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Abstract. Matrix factorizations are a popular tool to mine regulari-
ties from data. There are many ways to interpret the factorizations, but
one particularly suited for data mining utilizes the fact that a matrix
product can be interpreted as a sum of rank-1 matrices. Then the fac-
torization of a matrix becomes the task of finding a small number of
rank-1 matrices, sum of which is a good representation of the original
matrix. Seen this way, it becomes obvious that many problems in data
mining can be expressed as matrix factorizations with correct definitions
of what a rank-1 matrix and a sum of rank-1 matrices mean. This paper
develops a unified theory, based on generalized outer product operators,
that encompasses many pattern set mining tasks. The focus is on the
computational aspects of the theory and studying the computational
complexity and approximability of many problems related to generalized
matrix factorizations. The results immediately apply to a large number
of data mining problems, and hopefully allow generalizing future results
and algorithms, as well.

1 Introduction

One of the most fundamental tasks in data mining is to explain (or summarize)
a data set using a collection of simple and easy-to-understand structures (com-
monly referred to as regularities or patterns). A block of some kind has been the
predominant type of patterns sought by many data mining algorithms; a clique
(or quasi-clique) in a network or a frequent itemset or a tile in transaction data
are all blocks, or more precisely, (binary) rank-1 (sub-)matrices. Consequently,
a collection of these blocks summarizing the data can be seen as a matrix fac-
torization of the data matrix [27].

But in recent years, increased emphasis has been put to patterns that go
‘beyond blocks’, for example, nested submatrices [17], taxonomies [18], stars,
biclique cores, or chains [19], or hyperbolic subgraphs [3] (see Figure 1 for exam-
ples of some of these patterns). At first, it might seem like these patterns share
very little, if anything, with simple blocks; they are, for example, not rank-1. It
seems, then, that we have to re-do much of the work we have already done in
analysing the computational aspects of mining collections of blocks.
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More in-depth study, however, starts revealing various similarities between
these patterns that are ‘beyond blocks’ and the simple blocks. The intuition of
expressing a data sets using a collection of simple patterns, for example, is the
same. Consequently, we can still consider the patterns as ‘rank-1’ sub-matrices,
and the whole summarization as a form of matrix factorization – we only need
new definitions of ranks and matrix factorizations.

In this paper I propose generalized outer products as a unifying framework
to express different kinds of patterns. As the name implies, it generalizes the
outer product of two vectors (i.e. the operator used to express cliques and other
block patterns). The new generalized definitions of matrix rank and factorization
follow from the outer product, as we will see in Section 3.

The framework works over any semi-ring, but for the sake of concreteness,
the examples are presented using a fixed set of binary patters, introduced in
Example 1 and Figure 1. After we have seen the definition of the framework
(Section 3), we study how some common concepts, such as the matrix rank,
behave under it (Section 3.2).

The framework alone is not useful for data mining researchers, though. To
that end, it must help the researchers to obtain interesting results. To demon-
strate the proposed framework’s capability to do that, we see a series of general
results regarding the computational complexity (Section 4) and approximability
(Section 5) of some fundamental problems related to the generalized decompo-
sitions in binary matrices. These results will immediately yield corresponding
results for any pattern fitting to the framework.

The purpose of this paper is to develop the framework and to demonstrate its
usefulness via number of general results. As a consequence, some of the results we
will see are already known in the literature in some specific cases; indeed, some
of the results have been presented for multiple special cases – an unnecessary
repetition that can be avoided with the proposed framework. The goal of this
paper is not to present novel algorithms for mining the patterns. While it is
expected that the framework facilitates developing of general algorithms, more in-
depth studies to that end are left for future work. That said, we do see number of
existing algorithms (mostly in Section 5) that can be used to solve certain general
problems in the proposed framework with provable performance guarantees.

Before moving on, let us briefly discuss some related work.

2 Related Work

Finding patterns from data is in the core of data mining, with frequent itemset
mining being an early and prominent example. Much of the research focus has
nowadays sifted from finding all the patterns to finding an interesting subset
of them, with the interestingness being defined either in combinatorial [15,34],
information-theoretic [10,33], or other means. Similar problems were also studied,
for example, in formal concept analysis [6] and role mining [12].

