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Abstract. Linguistic structures exhibit a rich array of global phenom-
ena, however commonly used Markov models are unable to adequately
describe these phenomena due to their strong locality assumptions.
We propose a novel hierarchical model for structured prediction over
sequences and trees which exploits global context by conditioning each
generation decision on an unbounded context of prior decisions. This
builds on the success of Markov models but without imposing a fixed
bound in order to better represent global phenomena. To facilitate learn-
ing of this large and unbounded model, we use a hierarchical Pitman-Yor
process prior which provides a recursive form of smoothing. We propose
prediction algorithms based on A* and Markov Chain Monte Carlo sam-
pling. Empirical results demonstrate the potential of our model compared
to baseline finite-context Markov models on three tasks: morphological
parsing, syntactic parsing and part-of-speech tagging.

Keywords: Structured prediction · Infinite markov model · Chinese
restaurant process

1 Introduction

Markov models are widespread popular techniques for modelling the underlying
structure of natural language, e.g., as sequences and trees. However local Markov
assumptions often fail to capture phenomena outside the local Markov context,
i.e., when the data generation process exhibits long range dependencies. A prime
example is language modelling where only short range dependencies are cap-
tured by finite-order (i.e. n-gram) Markov models. However, it has been shown
that going beyond finite order in a Markov model improves language modelling
because natural language embodies a large array of long range depepndencies
[Wood et al., 2009]. While infinite order Markov models have been extensively
explored for language modelling [Gasthaus and Teh, 2010; Wood et al., 2011],
this has not yet been done for structure prediction.

In this paper, we propose an infinite-order Markov model for predicting latent
structures, namely tag sequences and trees. We show that this expressive model
can be applied to various structure prediction tasks in NLP, such as syntac-
tic and morphological parsing and part-of-speech tagging. We propose effective
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algorithms to tackle significant learning and inference challenges posed by the
infinite Markov model.

More specifically, we propose an unbounded-depth, hierarchical, Bayesian
non-parametric model for the generation of linguistic utterances and their corre-
sponding structure (e.g., the sequence of POS tags or syntax trees). Our model
conditions each decision in a tree generating process on an unbounded context
consisting of the vertical chain of their ancestors, in the same way that infinite
sequence models (e.g., ∞-gram language models) condition on an unbounded
window of linear context [Mochihashi and Sumita, 2007; Wood et al., 2009].

Learning in this model is particularly challenging due to the large space of
contexts and corresponding data sparsity. For this reason predictive distribu-
tions associated with contexts are smoothed using distribtions for successively
smaller contexts via a hierarchical Pitman-Yor process, organised as a suffix trie.
The infinite context makes it impossible to directly apply dynamic programing
for structure prediction. We present two inference algorithms based on A* and
Markov Chain Monte Carlo (MCMC) for predicting the best structure for a
given input utterance.

The experiments on part-of-speech (POS) tagging show that our generative
model obtains similar performance to the state-of-the-art Stanford POS tag-
ger [Toutanova and Manning, 2000] for English and Swedish. For Danish, our
model outperforms the Stanford tagger, which is impressive given the Stanford
parser uses many more complex features and a discriminative training objective.
Our experiments on morphological parsing and syntactic parsing show that our
unbounded-context tree model adapts itself to the data to effectively capture
sufficient context to outperform the PCFG baseline.

2 Background and Related Work

The parse tree of an utterance can be generated by combining a set of rules
from a grammar, such as a context free grammar (CFG). A CFG is a 4-tuple
G = (T ,N , S,R), where T is a set of terminal symbols, N is a set of non-
terminal symbols, S ∈ N is the distinguished root non-terminal and R is a
set of productions (aka rewriting rules). A PCFG assigns a probability to each
grammar rule, where

∑
B,C P (A → B C|A) = 1. The grammar rules are often

in Chomsky Normal Form (CNF), taking either the form A → B C or A → a
where A,B,C are nonterminals, and a is a terminal.

