. 2. Top-down structuring inducing a DAG from a pretolopological term space.

4 More details can be found in [4].
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2.3 Current Limitations

Despite its interesting properties for multi-criteria analysis as evidenced in [4]
for LT induction, in its current form, the pretopological LT process evidences
two main limitations that make it under-efficient:

(1) it is sensitive to unreliable criteria,
(2) it only allows a limited number of criteria to combine.

Both issues are due to the definition of the pseudo-closure operator itself that
requires that all criteria must satisfy the intersection property in order to start
the propagation process from elementary sets.

3 Learning Pretopological Spaces

To overcome previous limitations, we propose in this paper a new learning pre-
toplogical spaces (LPS) framework based on a more flexible pseudo-closure def-
inition. It is illustrated in Figure 3.

w1

N2

NK

N1

...

a(.)w2

wK

...

Fig. 3. The LPS process uses partial knowledge on the expected structure in order to
improve the parameterization of the pseudo-closure operator.

This new framework relies on the one-pass process from [4] that first computes
a unique pretopological space from a family of criteria using the pseudo-closure
defined in (2) and then applies the top-down variant of the structuring algorithm
from [6]. But, rather than providing the resulting structure as output, the LPS
framework consists in comparing the built structure to some partial knowledge
and modifying the pseudo-closure operator in order to improve the final struc-
turing. This is achieved by an iterative semi-supervised learning process. Such
a framework requires to introduce new concepts into the pretopology theory,
especially the concept of parameterized pretopological space (P-Space).
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3.1 Parameterized Pretopological Space

To relax the constraint that requires the agreement on all criteria to allow the
propagation process, we propose to introduce a parameter p that indicates a
requirement on the minimum number of neighborhoods that must intersect a
subset A in order to expand it. Its formalization is given in Equation 3 with
p ∈ {1, . . . , K} and 1Nk(x)∩A �=∅ = 1 if the neighborhood Nk(x) intersects A and
0 otherwise.

∀A ∈ P(E), a(A) = {x ∈ E |
∑

Nk∈N
1Nk(x)∩A �=∅ ≥ p} (3)

To express the combination model as a learning model, we define the notion
of parameterized pretopological space (P-Space) that introduces supplementary
parameters to manage the reliability of the criteria in Definition 4.

Definition 4 (P-Space). A P-space (E, a,w) is a V -type pretopological space
with a parameterized pseudo-closure a(.) defined by

∀A ∈ P(E), a(A) = {x ∈ E |
∑

Nk∈N
wk.1Nk(x)∩A �=∅ ≥ w0} (4)

such that (1) w0 > 0, (2)
∑K

k=1 wk ≥ w0 and (3) ∀k, wk ≥ 0.

Note that conditions (1), (2) and (3) over the set of parameters w are defined
to respectively ensure the three conditions i), ii) and iii) expressed in Defini-
tion 1 over the V -type spaces. In particular, each parameter wk in Equation (4)
quantifies the reliability on the kth criteria and w0 represents a global required
confidence to expand the subset. Thus, a subset A will be expanded to an ele-
ment x only if the sum of the confidences on the criteria in agreement with the
expansion exceeds the global required confidence w0.

The P-Space concept evidences two strong advantages: (1) it overcomes the
limitations about reliability and multiplication of the criteria and (2) it extends
significantly the possibilities of combination, passing from a single conjunctive
decision rule to a set of logical decision rule (without negation). But the notice-
able improvement on the model makes a new challenging question to appear:
How to parameterize a P-Space?

3.2 Semi-supervised Learning of P-Spaces

We propose a semi-supervised strategy to learn the parameters of a P-Space. So,
if S is a given source providing a true partial structuring on E5 and considering
that a V -type pretopological space induces a unique DAG, the Learning P-Space
(LPS) process aims to find a P-Space inducing a DAG that satisfies:

5 Note that in the context of LT acquisition S is usually a small number of “evident”
subsumption relations between terms.
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(1) the constraints implied by the partial knowledge S and
(2) a taxonomy-like structuring.