What all of the aforementioned work shares is that they aim at describing a
binary matrix using a set of rank-1 binary sub-matrices. The requirement for sub-
matrices is strict: all these methods are restricted to rank-1 matrices that appear
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in the input data as such (known as from-below or dominated decompositions).
When this requirement is lifted, the problem is usually referred to as Boolean
matrix factorization [22,25], although especially earlier other names were also
used [28].

A seemingly unrelated line of research grew from the problem of finding com-
munities from graphs. Traditionally, communities were considered exclusively as
cliques (or bicliques, in case of bipartite graphs), corresponding again to rank-1
sub-matrices of the adjacency matrix. While this connection is often not made
explicitly, it can be – and has been [35] – used to design community-detection
algorithms, especially for the overlapping case.

Mere cliques (or bicliques), however, might not be enough to properly explain
the interesting communities in the graphs [19], and recently many real-world com-
munities were found out to be more hyperbolic than clique-like [3]. The require-
ment for communities more complex than simply cliques has been encapsulated
to the “beyond blocks” slogan.

Communities or itemsets or rank-1 matrices are not the only kind of pat-
terns data miners are interested about, of course. Patterns such as nested or
banded submatrices [17] or taxonomies [18], among many others, are equally
well expressed in the generalized framework of this paper.

3 Definitions

Throughout this paper, upper-case bold symbols (A) will be used to denote
matrices, lower-case bold symbols (a) denote vectors, and lower-case normal
symbols (a) denote scalars. If n is an integer, the shorthand notation [n] is used
for set {1, 2, . . . , n}.

For any matrix A (binary or not), |A| denotes the number of non-zero ele-
ments in it.

We work over algebraic structure T = (T,�,�, 0, 1). The binary operator �
is called addition and the binary operator � is called multiplication, with 0 ∈ T
and 1 ∈ T being their respective identity elements. T is required to be at least a
semiring, that is, � is commutative and � distributes over �.

Before going forward to the definitions, let us see different types of patterns
that will be used in examples throughout the paper.

Example 1. A biclique, a binary rank-1 matrix, and a (combinatorial) tile all
refer to the same kind of pattern: a submatrix full of 1s, that is, a block. A star
(Figure 1, left) and a biclique core (Figure 1, middle-left) are forms of patterns
in (undirected) graphs: star represents a collection of vertices that are connected
to each other only via a single hub vertex, while a biclique core represents a
set of vertices that form a complete bipartite graph. A chain (Figure 1, middle-
right) is a set of vertices where each vertex is connected only to the next one,
while nested matrix (Figure 1, right) is a bipartite graph where each subsequent
vertice’s neighbors are a subset of the previous one’s neighbors.

Note that in Figure 1, all matrices are permuted for maximum readability;
in general, no particular ordering of the rows or columns is required. ♦
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Fig. 1. Different types of patters, from left to right: star, biclique core, chain, and
nested. The first three are symmetric square matrices; nested is asymmetric general
matrix.

3.1 Generalized Outer Product

The definition of the generalized outer product is the core of the proposed frame-
work. Similar definitions have appeared earlier, but to the best of the author’s
knowledge, this exact definition of generalized outer product has not been pro-
posed earlier.

Definition 1. The generalized outer product operator of two vectors x ∈ T
n

and y ∈ T
m with parameters θ ∈ Θ is a function o : Tn ×T

m ×Θ → T
n×m such

that for all (i, j) ∈ [n] × [m], if xi = 0 or yj = 0, then o(x,y, θ)ij = 0.

It is helpful to consider the outer products of the four patterns in Figure 1:

Example 2. The star pattern can be generated using generalized outer product
os(x,x, k) = (aij), where

aij =

{
1 if xi = 1 and xj = 1 and either i = k or j = k

0 otherwise .

This can be interpreted as follows: binary vector x selects the rows and columns
(e.g. vertices) that participate in the pattern, while parameter k chooses the
vertex that is the centre of the star. Naturally, if xk = 0 this yields empty
pattern. We could require that xk = 1 without significant changes to anything
that follows. Similar requirements could be applied to many of the following
patterns, as well, but they are not stated for the sake of brevity.

The biclique core pattern can be generated using generalized outer product
obc(x,x, I ⊂ [n]) = (aij), where

aij =

{
1 if xi = 1 and xj = 1 and exactly one of i ∈ I or j ∈ I holds
0 otherwise .