Syntactic parsing is the task of predicting the parse tree of a given sentence.
In syntactic parsing, the nonterminals of the underlying grammar are syntac-
tic catergories, e.g. the input sentence (S), noun phrase (NP) and verb phrase
(VP); the terminals are words. Morphological parsing is the task of breaking
down an unsegmented input into words and their morphological structure. In
this task, the grammar terminals are morphemes (smallest meaningful units of
a language), and nonterminals represent the input Sequence, Word, prefix (P),
etc. Tag sequences can also be represented as a tree structure, without loss of
generality, in which rules take the form A → B a or A → a where A,B are POS
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tags, and a is a word. This unified view to syntactic parsing, morphological pars-
ing, and POS tagging will allow us to apply our model and inference algorithms
to these problems with only minor refinements (see Figure 1).

In PCFG, a tree is generated by starting with the root symbol and rewrit-
ing (substituting) it with a grammar rule, then continuing to rewrite frontier
non-terminals with grammar rules until there are no remaining frontier non-
terminals. When making the decision about the next rule to expand a frontier
non-terminal, the only conditioning context used from the partially generated
tree is the frontier non-terminal itself, i.e., the rewrite rule is assumed indepen-
dent from the remainder of the tree given the frontier non-terminal. Our model
relaxes this strong independence assumptions by considering unbounded vertical
history when making the next inference decision. This takes into account a wider
context when making the next parsing decision.

Perhaps the most relevant work is on unbounded history language models
[Mochihashi and Sumita, 2007; Wood et al., 2009]. A prime work is Sequence
Memoizer [Wood et al., 2011] which conditions the generation of the next word
on an unbounded history of previously generated words. We build on these tech-
niques to develop rich infinite-context models for structured prediction, leading
to additional complexity and challenges.

For syntactic parsing, several infinite extensions of probabilistic context free
grammars (PCFGs) have been proposed [Finkel et al., 2007; Liang et al., 2007].
These approaches achieve infinite grammars by allowing an unbounded set of
non-terminals (hence grammar rules), but still make use of a bounded history
when expanding each non-terminal. An alternative method allows for infinite
grammars by considering segmentation of trees into arbitrarily large tree frag-
ments, although only a limited history is used to conjoin fragments [Cohn et al.,
2010; Johnson et al., 2006]. Our work achieves infinite grammars by growing the
vertical history needed to make the next parsing decision, as opposed to growing
the number of rules, non-terminals or states horizontally, as done in prior work.

Earlier work in syntactic parsing has also looked into growing both the his-
tory vertically and the rules horizontally, in a bounded setting. [Johnson, 1998]
has increased the history for the parsing task by parent-annotation, i.e., anno-
tating each non-terminal in the training parse trees by its parent, and then
reading off the grammar rules from the resulting trees. [Klein and Manning,
2003] have considered vertical and horizontal markovization while using the head
words’ part-of-speech tag, and showed that increasing the size of the vertical
contexts consistently improves the parsing performance. [Petrov et al., 2006],
[Petrov and Klein, 2007] and [Matsuzaki et al., 2005] have treated non-terminal
annotations as latent variables and estimated them from the data.
Likewise, finite-state hidden Markov models (HMMs) have been extended

horizontally to have countably infinite number of states [Beal et al., 2001].
Previous works on applying Markov models to part-of-speech tagging
either considered finite-order Markov models [Chen, 2000], or finite-order
HMM [Thede and Harper, 1999]. We differ from these works by conditioning
both the emissions and transitions on their full contexts.
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3 The Model

Our model relaxes strong local Markov assumptions in PCFG to enable captur-
ing phenomena outside of the local Markov context. The model conditions the
generation of a rule in a tree on its unbounded vertical history, i.e., its ancestors
on the path towards the root of the tree (see Figure 1). Thus the probability of
a tree T is

P (T ) =
∏

(u,r)∈T

G[u](r) (1)

where r denotes the rule and u its history, and G[u](.) is the probability of the
next inference decision (i.e., grammar rule) conditioned on the context u. In
other words, a tree T can be represented as a sequence of context-rule events
{(u, r) ∈ T}.