The following Score(., .) quantifies such a satisfaction:

Score(w, S) = FMeasure(w, S) × Itaxonomy(w). (5)

The FMeasure is the usual external validation index [11] that, in our context,
combines precision and recall calculated over the pairs of elements linked in the
partial knowledge S only. More precisely, given a DAG Dw induced by the P-
Space with parameters w and the partial knowledge S also formalized as a (more
sparse) DAG, we first operate a closure operation on both graphs (resulting
in D̄w and S̄) in order to make any implicit (indirect) edge to emerge before
computing precision, recall and FMeasure. Metrics are defined in Equations 6
where S̄t denotes the graph opposite to S̄, which must be considered in order to
count the false positive relations.

precision = |{(x,y)∈D̄w∩S̄}|
|{(x,y)∈D̄w∩(S̄∪S̄t)}|

recall = |{(x,y)∈D̄w∩S̄}|
|{(x,y)∈S̄}|

FMeasure = 2.precision.recall
precision+recall

(6)

The Itaxonomy term is used to control the structural properties of the induced
DAG Dw (independently to S). Although, the structure of a taxonomy is not
formally defined, one can observe that a taxonomy usually looks like more to a
tree (with one parent per node - except for the root) than to a lattice structure
(for example). In order to favor tree-like structures, we compute on Dw its
average ascendant degree (i.e. average number of parents per node) Ad(Dw),
and we use it to penalize a DAG moving away from a tree-like structure. This
constraint is formalized in Equation 7.

Itaxonomy(w) = e−(Ad(Dw)−1)2 ∈ [0, 1] (7)

The final satisfaction measure Score(w, S) reaches a maximum value of 1 for
a DAG that (1) fits exactly to the knowledge source S and (2) structures the
elements with an average ascendant degree of 1 (taxonomy).

This measure is used to guide the exploration of the space of solutions through
a learning strategy based on a Genetic Algorithm (GA). GAs are stochastic
exploration methods inspired from the natural selection principle [13]. Given
a fitness(.) function over the solution space, they simulate a natural evolution
process by iteratively (1) generating populations of solutions (with mutation and
crossover operators) and then (2) selecting the ones with highest fitness. The
LPS approach uses such a stochastic exploration process based on the following
fitness function:

fitness(w) =
{

Score(w, S) if w satisfies Def. (4)
0 otherwise. (8)
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Figure 4 gives an overview of the general LPS process. Each iteration of the
algorithm leads to an ensemble of P-Spaces, evaluated and selected as regard
to their ability to induce a taxonomy-like structure satisfying partial knowledge
requirements. Ultimately, only the best P-Spaces are returned. Let us notice
that, in addition to the expected taxonomies the final P-Spaces allow to induce,
the returned P-Spaces are themselves of high interest since they hold a learned
propagation process that could be reused in an incremental context6.

1. Given:
a set of elements E,
a family of criteria N = {N1, . . . , NK},
a partial knowledge S,
a maximum number of iterations tmax.

2. Build an initial population W0 = {w ∈ [0, 1]K+1}.
3. t ← 0
4. For each solution w ∈ Wt

- Build the induced DAG Dw,
- Evaluate its fitness(w)

5. Select the best P-Spaces
6. if (t < tmax) then

t ← t + 1,
- Generate a new population Wt by mutation
and crossover,

- GoTo step 4
7. else return the selection.

Fig. 4. LPS general algorithm.

4 Experiments on LT Acquisition

The objective of the present proposal is to combine associative and pattern-based
methods for LT acquisition by applying our multi-criteria LPS algorithm. Two
situations have been considered in the following experiments:

When the linguistic patterns succeed in retrieving (maybe few) accurate rela-
tions. This is usually the case for generic domains. In this case, the set of term
relations automatically extracted from a given set of patterns plays the role of
the partial knowledge S. LT acquisition is thus performed in an auto-supervised
context since no expert intervention is needed,

When the linguistic patterns fail to provide any reliable piece of knowledge
that could guide the structuring process. This situation frequently occurs for
specialized domains and makes most of the existing pattern-based approaches
[5,15] totally inoperative. An expert is so required to give at least a couple of
term relations (S) as in a usual semi-supervised learning context.

6 This is out of the scope of this paper.
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4.1 Experimental Setups

For each LT construction experiment, the list of terms to structure E comes
from a reference R (in english) and the acquired taxonomies are compared to
this reference using the FMeasure as defined in (6) but with R that stands in for
S. Indeed, S is only a set of term relations that helps the learning process and
R is the complete gold standard reference taxonomy, to which the induced LT
must be compared.

The linguistic patterns used are limited to the following list of four simple
and usual ones [5]: “X such as Y ”, “X including Y ”, “X like Y ” and “Y are
X that”. For any pair of terms (x, y) from the list, each pattern is tested on
en.wikipedia.org and each time a pattern is observed between x and y, an edge
x ← y (x subsumes y) is added to S.