The outer product generating the chain pattern is oc(x,y) = (aij), where
aij = 1 if xi = 1, yj = 1, and j = i + 1, and aij = 0 otherwise.

The outer product for nested pattern is on(x,y, s) = (aij), where s ∈ [m]n

defines a step function and

aij =

{
1 if xi = 1 and yj = 1 and j ≤ si

0 otherwise .
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Notice that for the resulting pattern to be valid, si ≤ sj for all i > j if we are
looking for direct nested submatrices; if we want to find general nested submatri-
ces, the indices must be permuted appropriately (see [17] for more information
on direct and general nested patterns). ♦

In the above examples, all outer products were defined element-wise. The
generalized outer products that can be defined element-wise form an important
sub-class of generalized outer products, called decomposable outer products:

Definition 2. A generalized outer product operator o is decomposable if we
have that o(x,y, θ)ij = f(xi, yj , i, j, θ) for all i and j. We say that o is decom-
posable to f .

The indices i and j can be considered as two additional parameters in θ and
will often be omitted for brevity’s sake.

Another common feature shared with most of the above examples is that the
outer product is with vector x itself. This ensures that the product is symmetric.

Definition 3. An outer product o(x,y, θ) is symmetric if x = y and
o(x,y, θ) = o(x,y, θ)T .

For decomposable outer products, it is enough to require that x = y as the
other constraint follows automatically.

3.2 Generalized Rank

A common way to measure the complexity of the structure of a matrix is its
rank. Multiple equivalent definitions of a matrix rank exist under normal linear
algebra, but most of them do not generalize well to our case. We shall now
generalize the so-called Schein rank and study some properties of the resulting
general rank.

Definition 4. Matrix M ∈ T
n×m has outer product operator o induced rank,

ranko(M) = 1 if there exists vectors x ∈ T
n and y ∈ T

m and parameters θ ∈ Θ
such that M = o(x,y, θ).

For brevity, the outer product will be omitted from the rank when it is clear
from the context. Hence, if matrix M is rank-1, it implicitly means that its
o-induced rank is 1.

Definition 5. The (generalized) sum of two matrices A ∈ T
n×m and B ∈

T
n×m is the element-wise sum A � B using the summation � of T. That is,

(A � B)ij = aij � bij.
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Definition 6. A set D = {F i ∈ T
n×m : ranko(F i) = 1} is the decomposition

(under o and �) of a matrix M ∈ T
n×m if

M = F 1 � F 2 � · · · � F |D| . (1)

The size of the decomposition D is |D|.
If D is a decomposition of A and o is decomposable to f , we get the familiar

element-wise matrix product form

aij =
|D|

�
k=1

f(xik, yjk, θ) , (2)

where o(xk,yk, θ) = F k ∈ D for all i ∈ [|D|].
Hence, we can define the matrix product for decomposable outer products.

Definition 7. If o is decomposable to f , the matrix product of A ∈ T
n×k and

B ∈ T
k×m (under o, θ, and �) is defined element-wise as

(A �θ B)ij =
k

�
l=1

f(ail, blj , θ) . (3)

Definition 8. Let o be decomposable to f . The operator 〈·, ·〉 : Tn × T
n → T is

inner product if it satisfies the following rules for all x,y,z ∈ T
n and α ∈ T:

〈x,y〉 = 〈y,x〉 (4a)
〈α � x,y〉 = α � 〈x,y〉 (4b)
〈x � y,z〉 = 〈x,z〉 � 〈y,z〉 (4c)

〈x,x〉 ≥ 0 (4d)
〈x,x〉 = 0 ⇒ x = 0 . (4e)

If decomposable o induces an inner product, we say o is inner-product
compatible.

Notice that the decomposability is the crucial element here.

Definition 9. The rank (over o) of A ∈ T
n×m, ranko(T), is the smallest integer

k such that there exists a decomposition D of A with size k. If no decomposition
exist, ranko(T) = ∞.