Fig. 1. Examples of infinite-order conditioning and smoothing mechanism. The
bold symbols (NN, ADV, fine, T, S) are the part of the structure being
generated, and the boxes correspond to the conditioning context. (a) Syntactic
Parsing, (b) Infinite-order HMM for POS tagging, (c) Morphological Parsing.

When learning such a model from data, a vector of predictive probabilities for
the next rule G[u](.) given each possible vertical context u ∈ U must be learned,
where depending on the problem U can denote the set of spines of non-terminals
N ∗ (as in Fig. 1(a),(b)) or chains of rules R∗(as in Fig. 1(c)). As the context size
increases, the number of events observed for such long contexts in the training
data drastically decreases which makes parameter estimation challenging, par-
ticularly when generalising to unseen contexts. Assuming our unbounded-depth
model, we need suitable smoothing techniques to estimate conditional rule prob-
abilities for large (and possibly infinite depth) contexts. We achieve smoothing
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by placing a hierarchical Bayesian prior over the set of probability distributions
{G[u]}u∈U . We smooth G[u] with a distribution conditioned on a shorter con-
text G[π(u)], where π(u) is the suffix of u containing all but the earliest event.
This ties parameters of longer histories to their shorter suffixes in a hierarchical
manner, and leads to sharing statistical strengths to overcome sparsity issues.
Figure 1 shows our infinite-order Markov model and the smoothing mechanism
described here.

More specifically, we assume that a distribution with the full history G[u]

is related to a distribution with the most recent history G[π(u)] through the
Pitman-Yor process PY P [Wood et al., 2011]:

G[ε] | d[ε], c[ε],H ∼ PY P (d0, c0,H) (2)
G[u] | d|u|, c|u|, G[π(u)] ∼ PY P (d|u|, c|u|, G[π(u)]) (3)

where H denotes the base (e.g. uniform) distribution, and ε denotes the empty
context. The Pitman-Yor process PY P (d, c,H) is a distribution over distribu-
tions, where d is the discount parameter, c is the concentration parameter, and
H is the base distribution. Note that G[u] depends on G[π(u)] which itself depends
on G[π(π(u))], etc. This leads to a hierarchical Pitman-Yor process prior where
context-dependent distributions are hidden. The formulation of the hierarchical
PYP over different length contexts is illustrated in Figure 2.

Figure 3 demonstrates the property of PYP and how its behavior depends on
discount d, and concentration c parameters. Note that the PYP allows a good fit
to data distribution compared to the Dirichlet Process (d = 0; as used in prior
work) which cannot adequately represent the long tail of events.

Fig. 2. Part of the smoothing mechanism corresponding to Figure 1(a). Each
node represents a distribution G labeled with a context, and the directed edges
demonstrate the direction of smoothing. The path in bold corresponds to the
smoothing for the rule NP → NN .
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(a) u : S NP (b) u : VERB

Fig. 3. log-log plot of rule frequency vs rank, illustrated for (a) syntactic parsing
and (b) POS tagging. Besides the data distribution, we also show samples from
three PYP distributions with different hyperparameter values, c, d.

4 Learning

Given a training tree-bank, i.e., a collection of utterances and their trees, we are
interested in the posterior distribution over {G[u]}u∈U . We make use of the app-
roach developed in [Wood et al., 2011] for learning such suffix-based graphical
models when learning infinite-depth language models. It makes use of Chinese
Restaurant Process (CRP) representation of the Pitman-Yor process in order to
marginalize out distributions G[u] [Teh, 2006] and learn the predictive probabil-
ities P (r|u).

Under the CRP representation each context corresponds to a restaurant.
As a new (u, r) is observed in the training data, a customer is entered to the
restaurant, i.e., the trie node corresponding to u. Whenever a customer enters a
restaurant, it should be decided whether to seat him on an existing table serving
the dish r, or to seat him on a new table and sending a proxy customer to the
parent node in the trie to order r (i.e., based on (π(u), r)). Fixing a seating
arrangement S and PYP parameters θθθ for all restaurants (i.e., the collection
of concentration and discount parameters), the predictive probability of a rule
based on our infinite-context rule model is:

P (r|ε,S, θθθ) = H(r) (4)