The english subpart of wikipedia.org (i.e. en.wikipedia.org) is also used as
corpus for frequency counts extraction. For each pair of terms (x, y), we retrieve
the number of wikipedia pages where both terms occur (hits(x, y)) in the cor-
responding sub-domain of wikipedia. Sub-domains are artificially identified by
introducing the root term of the taxonomy into the wikipedia query. For exam-
ple, hits(cars, trucks) is retrieved with the following query [“cars” AND “trucks”
AND “vehicle”], vehicle being the root of the taxonomy to reconstruct.

From the frequency counts, three kinds of associative criteria are built in
order to serve as basis neighborhoods for the P-Spaces:

NkSand corresponds to the subsumption relation modeled by [12] : y ∈
NkSand(x) iff P (y|x) ≈ hits(x,y)

hits(x) ≥ σk ∧ P (y|x) > P (x|y).
NkNP associates to each term x its k Nearest Parents in the sense of P (y|x):

y ∈ NkNP (x) iff P (y|x) is one of the k best {P (z|x)}z∈E .
NkNC associates to each term x its k Nearest Children: y ∈ NkNC(x) iff P (y|x)

is one of the k best {P (y|z)}z∈E .

All criteria depend of the parameter k that controls the number of selected
relations. In particular, we adjust the threshold σk in such a way that NkSand

selects as many relations as the two other criteria for a same value of k (i.e. k.|E|
relations). So, each type of criterion provides several effective criteria depending
of the parameter k. In the following experiments, each criterion will be used with
three different values (k ∈ {1 . . . 3}) leading to families containing respectively
three, six and nine effective criteria.

Let us notice that, unlike the two first criteria, NkNC has a strong weakness
as it tends towards a non-taxonomic structure. In particular, it will be used to
illustrate the behaviour of our approach in the context of an existing unreliable
criterion when compared to previous studies.

To conclude on the preliminaries, let us mention the following operational
details. The LPS algorithm has been implemented using the R package “GA”
[13] with default configurations for crossover and mutation operators. We fixed
the size of the population in the range {25 . . . 1000} depending of the number
of terms to structure and a maximum number of iterations to 25. As GAs are
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stochastic methods, we select in the coming results the best learned P-Space (in
terms of fitness(w)) over a set of 5 runs.

4.2 LT Acquisition with Auto-supervision

The LT construction task is experimented on three domains extracted from
WordNet, Vehicles, Plants and Food, with respectively 108, 554 and 1485 terms.
The first two datasets are usually used as gold standards on LT induction [5,15]
and the Food dataset is provided by the recent SEMEVAL 2015 contest [2].

Table 1 reports in the three top parts, the scores obtained (and the corre-
sponding best parameters k) using purely associative approaches (without LPS),
with or without aggregation of two or three statistical criteria.

Table 1. Quantitative evaluation of reconstructed lexical taxonomies on the domains
Vehicles, Plants and Food.

Vehicles Plants Food

Criteria Prec. Rec. FM. k Prec. Rec. FM. k Prec. Rec. FM. k

[12] NkSand. 0.75 0.35 0.48 2 0.55 0.32 0.40 2 0.28 0.20 0.23 4

NkNP 0.44 0.45 0.44 2 0.57 0.29 0.38 1 0.50 0.23 0.31 1

NkNC 0.06 0.26 0.10 2 0.04 0.02 0.03 1 0.01 0.03 0.01 10

2-Criteria Combinations (without LPS)

NkSand. ∧ NkNP 0.77 0.34 0.47 2 0.70 0.31 0.43 2 0.72 0.19 0.30 8

NkSand. ∨ NkNP 0.42 0.46 0.44 2 0.57 0.29 0.38 1 0.43 0.23 0.30 1

[4] NkSand. � NkNP 0.77 0.34 0.47 2 0.70 0.31 0.43 2 0.72 0.19 0.30 8

3-Criteria Combinations (without LPS)