A singleton matrix has exactly one non-zero value, and is characterized by
triple (i, j, α), corresponding to a matrix A for which apq = α if i = p and j = q
and apq = 0 otherwise. If an outer product operator o can generate all n-by-m
singleton matrices (i, j, α) ∈ [n] × [m] × T (it is singleton-generating), the rank
of any A ∈ T

n×m induced by o is bounded by ranko(A) ≤ |A| ≤ nm.
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Example 3. The star outer product os is singleton-generating: we can set x
to have exactly one non-zero and set k to the index of that non-zero. These
singleton-stars can be used to represent any symmetric binary matrix A. The
biclique core outer product obc is not singleton-generating, however, and it can
induce infinite ranks. Consider, for example, the 2-by-2 identity matrix I2:

I2 =
(

1 0
0 1

)
.

As every vertex is connected to itself, and only to itself, there are no bipar-
tite graphs and I2 cannot be expressed with a set of biclique cores, that is,
rankobc

(I2) = ∞. ♦

4 Computational Complexity

We will now move to the applications of the proposed framework. Specifically, we
will consider some results regarding the computational complexity and approx-
imability of problems related to generalized decompositions in binary matrices.

4.1 Rank-1 Submatrices

Let us start by studying problems regarding finding the largest rank-1 matrix.
It is a very common sub-problem in almost all algorithms that need to find a set
of patterns. For the results, we need the definition of hereditary outer product.

Definition 10. Binary outer product operator o is hereditary if the class of
rank-1 matrices induced by it is closed under permutation and deletion of rows
and columns.

Example 4. Stars, biclique cores, and nested matrices are closed under permuta-
tions and deletions of rows and columns, and consequently their outer products
are hereditary. Chains are not closed under deletion of rows and columns, and
the outer product is not hereditary.

The exact definition of the problems depends on how we define “large”. We
start by studying the case where large pattern is one with large circumference.

Problem 1. In the binary maximum-circumference o-induced rank-1 submatrix
problem we are given a binary matrix A ∈ {0, 1}n×m and our task is to find
vectors x ∈ {0, 1}n and y ∈ {0, 1}m and parameters θ such that o(x,y, θ) is
dominated by A and we maximize the (half-) circumference |x| + |y|.
Proposition 1. Let Mo be the family of all o-induced rank-1 matrices (of any
size), where o is hereditary. If the number of distinct rows (or columns) in matri-
ces of Mo is unbounded, the binary maximum-circumference o-induced rank-1
submatrix problem is NP-hard; if the number of distinct rows (or columns) is
bounded, the problem can be solved in polynomial time.
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The result follows straight forwardly from Corollary 4 of Yannakakis [36].
Many interesting patterns have bounded number of distinct rows, for example,
bicliques have exactly two kinds of rows: the rows corresponding to the nodes
that are in the biclique, and the rows corresponding to the nodes that are not in
it. On the other hand, for example nested matrices have unbounded number of
distinct rows. Notice also that one cannot have bounded number of distinct rows
but unbounded number of distinct columns (or vice versa) in a binary matrix:
for k distinct rows one cannot have more than 2k distinct columns.

The symmetric maximum-circumference rank-1 submatrix problem is like
its asymmetric case, but we require the input matrix A ∈ {0, 1}n×n and the
outer product o be symmetric (and hence the outer product is of type o(x,x, θ)).
Adding the symmetry requirement makes the problem harder, as now it is enough
that there are infinitely-many rank-1 submatrices and infinitely many matrices
with higher ranks.

Proposition 2. Let So be the family of all binary matrices generated by hered-
itary binary symmetric outer product o(x,x, θ) and let Sc

o be the family of all
symmetric binary matrices not in So. If |So| = |Sc

o | = ∞, then finding the
maximum-circumference o-induced symmetric rank-1 submatrix is NP-hard.

The result follows from Lewis and Yannakakis [21].
Another possible definition for “large” is to study the area: the maximum-

area rank-1 problems ask to maximize the area instead of the circumference.

Problem 2. In the binary maximum-area o-induced rank-1 submatrix problem
we are given a binary matrix A ∈ {0, 1}n×m and our task is to find vectors
x ∈ {0, 1}n and y ∈ {0, 1}m and parameters θ such that o(x,y, θ) is dominated
by A and we maximize the area |x| |y|.

The symmetric binary maximum-area rank-1 submatrix problem is defined
analogously. As the area of a symmetric rank-1 matrix is simply |x|2, the hard-
ness of the symmetric problems is a straight forward corollary of Proposition 2.