P (r|u,S, θθθ) =
nu

r. − d|u|tur
n|u|

.. + c|u|
+

c|u| + d|u|tu.
nu

.. + c|u|
P (r|π(u),S, θθθ) (5)

where d|u| and c|u| are the discount and concentration parameters, nu
rk is the

number of customers at table k served the dish r in the restaurant u (accord-
ingly nu

r. is the number of customers served the dish r and nu
.. is the number of

customers), and tur is the number of tables serving dish r in the restaurant u
(accordingly tu. is the number of tables).
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The seating arrangements (the state of all restaurants including their tables
and customers sitting on each table) are hidden, so they need to be marginalized
out:

P (r|u,D) =
∫

P (r|u,S, θθθ)P (S, θθθ|D)d(S, θθθ) (6)

where D is the training tree-bank. We approximate this integral by the so called
“minimal assumption seating arrangement” and the MAP parameter setting
θθθ which maximizes the corresponding data posterior. Based on the minimal
assumption, a new table is created only when there is no table serving the desired
dish in a restaurant u. That is, a proxy customer is created and sent to the par-
ent node in the trie π(u) for each unique dish type (sequence of events). This
approximation is related to the well-known interpolated Kneser-Ney smooth-
ing [Chen and Goodman, 1996], when applied to hierarchical Pitman-Yor pro-
cess language models [Teh, 2006].

The parameter θθθ is learned by maximising the posterior, given the seat-
ing arrangement corresponding to the minimal assumption. We put the fol-
lowing prior distributions over the parameters: dm ∼ Beta(am, bm) and cm ∼
Gamma(αm, βm). The posterior is the prior multiplied by the following likeli-
hood term:

∏

r

H(r)n0
r.

∏

u

[c|u|]
tu.
d|u|

[c|u|]
nu
..

1

∏

r

tu.∏

k=1

[1 − d|u|]
(nu

rk−1)
1 (7)

where [a]cb denotes the generalised factorial function.1 We maximize the posterior
with the constraints cm ≥ 0 and dm ∈ [0, 1) using the L-BFGS-B optimisation
method [Zhu et al., 1997], leading to the optimised discount and concentration
for each context size.

5 Prediction

In this section, we propose algorithms for the challenging problem of predicting
the highest scoring tree. The key ideas are to compactly represent the space of
all possible trees for a given utterance, and then search for the best tree in this
space in a top-down manner. By traversing the hyper-graph top-down, the search
algorithms have access to the full history of grammar rules.

In the test time, we need to predict the tree structure of a given utterance
w by maximizing the tree score:

arg max
T

P (T |D,w) = arg max
T

∏

(u,r)∈T

P (r|u,D) (8)

The unbounded context allowed by our model makes it infeasible to apply
dynamic programming, e.g. CYK [Cocke and Schwartz, 1970], for finding the

1 [a]0b = [a]−1
b = 1 and [a]bc =

∏c−1
i=0 (a + ib).
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highest scoring tree. CYK is a bottom-up algorithm which requires storing in a
dynamic programming table the score of each utterance’s sub-span conditioned
on all possible contexts. Even truncating the context size to bound this term
may be insufficient to allow CYK for prediction, due to the unreasonable com-
putational complexity.

The space of all possible trees for a given utterance can be compactly rep-
resented as a hyper-graph [Klein and Manning, 2001]. Each hyper-graph node
is labelled with a non-terminal and a sub-span of the utterance. There exists
a hyper-edge from the nodes B[i, j] and C[j + 1, k] to the node A[i, k] if the
rule A → B C belongs to the grammar (Figure 4). Starting from the top node
S[0, N ], our prediction algorithms search for the highest scoring tree sub-graph
that covers all of the utterance terminals in the hyper-graph. Our top-down
prediction algorithms have access to the full history needed by our model when
deciding about the next hyper-edge to be added to the partial tree.

Fig. 4. Hyper-graph representation of the search space for a syntactic parsing
example. The gray areas are examples of two partial hypotheses in A* priority
queue.