∧ Combination 0.31 0.41 0.36 14 0.15 0.07 0.10 15 0.26 0.03 0.05 20

∨ Combination 0.33 0.37 0.35 1 0.28 0.30 0.29 1 0.24 0.23 0.24 1

[4] � Comb. 0.45 0.36 0.40 6 0.16 0.34 0.22 14 0.26 0.03 0.05 20

LPS based on associative criteria only

3 criteria 0.77 0.34 0.47 2 0.95 0.25 0.40 1 0.50 0.23 0.31 1

6 criteria 0.77 0.34 0.47 1..2 0.58 0.32 0.41 1..2 0.49 0.23 0.31 1..2

9 criteria 0.76 0.36 0.49 1..3 0.64 0.32 0.43 1..3 0.44 0.25 0.32 1..3

LPS based on associative criteria + the linguistic criteria S

4 criteria 0.84 0.37 0.52 1 0.96 0.31 0.47 1 0.50 0.23 0.31 1

7 criteria 0.77 0.42 0.55 1..2 0.58 0.40 0.47 1..2 0.49 0.23 0.31 1..2

10 criteria 0.74 0.48 0.58 1..3 0.62 0.40 0.49 1..3 0.43 0.27 0.32 1..3

The N2Sand criterion corresponding to the methodology of [12] clearly out-
performs all other single criteria in terms of precision while NkNP evidences
increased recall compared to all other criteria for the Vehicles domain. Note
that this situation is reversed for the Plants and Food domains, which indicates
that the subsumption relation can be described differently depending on the
studied domain. This is an important issue when compared to [14,16], who sup-
pose that the is-a relation can universally be learned from WordNet. Expectedly,
NkNC shows poor performance due to its non-taxonomic nature.
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When the best two criteria are joined into a non-guided (without LPS) aggre-
gation strategy, results show similar performance (with slight improvements for
the Food domain), especially for the conjunctive (∧) and pretopological (�) [4]
aggregations. However, the disjunctive (∨) aggregation operator leads to worst
results as the subsumption definition is not enough constrained. Note that the
disjunctive and conjunctive aggregations consist in generating one new criterion
from initial ones by considering respectively their union and their intersection
i.e. the neighborhood family is thus reduced to a single neighborhood.

Finally, when the three criteria (including a non-performant one, i.e. NkNC)
are gathered in the multi-criteria framework without LPS, all aggregations fail
and performance drastically drops. The difference is even higher for the Plants
and Food domains, which are known to be well-structured. These experiments
clearly show the incapacity of this previous model to handle unreliable criteria.
The next experiments aim to evidence the superiority of the LPS strategy.

As pattern-based methods succeed in extracting reliable relations from the
three domains, we performed our LPS approach in an auto-supervised way. In
particular, for Vehicles, 93 relations were found corresponding to a recall of 17.6%
and with a rate of 78.5% in precision as regards the reference. For Plants, 332
relations were foundwith a recall of 10.2% and a precision of 61.9%, and for Food
only 244 relations were extracted, resulting in a low recall (3%) and with a small
precision (36%). So, the fourth sub-table of Table 1 shows how the LPS method-
ology allows to learn new P-Spaces by selecting and combining more efficiently
three, six or nine associative criteria and reaches slightly improved results to
the ones presented by [12], which are the best up to now in terms of associative
frameworks. Interestingly, higher precision is obtained to the detriment of recall,
especially for the Plants domain.

Let us mention that if S can be used as a partial supervisor in the LPS
method, it can also be used, without reserve, as a new criterion in the family of
neighborhoods N . In Table 1, the bottom part reports the scores obtained by
introducing the pattern-based feature S as a supplementary criterion to consider
in the construction of the combination rule. This experiment evidences the effi-
ciency of LPS with such a mixture of pattern-based and associative criteria that
makes reachable new P-Spaces inducing strongly improved taxonomies (e.g. up
to 9% FMeasure for Vehicles and 6% for Plants). To illustrate the P-Space learned
by the four criteria (N1Sand, N1NP , N1NC and S) on the Vehicles domain, we
derive the DNF rule from the final parameters w and we obtain the following
(simplified) expansion strategy:

δS ∨ (δN1Sand
∧ δN1NP

) ∨ (δN1Sand
∧ δN1NC

), (9)

which means that a subset A can be expanded with an element x if one of the
following properties are satisfied:

(1) x is in relation with at least one element from A in the partial knowledge S,
(2) both neighborhoods N1Sand(x) and N1NP (x) intersect A,
(3) both neighborhoods N1Sand(x) and N1NC(x) intersect A.
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(a) Obtained LT with NkSand. best configuration (FMeasure = 0.48 and k = 2)

(b) Obtained LT with 10 criteria best configuration (FMeasure = 0.58)

Fig. 5. Examples of induced LT with NkSand. and LPS for Vehicles.

It is also interesting to visualize well-chosen results in order to understand the
different behaviours between approaches. In Figure 5, we present LT subparts
respectively resulting from the best configurations of the methodology proposed
by [12] and the 10 criteria LPS learning approach. In particular, continuous edges
are present in S and dashed ones are learned relations for Vehicles.

Finally, in order to propose a meaningful evaluation, we summarize in
Table 2 the comparative results with most reproducible state-of-the-art
approaches7: [12] for the associative paradigm, [4] for the initial pretopologi-
cal framework and [5] for the pattern-based approach.