Proposition 3. The binary symmetric maximum-area rank-1 submatrix prob-
lem is NP-hard exactly when the binary symmetric maximum-circumference
rank-1 problem is.

Proof. The maximum-circumference problem asks us to decide if the given
matrix has a symmetric rank-1 submatrix such that 2 |x| ≥ t, while in the
maximum-area problem the condition is that |x|2 ≥ t′. Thus, we can solve the
maximum-circumference problem by solving the maximum-area problem with
t′ = t2/4. ��

For the asymmetric case this trivial correspondence does not necessarily hold,
as can be readily witnessed by noticing that the binary maximum-area rank-1
submatrix problem under standard algebra corresponds to the maximum-edge
biclique, and hence is NP-hard [29].
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The third variant of binary maximum rank-1 submatrices are the maximum-
content submatrices, that is, the submatrices with maximum number of non-
zeros (in symmetric matrices, this corresponds to maximum-edge subgraphs).
The complexity of these problems can often be reduced to the complexity of the
maximum-area or maximum-circumference problems.

Proposition 4. If there exists a set of parameters θ such that the number of
non-zeros in o(x,y, θ) depends only on circumference |x|+|y| (resp. area |x| |y|),
then finding the maximum-content rank-1 submatrix is NP-hard if finding the
maximum-circumference (resp. maximum-area) rank-1 submatrix is NP-hard.

4.2 Selecting Some Rank-1 Submatrices

We now turn to problems where we are given a set of rank-1 matrices, and our
task is to select some of them (e.g. to be presented to the user). This is also a
common subproblem in many pattern set mining algorithms, where first a set
of candidate solutions is generated, and then a final selection is performed from
that set.

Problem 3. In the smallest binary sub-decomposition problem we are given
a matrix A ∈ {0, 1}n×m and its decomposition D = {F i ∈ {0, 1}n×m :
ranko(F i) = 1} and our task is to find the smallest subset C ⊆ D that is
still a valid decomposition, i.e., �F∈C F = A.

Proposition 5. If � is either logical OR, logical AND, or logical XOR, the
smallest binary sub-decomposition problem is NP-hard.

Proof. We study the cases separately.
OR: This case is very similar to the Tiling databases [15], and we present the

reduction only for the sake of completeness. The reduction is from the minimum
set cover problem [14]. Let (U,S ⊂ 2U ) be a set system. Let a ∈ {0, 1}n be an
all-1s vector where |U | = n, and for each S ∈ S, define vector f (S) ∈ D to be the
characteristic vector of S, that is f

(S)
i = 1 if ui ∈ S and f

(S)
i = 0 otherwise. It is

trivial to see that the smallest sub-decomposition C ⊆ D for which
∨

f(S)∈C f (S)

is equivalent to the minimum set cover.
AND: This is similar to above, except that the reduction constructs the

complements of a (which is all-0s) and f (S)s and the proof follows from De
Morgan’s laws.

XOR: In the decoding of linear codes problem [14], we are given a binary
matrix B ∈ {0, 1}n×k and a binary vector a ∈ {0, 1}k and we need to find a
binary vector x ∈ {0, 1}k minimizing |x| such that

⊕k
j=1 xjbij = ai for all i ∈ [n],

where ⊕ is the logical XOR operatior. To reduce this to the sub-decomposition
problem, it is enough to notice that if we take the column vectors bj of matrix B
as the factors in D we have the smallest binary sub-decomposition problem.1 ��
1 A minor technicality is that B for which

⊕
j bj �= a does not yield to a valid input

to the smallest sub-decomposition problem. This can be solved by adding a new
column c =

⊕
j bj to B, and by adding one row to B and a; this row has value 1

in a and c, and is 0 in other columns of B.
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These problems can also be seen as generalizations of a test for linear inde-
pendency: in some sense, what we need to remove are the factors that are not
independent from the others.

4.3 Minimum-Error Sub-Decompositions

In many applications we can assume the input data contains noise, and has
high (or even infinite) o-induced rank. In these situations, we might be more
interested on approximate decompositions, and instead of finding the smallest
exact sub-decomposition, we want to find a sub-decomposition that induces the
minimum error.

