
Planning in Discrete and Continuous
Markov Decision Processes

by Probabilistic Programming

Davide Nitti(B), Vaishak Belle, and Luc De Raedt

Department of Computer Science, KU, Leuven, Belgium
{davide.nitti,vaishak.belle,luc.deraedt}@cs.kuleuven.be

Abstract. Real-world planning problems frequently involve mixtures of
continuous and discrete state variables and actions, and are formulated in
environments with an unknown number of objects. In recent years, prob-
abilistic programming has emerged as a natural approach to capture and
characterize such complex probability distributions with general-purpose
inference methods. While it is known that a probabilistic programming
language can be easily extended to represent Markov Decision Processes
(MDPs) for planning tasks, solving such tasks is challenging. Building
on related efforts in reinforcement learning, we introduce a conceptually
simple but powerful planning algorithm for MDPs realized as a prob-
abilistic program. This planner constructs approximations to the opti-
mal policy by importance sampling, while exploiting the knowledge of
the MDP model. In our empirical evaluations, we show that this app-
roach has wide applicability on domains ranging from strictly discrete to
strictly continuous to hybrid ones, handles intricacies such as unknown
objects, and is argued to be competitive given its generality.

1 Introduction

Real-world planning problems frequently involve mixtures of continuous and
discrete state variables and actions. Markov Decision Processes (MDPs) [28] are
a natural and general framework for modeling such problems. However, while
significant progress has been made in developing robust planning algorithms for
discrete and continuous MDPs, the more intricate hybrid (i.e., mixtures) domains
and settings with an unknown number of objects have received less attention.

The recent advances of probabilistic programming languages (e.g., BLOG
[15], Church [6], ProbLog [10], distributional clauses [7]) has significantly
improved the expressive power of formal representations for probabilistic models.
While it is known that these languages can be extended for decision problems
[27,29], including MDPs, it is less clear if the inbuilt general-purpose inference
system can cope with the challenges (e.g., scale, time constraints) posed by actual
planning problems, and compete with existing state-of-the-art planners.

In this paper, we consider the problem of effectively planning in domains
where reasoning and handling unknowns may be needed in addition to cop-
ing with mixtures of discrete and continuous variables. In particular, we adopt
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 327–342, 2015.
DOI: 10.1007/978-3-319-23525-7 20

328 D. Nitti et al.

dynamic distributional clauses (DDC) [17,18] (an extension of distributional
clauses for temporal models) to describe the MDP and perform inference. In
such general settings, exact solutions may be intractable, and so approximate
solutions are the best we can hope for. Popular approximate solutions include
Monte-Carlo methods to estimate the expected reward of a policy (i.e., policy
evaluation). Monte-Carlo methods provide state-of-the-art results in probabilis-
tic planners [9,11]. Monte-Carlo planners have been mainly applied in discrete
domains (with some notable exceptions, such as [1,13], for continuous domains).
Typically, for continuous states, function approximation (e.g., linear regression)
is applied. In that sense, one of the few Monte-Carlo planners that works in
arbitrary MDPs with no particular assumptions is Sparse Sampling (SST) [8];
but as we demonstrate later, it is often slow in practice. We remark that most,
if not all, Monte-Carlo methods require only a way to sample from the model of
interest. While this property seems desirable, it prevents us from exploiting the
actual probabilities of the model, as discussed (but unaddressed) in [9].

In this work, we introduce HYPE: a conceptually simple but powerful plan-
ning algorithm for a given MDP in DDC. However, HYPE can be adapted
for other languages, such as RDDL [22]. The proposed planner exploits the
knowledge of the model via importance sampling to perform policy evaluation,
and thus, policy improvement. Importance sampling has been used in off-policy
Monte-Carlo methods [20,24,25], where policy evaluation is performed using
trajectories sampled from another policy. We remark that standard off-policy
Monte-Carlo methods have been used in reinforcement learning, which are essen-
tially model-free settings. In our setting, given a planning domain, the proposed
planner introduces a new off-policy method that exploits the model and works,
under weak assumptions, in discrete, continuous, hybrid domains as well as those
with an unknown number of objects.