Table 2. Comparison of LT acquisition methodologies on Vehicles, Plants and Food.

Vehicles Plants Food

Method/Approach Prec. Rec. FM. Prec. Rec. FM. Prec. Rec. FM.

[12] associative 0.75 0.35 0.48 0.55 0.32 0.40 0.28 0.20 0.23

[4] pretopological 0.45 0.36 0.40 0.16 0.34 0.22 0.26 0.03 0.05

[5] pattern-based 0.79 0.18 0.29 0.62 0.10 0.18 0.36 0.03 0.05

LPS framework 0.74 0.48 0.58 0.62 0.40 0.49 0.43 0.26 0.32

Let us mention that in order to compare these methods within similar condi-
tions, the final structuring approach from [5] has been performed on the partial

7 Note that [16] evidence a FMeasure of 0.82 on a non-available WordNet dataset,
where training and testing are performed over the same data, thus invalidating any
conclusion. Note also that [14] only present experiments for populating an existing
ontology and direct comparison cannot be evidenced.
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knowledge S extracted from en.wikipedia.org. Results obtained by [5] on the
same datasets are higher but they are obtained using the (non-free) Yahoo!Boss
search engine. Moreover, note that results of [5] are very similar to the ones of
[15] who use different evaluation metrics in their paper. As a consequence, only
results of [5] are reported here.

Results in Table 2 clearly reveal the benefice of mixing both statistical infor-
mation and linguistic patterns within a unified learning process. The pattern-
based approach obtains, as expected, better precision but significantly fails to
retrieve most of the relations, whereas the LPS framework outperforms any other
method on recall without drastic loss in precision so evidencing high FMeasure.

4.3 LT Acquisition with Semi-supervision

To deal with the acquisition of specialized LTs, we take as reference the concate-
nation of four sub-domains from the Unified Medical Language System8 (UMLS)
produced by the U.S. National Institutes of Health. The selected sub-domains
are cardiovascular system, digestive system, nervous system and respiratory sys-
tem. Their concatenation results in a list of 128 specialized terms like upper
gastrointestinal tract or blood-retinal barrier.

Over this term list, none of the four considered lexical patterns retrieved any
relation on en.wikipedia.org, whereas terms actually occur with an average of
2225 counts per term. A pattern-based extraction test performed on the more
specialized corpus PubMed9 has led to the same statement. Thus, we used our
LPS methodology in a semi-supervised context. In particular, we simulated the
input of expert knowledge S by randomly extracting relations from the reference.

Figure 6 (left) shows the performances in reconstructing the UMLS subpart
with LPS as regards to the number of given external relations. The means and
standard deviations on 5 trials (different sets of randomly extracted relations)
are reported and the area in gray represents the benefice of the LPS process with
respect to the structuring based on the external knowledge only.

First, we can notice that the obtained FMeasures are much lower than the
scores obtained on the previous general domains. This statement reveals the
complexity of the task that is reinforced by the fact that UMLS is not struc-
tured with only is-a relations but also with part-of subsumptions. Despite that,
we clearly observe that the acquired taxonomies take advantage of the proposed
semi-supervised LPS methodology, especially in situations where the given exter-
nal knowledge is lacking. This situation matches with a more realistic practical
context of use.

Finally, we performed the same experiment on the Nervous system sub-
domain that contains 28 terms mainly structured with is-a relations. We can
observe in Figure 6 (right) the same tendency but with strongly increased ben-
efits although on a small dataset.

8 http://www.nlm.nih.gov/research/umls/
9 http://www.nlm.nih.gov/research/pubmed/

http://www.nlm.nih.gov/research/umls/
http://www.nlm.nih.gov/research/pubmed/
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Fig. 6. Quantitative evaluation of reconstructed lexical taxonomies on the medical
domain (UMLS).

5 Conclusions

In this paper, we proposed a new learning strategy to efficiently combine linguis-
tic and statistical features for lexical taxonomy acquisition. This methodology
uses the pretopological formalism into which we defined the new concept of P-
Space that relies on a parameterized pseudo-closure operator formalized in a
multi-criteria analysis context. Then, we developed a semi-supervised strategy
called LPS to learn P-Spaces in the taxonomy induction perspective. Exper-
iments confirmed our expectations on both general and specialized domains.
In particular, significant FMeasure improvements are obtained for the auto-
supervised context when compared to recent works [5]. Moreover, where pattern-
based methodologies [5,15] fail to learn LTs due to the absence of pattern evi-
dences (usually for specialized domains), the introduction of external knowledge
combined with statistical features allows the construction of LTs with reasonable
accuracy.
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