Problem 4. In the minimum-error binary sub-decomposition problem we are
given a matrix A ∈ {0, 1}n×m and a set D = {F i ∈ {0, 1}n×m : ranko(F i) = 1}
and our task is to find subset C ⊆ D of size k that minimizes∣∣∣∣∣�

F∈C

F − A

∣∣∣∣∣ . (5)

Using the Hamming distance, as in (5), is natural in case of binary decom-
positions; other error measures are of course possible, especially for matrices
taking non-binary values. These problems are no easier than the smallest sub-
decomposition problems.

Proposition 6. If � is either logical OR, logical AND, or logical XOR, the
minimum-error binary decomposition problem is NP-hard.

Proof. We again work case-by-case:
OR: In the basis usage problem we are given a binary vector a ∈ {0, 1}n

and a binary matrix B ∈ {0, 1}n×k, and our task is to find a binary vector
x ∈ {0, 1}k such that

∣∣∣a − ∨k
i=1 xibi

∣∣∣ is minimized, where xibi yields all-0s
vector if xi = 0, and b if xi = 1. This clearly a special case of minimum-error
binary sub-decomposition, and the claim follows as basis usage problem is NP-
hard [25].

AND: This case again follows from De Morgan’s laws by taking complements
and using the above reduction.

XOR: In the nearest codeword problem we are given a binary vector a ∈
{0, 1}n and a binary matrix B ∈ {0, 1}n×k, and our task is to find a binary
vector x ∈ {0, 1}k such that

∣∣a − ⊕k
i=1xibi

∣∣ is minimized. This, again, is a special
case of minimum-error binary sub-decomposition, and the claim follows as the
nearest codeword problem is NP-hard [4]. ��

4.4 Deciding the Rank

Deciding the (generalized) rank of a matrix is a fundamental question. Unfor-
tunately, the complexity of deciding the rank depends on the interplay between
the underlying algebraic structure T and the generalized outer product o, as the
following examples illustrate.
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Example 5. Consider binary n-by-m matrices and the normal outer product
o(x,y, θ) = xyT . If the summation � is the logical OR operator, the rank
is the Boolean rank of the matrix, and consequently NP-hard (see, e.g. [28]). If,
however, the summation � is the logical XOR operator, finding the rank can be
done in polynomial time [31]. ♦

We say binary outer product o(x,y, θ) subsumes bicliques if there exists
parameters θ such that o(x,y, θ) = xyT for all x and y.

Corollary 1. Let T = ({0, 1},∨,�, 0, 1). Finding the o-induced rank of A ∈
T

n×m is NP-hard if o subsumes the bicliques.

4.5 Minimum-Error Approximate Decompositions

The minimum-error fixed-rank decompositions are to the rank-decision problems
what the minimum-error fixed-size sub-decompositions are to the smallest sub-
decompositions.

Problem 5. In the minimum-error fixed-rank binary decomposition we are given
a matrix A ∈ {0, 1}n×m and an integer k, and our task is to find set D = {F i ∈
{0, 1}n×m : ranko(F i) = 1, i ∈ [k]} that minimizes∣∣∣∣∣�

F∈D

F − A

∣∣∣∣∣ . (6)

In the decision version of Problem 5, the input is prepended with parameter
t ∈ R and instead of minimizing (6), the task is to decide if there exists D such
that ∣∣∣∣∣�

F∈D

F − A

∣∣∣∣∣ ≤ t . (7)

It is easy to see that the complexity of these problems is no easier than that of
the related rank-decision problems:

Proposition 7. If computing the o-rank is NP-hard, so is computing the
minimum-error approximate decomposition.

Proof. If we set t = 0 in (7), the o-rank of A is the least k for which we have
positive answer. ��

5 Approximability

As we saw, most problems related to binary generalized outer products are NP-
hard. Approximation algorithms are a common recourse to the NP-completeness,
and in this section we will study the approximability of some of the problems
studied above. As we shall see, many – but not all – problems are hard even to
approximate, giving a post hoc justification to the various heuristics employed
in the prior work.
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5.1 Approximating Smallest Sub-Decompositions

We start with the problem that is easiest to approximate:

Proposition 8. If � = ∨, the smallest binary sub-decomposition can be approx-
imated to within ln n (and no better) in polynomial time.