5.1 A* Search

This algorithm incrementally expands frontier nodes of the best partial tree
until a complete tree is constructed. In the expansion step, all possible rules for
expanding all frontier non-terminals are considered and the resulting partial trees
are inserted into a priority queue (see Figure 4), sorted based on the following
score:

Score(T+) = log P (T ) + log Gu(A → B C) + h(T+, A → B C, i, k, j|G′) (9)

where T+ is a partial tree after expanding a frontier non-terminal, P (T ) is
the probability of the current partial tree, Gu(A → B C) is the probability of
expanding a non-terminal via a rule A → B C in the full context u, and h is
the heuristic function (i.e., the estimate of the score for the best tree completing
T+). We use various heuristic functions when expanding a node A[i, j] in the
hypergraph via a hyperedge with tails B[i, k] and C[k + 1, j]:
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– Full Frontier: which estimates the completion cost by

h(T+, A → B C, i, k, j|G′) =
∑

(A′,i′,j′)∈Fr(T+)

log P (A′, i′, j′|G′) (10)

where Fr(T+) is the set of frontier nodes of the partial tree, and G′ is a sim-
plified grammar admitting dynamic programming. Here we choose the PCFG
used the base measure H in the root of the PYP hierarchy. Accordingly the
log P terms can be computed cheaply using the PCFG inside probabilities.

– Local Frontier: which only considers the completion of the following frontier
nodes, and uses the completion cost of the sub-span using the selected rule:

h(T+, A → B C, i, k, j|G′) = log P (B, i, k|G′) + log P (C, k + 1, j|G′) (11)

The above heuristics functions are not admissible, hence the A* algorithm is
not guaranteed to find the optimal tree. However the PCFG provides reasonable
estimates of the completion costs, and accordingly with a sufficiently wide beam,
search error is likely to be low.

5.2 MCMC Sampling

We make use of Metropolis-Hastings (MH) algorithm, which is a Markov chain
Monte Carlo (MCMC) method, for obtaining a sequence of random trees. We
then combine these trees to construct the predicted tree.

We use a PCFG as our proposal distribution Q and draw samples from it.
Each sampled tree is then accepted/rejected using the following acceptance rate:

α(T, T ′) = min
{

1,
P (T ′)Q(T )
P (T )Q(T ′)

}

(12)

where T ′ is the sampled tree, T is the current tree, P (T ′) is the probability of the
proposed tree under our model, and Q(T ′) is its probability under the proposal
PCFG. Under some conditions, i.e., detailed balance and ergodicity, it is guaran-
theed that the stationary distribution of the underlying Markov chain (defined
by the MH sampling) is the distribution that our model induces over the space of
trees P . For each utterence, we sample a fresh tree for the whole utterance from
a PCFG using the approach of [Johnson et al., 2007], which works by first com-
puting the inside lattice under the proposal model (computed once and reused),
followed by top-down sampling to recover a tree. Finally the proposed tree is
scored using the MH test, according to which the tree is randomly accepted as
the next sample or else rejected in which case the previous sample is retained.

Once the sampling is finished, we need to choose a tree based on statistics
of the sampled collection of trees. One approach is to select the most frequently
sampled tree, however this does not work effectively in such large search spaces
because of high sampling variance. Note that local Gibbs samplers might be able
to address this problem, at least partly, through resampling subtrees instead of
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full tree sampling (as done here). Local changes would allow for more rapid mix-
ing from trees with some high and low scoring subtrees to trees with uniformly
high scoring sub-structures. We leave local sampling for future work, noting
that the obvious local operation of resampling complete sub-trees or local tree
fragments would compromise detailed balance, and thus not constitute a valid
MCMC sampler [Levenberg et al., 2012].

To address this problem, we use a Minimum Bayes Risk (MBR) decoding
method to predict the best tree [Goodman, 1996] as follows: For each pair of a
nonterminal-span, we record the count in the collection of sampled trees. Then
using the Viterbi algorithm, we select the tree from the hypergraph for which the
sum of the induced pairs of nonterminal-span is maximized. Roughly speaking,
this allows to make local corrections that result in higher accuracy compared to
the best sampled trees.