We provide a detailed derivation on how the approximation is obtained using
importance sampling. Most significantly, we test the robustness of the approach
on a wide variety of probabilistic domains. Given the generality of our frame-
work, we do not challenge the plan times of state-of-the-art planners, but we do
successfully generate meaningful plans in all these domains. We believe this per-
formance is competitive given the algorithm’s applicability. Indeed, the results
show that our system at best outperforms SST [8] and at worst produces similar
results, where SST is an equally general planner; in addition, it obtains reason-
able results with respect to state-of-the-art discrete (probabilistic) planners.

2 Preliminaries

In a MDP, a putative agent is assumed to interact with its environment,
described using a set S of states, a set A of actions that the agent can perform, a
transition function p : S ×A×S → [0, 1], and a reward function R : S ×A → R.
That is, when in state s and on doing a, the probability of reaching s′ is given
by p(s′ | s, a), for which the agent receives the reward R(s, a). The agent is
taken to operate over a finite number of time steps t = 0, 1, . . . , T , with the goal

Planning in Discrete and Continuous MDPs by Prob. Programming 329

of maximizing the expected reward: E[
∑T

t=0 γtR(st, at)], where s0 is the start
state, a0 the first action, and γ ∈ [0, 1] is a discount factor.

This paper focuses on maximizing the reward in a finite horizon MDP; how-
ever the same ideas are extendable for infinite horizons. This is achieved by
computing a (deterministic) policy π : S × D → A that determines the agent’s
action at state s and remaining steps d (horizon). The expected reward starting
from state st and following a policy π is called the value function (V -function):

V π
d (st) = E

[
t+d∑

k=t

γk−tR(sk, ak) | st, π

]

. (1)

Furthermore, the expected reward starting from state st while executing action
at and following a policy π is called the action-value function (Q-function):

Qπ
d (st, at) = E

[
t+d∑

k=t

γk−tR(sk, ak) | st, at, π

]

. (2)

Since T = t + d, in the following formulas we will use T for compactness. An
optimal policy π∗ is a policy that maximizes the V -function for all states. A
sample-based planner uses Monte-Carlo methods to solve an MDP and find
a (near) optimal policy. The planner simulates (by sampling) interaction with
the environment in episodes Em =<sm

0 , am
0 , sm

1 , am
1 , ..., sm

T , am
T >, following some

policy π. Each episode is a trajectory of T time steps, and we let sm
t denote the

state visited at time t during episode m. (So, after M episodes, M × T states
would be explored). After or during an episode generation, the sample-based
planner updates Qd(sm

t , am
t) for each t according to a backup rule, for example,

averaging the total rewards obtained starting from (sm
t , am

t) till the end. The
policy is improved using a strategy that trades-off exploitation and exploration,
e.g., the ε-greedy strategy. In this case the policy used to sample the episodes
is not deterministic; we indicate with π(at|st) the probability to select action
at in state st under the policy π. Under certain conditions, after a sufficiently
large number of episodes, the policy converges to a (near) optimal policy, and
the planner can execute the greedy policy argmaxaQd(s, a).

3 Dynamic Distributional Clauses

We assume some familiarity with standard terminology of statistical relational
learning and logic programming [2]. We represent the MDP using dynamic dis-
tributional clauses [7,17], an extension of logic programming to represent contin-
uous and discrete random variables. A distributional clause (DC) is of the form
h ∼ D ← b1, . . . , bn, where the bi are literals and ∼ is a binary predicate written
in infix notation. The intended meaning of a distributional clause is that each
ground instance of the clause (h ∼ D ← b1, . . . , bn)θ defines the random variable
hθ as being distributed according to Dθ whenever all the biθ hold, where θ is
a substitution. Furthermore, a term �(d) constructed from the reserved functor
�/1 represents the value of the random variable d.