Proof. We reduce the problem to the minimum set cover in an approximation-
preserving way. Let U = {(i, j) : aij = 1} be the set of all locations of A that
are 1. For every matrix F k ∈ D, define set Fk = {(i, j) : (F k)ij = 1} as the
locations of ones in F k and let the collection D = {Fk : k = 1, . . . , |D|}. As
D is a decomposition of A, it is guaranteed that

⋃|D|
k=1 Fk = U . The task of

finding the smallest sub-decomposition of D is equivalent to finding the smallest
sub-collection C ⊆ D such that

⋃
Fk∈C Fk = U , that is, the minimum set cover

problem. As the reduction preserves the value of the optimization target, it
preserves the approximability and hence we can use, for example, the famous
greedy Θ(ln n)-approximation algorithm [16]. On the other hand, the reduction
in the proof of Proposition 5 is also approximation-preserving, and consequently,
the ln n bound is tight unless P = NP [13]. ��

The approximation-preserving reduction to and from set cover, together with
the result of Simon [32], gives us the following interesting corollary:

Corollary 2. Given an algorithm that, in every iteration of the greedy algo-
rithm, selects the factor F i ∈ D that approximates the best choice by a factor of
O(h(n)), we can approximate the smallest binary sub-decomposition by a factor
of O(h(n) ln n).

This corollary can be very useful when the decomposition D is given only
implicitly, and cannot be exhaustively searched for the best solution in every iter-
ation. For example, the tiling algorithm of [15] needs – in principle – to search
every closed itemset of the input data in every iteration. To avoid that, the
authors resolve to clever heuristics, but with the cost of approximation guaran-
tees. If the heuristic algorithm could be replaced with one with provable approx-
imation guarantees, Corollary 2 would give us an overall approximation guaran-
tee.

When � = ⊕, the problem becomes harder to approximate. The minimum
weight codeword problem is similar to the aforementioned decoding of linear
codes problem. In the former, we are given a matrix B ∈ {0, 1}n×k and an all-
zeros vector a ∈ {0, 1}n, and our task is to find a non-empty vector x ∈ {0, 1}n

such that Bx = a and x has as few 1s as possible. This problem is as hard to
approximate as the smallest binary sub-decomposition when � = ⊕.

Proposition 9. If � = ⊕, the smallest binary sub-decomposition problem is as
hard to approximate as the minimum weight codeword problem.

Proof. Notice first that we can replace the all-zeros vector a in the minimum
weight codeword problem by an arbitrary binary vector c by adding that vector
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also as a column to B and by adding a new row to B and c to enforce that c
must be part of the solution, similarly to the proof of Proposition 5.

To see that the smallest binary sub-decomposition is at least as hard to
approximate as the minimum weight codeword, notice that the reduction in
Proposition 5 is approximation-preserving.

To see that the smallest binary sub-decomposition is no harder to approx-
imate than the minimum weight codeword, consider an instance (A,D =
{F 1, . . . ,F k}) of the sub-decomposition problem. Re-shape matrix A into a
nm-dimensional binary column vector a. Reshape all matrices F k similarly into
binary vectors fk, and collect them as columns of nm-by- |D| binary matrix B.
Our task now is to select the least number of columns of B such that their sum
modulo-2 is a, that is, to find the vector x in the minimum-weight codeword
problem. This reduction is also approximation-preserving, concluding the proof.

��
For the following results, we need the concept of (randomized) quasi-NP-

hardness.

Definition 11. We say a problem Π is quasi-NP-hard if Π cannot be solved
in polynomial time unless NP ⊆ DTIME(npolylog(n)). We say Π is random-
ized quasi-NP-hard, if it cannot be solved in polynomial time unless NP ⊆
RTIME(npolylog(n)), where RTIME(npolylog(n)) is the set of all languages rec-
ognizable by Monte Carlo algorithms with probability exceeding 1/2 in time
O(npolylog(n)).

Corollary 3. If � = ⊕, the smallest binary sub-decomposition is randomized
quasi-NP-hard to approximate to within 2log

1−ε k for any ε > 0. It can, however,
be approximated in polynomial time to within εk for any fixed ε.

Proof. The negative result follows from a result of Dumer et al. [11] and
Proposition 9. The positive result comes from Berman and Karpinski [8] and
Proposition 9. ��

5.2 Approximating Minimum-Error Sub-Decompositions

We now turn our attention to the minimum-error sub-decompositions.