6 Experiments

In order to evaluate the proposed model and prediction algorithms, we per-
formed two sets of experiments on tasks with different structural complexity.
The statistics of the tasks and datasets are provided in Table 1.

6.1 Morphological Parsing

We consider the problem of morphological parsing of unsegmented inputs, i.e.
seeking to model words and their morphological structure in the input stream.
A morphological structure of a word breaks it into its building blocks: Prefixes,
Stem, and Suffixes. For example, for the word “antidisestablishmentarianism”,
the terms “anti”, “dis” are the prefixes,“establish” is the stem, and “ment”,
“arian”, and “ism” are the suffixes.

For this experiment, we model the Sesotho language, a Bantu language
which combines rich productive agglutinative morphology with relatively simple
phonology. We use the dataset from [Johnson, 2008], which comprises utterances
marked with word boundaries. In contrast to Johnson’s approach, our method
is supervised, and consequently we require treebanked input for training and

Table 1. Statistics for PTB syntactic Parsing and part-of-speech tagging, show-
ing the number of training and test sentences, average sentence length in words
and number of grammar rules. For morph the numbers are averaged over the 10
folds.

Task Train Test Len Rules

morph 36479 4000 5 3080
parse 33180 2416 24 31920
pos EN 38219 5462 24 29499
pos DN 3638 1000 20 5269
pos SW 10653 389 18 9739
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TOP
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Word
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Fig. 5. Binarized morphological tree for the Sethoso sequence “moo utladula”.

evaluation. To form a proxy ‘gold-standard’, we augmented the input to include
morphological trees with prefix (P), suffix (S) and stem (T) structure inferred
automatically from segmented utterances using Johnson’s Adaptor Grammar
with his word-smorph grammar. In this grammar a word consists of a stem with
an optional suffix, and zero to three prefixes: Word → (P1(P2(P3))) T (S),
where P1, P2, P3 are prefixes, and T , and S are stem and suffix. An example
input is shown in Figure 5. We right-binarized the trees and replaced segments
with count ≤ 2 with two categories of OUT-V and OUT-C depending on their
initial character being a vowel or consonant. We applied 10-fold cross validation,
and the predicted trees were evaluated using EVALB evaluation package.

As reported in Table 2, the best result is achieved by A* search with local
frontier heuristic. It might seem surprising that considering the full frontier
heuristic results in lower performance. We speculate that this is because the
PCFG over estimates the completion cost, due to its reduced conditioning con-
text which leads to higher entropy distributions and lower probability estimates.
The reduced effect of the heuristic in the local method moderates this issue. The
MCMC sampler obtains similar results to the baseline PCFG.

In the morphological parsing task, the grammar has 3080 rules, and the aver-
age sentence length is 5 words. This leads to a reasonably-small search space,
with the net effect that A* search (with beam size 200) is an effective parsing
strategy. The small grammar size of this task has allowed us to use grammar
rules as fine-grained conditioning contexts. In the remaining tasks of syntactic
parsing and POS tagging, we will condition only on the spine. This is due to
the intractable magnitude of the spaces generated by infinite order rule condi-
tioning, which are problematic for MCMC sampling and A* search based on our
preliminary experiments.

6.2 Syntactic Parsing

For syntactic parsing, we use the Penn. treebank (PTB) dataset [Marcus et al.,
1993]. We used the standard data splits for training and testing (train sec 2-21;
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Table 2. Morphological parsing results, showing 10-fold cross validation evalua-
tion for unlabelled F-Measure (F1) and exact bracketing match (ACC). MCMC
results are averaged over 10 runs.

Parser (Morphological) F1 ACC

A* Search (Local Frontier) 95.99 89.77
A* Search (Full Frontier) 93.08 85.04
MCMC 91.33 78.86

PCFG CYK 91.27 79.39

validation sec 22; test sec 23). We followed [Petrov et al., 2006] preprocessing
steps by right-binarizing the trees and replacing words with count ≤ 1 in the
training sample with generic unknown word markers representing the tokens’
lexical features and position. The results reported in Table 3 are produced by
EVALB.