330 D. Nitti et al.

Example 1. Consider the following clauses:

n ∼ poisson(6). (3)
pos(P) ∼ uniform(1, 10) ← between(1,�(n), P). (4)
left(A, B) ← �(pos(A)) >�(pos(B)). (5)

Capitalized terms such as P, A and B are logical variables, which can be sub-
stituted with any constant. Clause (3) states that the number of people n is
governed by a Poisson distribution with mean 6; clause (4) models the position
pos(P) as a random variable uniformly distributed from 1 to 10, for each person
P such that P is between 1 and �(n). Thus, if the outcome of n is two (i.e.,
�(n) = 2) there are 2 independent random variables pos(1) and pos(2). Finally,
clause (5) shows how to define the predicate left(A, B) from the positions of any
A and B. Ground atoms such as left(1, 2) are binary random variables that can
be true or false, while terms such as pos(1) represent random variables that can
take concrete values from the domain of their distribution.

A distributional program is a set of distributional clauses (some of which may
be deterministic) that defines a distribution over possible worlds, which in turn
defines the underlying semantics. A possible world is generated starting from the
empty set S = ∅; for each distributional clause h ∼ D ← b1, ..., bn, whenever the
body {b1θ, ..., bnθ} is true in the set S for the substitution θ, a value v for the
random variable hθ is sampled from the distribution Dθ and �(hθ) = v is added
to S. This is repeated until a fixpoint is reached, i.e., no further variables can
be sampled. Dynamic distributional clauses (DDC) extend distributional clauses
in admitting temporally-extended domains by associating a time index to each
random variable.

Example 2. Let us consider an object search scenario (objsearch) used in the
experiments, in which a robot looks for a specific object in a shelf. Some of the
objects are visible, others are occluded. The robot needs to decide which object
to remove to find the object of interest. Every time the robot removes an object,
the objects behind it become visible. This happens recursively, i.e., each new
uncovered object might occlude other objects. The number and the types of
occluded objects depend on the object covering them. For example, a box might
cover several objects because it is big. This scenario involves an unknown number
of objects and can be written as a partially observable MDP. However, it can be
also described as a MDP in DDC where the state is the type of visible objects;
in this case the state grows over time when new objects are observed or shrink
when objects are removed without uncovering new objects. The probability of
observing new objects is encoded in the state transition model, for example:

type(X)t+1 ∼ val(T) ← �(type(X)t) = T, not(removeObj(X)). (6)
numObjBehind(X)t+1 ∼ poisson(1) ← �(type(X)t) = box, removeObj(X). (7)
type(ID)t+1 ∼ finite([0.2 : glass, 0.3 : cup, 0.4 : box, 0.1 : can])←

�(type(X)t) = box, removeobj(X), �(numObjBehind(X)t+1) = N, getLastID(Last)t,

NewID is Last + 1, EndNewID is NewID + N, between(NewID, EndNewID, ID). (8)

Planning in Discrete and Continuous MDPs by Prob. Programming 331

Clause (6) states that the type of each object remains unchanged when we do
not perform a remove action. Otherwise, if we remove the object, its type is
removed from the state at time t + 1 because it is not needed anymore. Clauses
(7) and (8) define the number and the type of objects behind a box X, added to
the state when we perform a remove action on X. Similar clauses are defined for
other types. The predicate getLastID(Last)t returns the highest object ID in
the state and is needed to make sure that any new object has a different ID.

To complete the MDP specification we need to define a reward function R(st, at),
the terminal states that indicate when the episode terminates, and the applica-
bility of an action at is a state st as in PDDL. For objsearch we have:

stopt ←�(type(X)t) = can.

reward(20)t ← stopt.

reward(−1)t ← not(stopt).

That is, a state is terminal when we observe the object of interest (e.g., a can),
for which a reward of 20 is obtained. The remaining states are nonterminal with
reward −1. To define action applicability we use a set of clauses of the form

applicable(action)t ← preconditionst.

For example, action removeobj is applicable for each object in the state, that is
when its type is defined with an arbitrary value Type:

applicable(removeobj(X))t ←�(type(X)t) = Type.