Proposition 10. Let (A,D = {F i}), with |D| = k, be an input for the
minimum-error binary sub-decomposition problem. If � = ∨, it is quasi-NP-hard
to approximate the minimum-error binary sub-decomposition problem to within
a factor of Ω(2(4 log k)1−ε

) and NP-hard to approximate it within Ω(2log
1−ε|A|)

for any ε > 0. The problem can be approximated to within a factor of
2
√

(k + |A|) log |A| in polynomial time.

Proof. The hardness-of-approximation result follows directly from the proof of
Proposition 6 in case of � = ∨: the reduction from the basis usage problem is
approximation-preserving, and corresponding lower bounds are known for the
basis usage problem [24,25].
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For the positive result, we need the reduction to go the other way. Let
(A,D = {F i}) be an input for the minimum-error sub-decomposition problem.
Re-shape A to an nm-dimensional column vector a, and re-shape factor matri-
ces F i similarly and collect them into an nm-by-k binary matrix B. This is a
valid input for the basis usage problem, and the solution can be approximated
using Peleg’s algorithm [30]. The result can be mapped back to minimum-error
sub-decomposition problem without any change in the target value, and hence
the reduction is approximation-preserving. The claim follows from known upper
bounds for Peleg’s algorithm for basis usage problem [25]. ��

It is interesting to notice that the size of A plays no role in Proposi-
tion 10, only the number of its non-zeros. Also, quasi-NP-hardness is slightly
stronger assumption than randomized quasi-NP-hardness that was assumed in
Proposition 9.

The claim (and proof) for � = ⊕ is similar to the above.

Proposition 11. Let (A ∈ {0, 1}n×m,D = {F i}), with |D| = k, be an input
for the minimum-error binary sub-decomposition problem. If � = ⊕, it is quasi-
NP-hard to approximate the minimum-error binary sub-decomposition problem
to within a factor of Ω(2log

0.8−ε n) for any ε > 0 and NP-hard to approximate
it to within any constant factor. The problem can be approximated to within a
factor of O(k/ log(nm)) in randomized polynomial time and to the same factor
deterministically in time (nm)O(log∗ nm).

Proof. This proof is similar to the above ones, and only a sketch of the proof
is presented. The reduction from the nearest codeword problem in the proof
of Proposition 6 is approximation-preserving, giving the negative result when
paired with the results from [4]. The positive results require similar re-writing
as above, after which we can use the results from [8] and [1]. ��

6 Conclusions and Future Work

This paper presents an approach to unify pattern set mining using generalized
outer products. Not every type of pattern can be expressed as a generalized outer
product – not, at least, without making the outer products so general that we
lose any reasonable way to study them as a group. Yet, as the above discussion
has demonstrated, many interesting types of patterns – stars, biclique covers,
nested matrices, and others – can easily be expressed in the framework, making
it probable that also many yet-to-be-invented types of patterns will fit into it.

When a new type of pattern set mining problem can be expressed within
the proposed framework, the researcher gains many benefits: the connections to
other, sometimes seemingly unrelated work became more clear, many existing
results might already apply, saving the researcher from tedious proofs, and the
new results and techniques could generalize as well, immediately benefitting the
whole field.
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The work presented in this paper is only the beginning. The results concen-
trate on binary matrices, but recent work has generalized the binary setting
to ordered lattices [5], ternary values [23], and rank matrices [20]. The general
framework presented here could be extended to these situations, as well.

Another line of research extending the framework is to move from matrices
to tensors (i.e. multi-way arrays). Again, there exists precedence in the pattern
set mining, where mining higher-order (binary) data has gathered significant
research interest [7,9,26].

Instead of finding the smallest or minimum-error pattern set, one can seek
for a planted pattern, that is, a pattern we know the data contains, but that has
been perturbed by noise. Recent research has shown that we can find individual
planted patterns relatively well, even under strong noise assumptions [2,31].

There is, then, a lot to do to before the proposed framework can gain its full
power. Yet, even this short preliminary work should be enough to demonstrate
the potential the framework has, and – hopefully – convince researchers to frame
their research within it.
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5. Bělohlávek, R., Krmelova, M.: Beyond boolean matrix decompositions: toward
factor analysis and dimensionality reduction of ordinal data. In: ICDM 2013,
pp. 961–966 (2013)
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