The results in Table 3 demonstrate the superiority of our model compared
to the baseline PCFG. We note that the A* parser becomes less effective (even
with a large beam size) for this task, which we attribute to the large search
arising for the large grammar and long sentences. Our best results are achieved
by MCMC, demonstrating the effectiveness of MCMC in large search spaces.

An interesting observation is how our results compare with those achieved by
bounded vertical and horizontal Markovization reported in [Klein and Manning,
2003]. Our binarization corresponds to one of their simpler settings for horizontal
markovization, namely h = 0 in their terminology, and note also that we ignore
the head information which is used in their models. Despite this we still manage
to equal their results obtained using vertical context of size 3 (v = 3), with 76.7
F1 score. Their best result, F1 = 79.74, was achieved with h ≤ 2, v = 3 (and tags
for head words). We believe that our model would outperform theirs if we con-
sider greater horizontal markovization and incorporate head word information.
To facilitate a fair comparison with vertical markovization, we experimented with
limiting the size of the vertical contexts to 2, 3 or 4 within our model. Using
MCMC parsing we found that performance consistently improved as the size of
the context was increased, scoring 68.1, 71.1, 75.0 F-measure respectively. This
is below 76.7 F-measure of our unbounded-context model which adapts itself to
data to effectively capture the right context.

Table 3. Syntactic parsing results for the Penn. treebank, showing labelled
F-Measure (F1) and exact bracketing match (ACC).

all ≤ 40

Syntactic Parser F1 ACC F1 ACC

A* (Local Frontier) 75.33 16.12 76.21 16.85
A* (Full Frontier) 72.27 13.14 72.34 13.57
MCMC 76.74 18.23 78.21 18.99

PCFG CYK 58.91 4.11 60.25 4.42
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Fig. 6. The analogy between HMM (i) and our representation (ii) for the part-
of-speech tags of the sentence “that’s fine now.”

The run-time of our parser under MCMC (with 30k samples) is 0.29×|S| secs,
and under A*(Local) is 0.13 × |S| secs, where |S| is the length of the sentence.
With a smaller number of samples the parsing time reduces linearly and the
predictive accuracy only suffers slightly; for instance with 5k samples the F1
measure (all) falls by 0.8.

Overall our approach significantly outperforms the baseline PCFG, although
note these results are well below the current state-of-the-art in parsing, which
typically makes use of discriminative training with much richer features. We
speculate that future enhancements could close the gap between our results and
that of modern parsers, while offering the potential benefits of our generative
model which allows further incorporation of different types of contexts (e.g.,
head words and n-gram lexical context).

6.3 Part-of-Speech Tagging

The part of speech (POS) corpora have been extracted from PTB (sections 0-18
for training and 22-24 for test) for English, and NAACL-HLT 2012 Shared task
on Grammar Induction2 for Danish and Swedish [Gelling et al., 2012]. We con-
vert the sequence of part-of-speech tags for each sentence into a tree structure
analogous to a Hidden Markov Model (HMM). For each POS tag we introduce a
twin (e.g., ADJ’ for ADJ) in order to encode HMM-like transition and emission
probabilities in the grammar. As shown in Figure 6, this representation guar-
antees that all the rules in the structures are either in the form of ti → tj t′j
(transition) or t′ → word (emission).

The tagging results are reported in Table 4, including comparison with
the baseline PCFG (≡ HMM) and the state-of-the-art Stanford POS Tagger
[Toutanova and Manning, 2000], which we trained and tested on these datasets.
As illustrated in Table 4, our model consistently improves the PCFG base-
line. While for Danish we outperform the state-of-the-art tagger, the results
for English and Swedish we are a little behind the Stanford Tagger. This is a
promising result since our model is only based on the rules and their contexts,

2 http://wiki.cs.ox.ac.uk/InducingLinguisticStructure/SharedTask

http://wiki.cs.ox.ac.uk/InducingLinguisticStructure/SharedTask
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Table 4. TL stands for Token-Level Accuracy, SL stands for Sentence-Level
Accuracy. MCMC results are the average of 10 runs.

English Danish Swedish

POS Tagger TL SL TL SL TL SL

A*(Local Frontier) 95.50 54.11 89.85 35.10 87.04 32.13
A*(Full Frontier) 95.27 53.88 88.57 32.6 85.62 28.53
MCMC 96.04 54.25 95.55 72.93 89.97 34.45

PCFG CYK 94.69 47.22 89.04 31.7 89.76 33.93

Stanford Tagger 97.24 56.34 93.66 51.30 91.28 37.02

Table 5. (a) Percentage of the matched spines over the top-1000 frequent spines
for each spine length in the trees predicted by our unbounded-context model
(v = ∞) and the baseline limited-context model (v = 2). (b) The top-5 frequent
contexts for NP, VP, DT, and JJ in the trees predicted by our model; the ones
marked with (*) exist in the top-5 contexts in the gold standard trees as well.

v = ∞ v = 2

parse POS parse POS

size WSJ EN DN SW WSJ EN DN SW

2 100 96 100 97 100 96 100 97
3 75 100 100 100 75 100 100 100
4 72 69 72 68 70 68 72 68
5 68 57 58 57 63 57 58 57
6 62 56 51 53 60 56 51 53
7 59 52 55 37 59 50 55 38
8 58 42 45 29 51 41 44 29
9 60 68 61 37 49 60 31 37
10 68 75 67 35 51 69 25 34

(a)

NP VP

S* S*
SINV* S VP SBAR S*
S PP* SINV*
S VP PP S SBAR S
S VP* S PRN

DT JJ

S NP * S NP*
S PP NP* S PP NP*
S VP SBAR S NP* S VP ADJP*
S VP PP NP* SINV NP
S S-BAR NP S VP SBAR S VP PP NP*

(b)

as opposed to the Stanford Tagger which uses complex hand-designed features
and a complex form of discriminative training. Note the strong performance of
MCMC sampling, which consistently outperforms A* search.

6.4 Analysis

For the analysis we focus on the syntactic parsing and POS tagging tasks. For
each different spine size from 2 to 10, we extract the top-1000 frequent spines in
the trees predicted based on our model, and compare them with those extracted
from the gold standard trees. The numbers reported in Table 5(a), are the per-
centage of the intersection of these two sets. As reported in the table, in all
cases (except one) the infinite order model (v = ∞) outperforms the model with
limited size context (v = 2). Particularly in Danish POS tagging, our model
predicts correctly 65% of top-1000 high-frequency spines of length 10 vs. 25%
of the model with limited context. For syntactic parsing, the short range depen-
dencies captured by limited context model (v = 2) over the spines of size 2 and
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3 matches the results of our unbounded context model (v = ∞); however, the
gap becomes wider for longer spines.

Our next analysis looks into the contexts of 4 linguistic categories in syn-
tactic parsing: NP (noun phrase), VP (verb phrase), DT (determiner), and JJ
(adjective). data set. We chose NP and VP mainly because they tend to appear
in higher levels of the tree and most probably often in shorter contexts, and DT
and JJ for the opposite reason. A list of the most frequent contexts for these
syntactic categories in the trees predicted by our model is provided in Table 5(b);
the ones marked with (*) exist in the gold standard trees as well. Our model
successfully retrieves most of the long and short high-frequency contexts for the
aforementioned syntactic categories.

7 Conclusion and Future Work

We have proposed a novel hierarchical model over linguistic trees which exploits
global context by conditioning the generation of a rule in a tree on an unbounded
tree context consisting of the vertical chain of its ancestors.

To facilitate learning of such a large and unbounded model, the predictive
distributions associated with tree contexts are smoothed in a recursive manner
using a hierarchical Pitman-Yor process. We have shown how to perform predic-
tion based on our model to predict the parse tree of a given utterance using vari-
ous search algorithms, e.g. A* and Markov Chain Monte Carlo. This consistently
improved over baseline methods in several tasks, and produced state-of-the-art
results for Danish part-of-speech tagging.

In future, we would like to consider sampling the seating arrangements and
model hyperparameters, and seek to incorporate several different notions of con-
text besides the chain of ancestors.
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