4 Planning by Importance Sampling

Our approach to plan in MDPs described in DDC is an off-policy strategy [28]
based on importance sampling and derived from the transition model. Related
work is discussed more comprehensively in Section 5, but as we note later,
sample-based planners typically only require a generative model (a way to gen-
erate samples) and do not exploit the declarative model of the MDP (i.e., the
actual probabilities) [9]. In our case, this knowledge leads to an effective plan-
ning algorithm that works in discrete, continuous, hybrid domains, and domains
with an unknown number of objects under weak assumptions.

In a nutshell, the proposed approach samples episodes Em and stores for each
visited state sm

t an estimation of the V -function (e.g., the total reward obtained
from that state). The action selection follows an ε-greedy strategy, where the Q-
function is estimated as the immediate reward plus the weighted average of the
previously stored V -function points at time t + 1. This is justified by the means
of importance sampling as explained later. The essential steps of our planning
system Hype (= hybrid episodic planner) are given in Algorithm 1.

The algorithm realizes the following key ideas:

– Q̃ and Ṽ denote approximations of the Q and V -function respectively.

332 D. Nitti et al.

Algorithm 1. Hype

1: function SampleEpisode(d, sm
t , m) � Horizon d, state sm

t in episode m
2: if d = 0 then
3: return 0
4: end if
5: for each applicable action a in sm

t do � Q-function estimation

6: Q̃m
d (sm

t , a) ←R(sm
t , a) + γ

∑m−1
i=0 wiṼ i

d−1(s
i
t+1)

∑m−1
i=0 wi

7: end for
8: sample u ∼ uniform(0, 1) � ε-greedy strategy
9: if u < 1 − ε then

10: am
t ← argmaxaQ̃m

d (sm
t , a)

11: else
12: am

t ∼ uniform(actions applicable in sm
t)

13: end if
14: sample sm

t+1 ∼ p(st+1 | sm
t , am

t) � sample next state
15: Gm

d ← R(sm
t , am

t) + γ ·SampleEpisode (d − 1, sm
t+1, m) � recursive call

16: Ṽ m
d (sm

t) ← Gm
d

17: store (sm
t , Ṽ m

d (sm
t), d)

18: return Ṽ m
d (sm

t) � V-function estimation for sm
t at horizon d

19: end function

– Lines 14-17 sample the next step and recursively the remaining episode of
total length T , then stores the total discounted reward Gm

d starting from
the current state sm

t . This quantity can be interpreted as a sample of the
expectation in formula (1), thus an estimator of the V -function. For this and
other reasons explained later, Gm

d is stored as Ṽ m
d (sm

t).
– Lines 8-13 implement an ε-greedy exploratory strategy for choosing actions.
– Most significantly, line 6 approximates the Q-function using the weighted aver-

age of the stored Ṽ i
d−1(s

i
t+1) points:

Q̃m
d (sm

t , a) ←R(sm
t , a) + γ

∑m−1
i=0 wiṼ i

d−1(s
i
t+1)

∑m−1
i=0 wi

, (9)

where wi is a weight function for episode i at state si
t+1. The weight exploits

the transition model and is defined as:

wi =
p(si

t+1 | sm
t , a)

q(si
t+1)

α(m−i). (10)

Here, for evaluating an action a at the current state st, we let wi be the ratio of
the transition probability of reaching a stored state si

t+1 and the probability used
to sample si

t+1, denoted using q. Recent episodes are considered more significant
than previous ones, and so α is a parameter for realizing this. We provide a
detailed justification for line 6 below.

We note that line 6 requires us to go over a finite set of actions, and so in
the presence of continuous action spaces (e.g., real-valued parameter for a move

Planning in Discrete and Continuous MDPs by Prob. Programming 333

action), we can discretize the action space or sample from it. More sophisticate
approaches are possible [5,26].

V 1
9 = 97

V 2
9 = 98 V 3

9 = 90

s = (0, 0)
a′ a′′

Fig. 1. Left: weight computation for the objpush domain. Right: a sampled episode
that reaches the goal (blue), and avoids the undesired region (red).

Example 3. As a simple illustration, consider the following example called obj-
push. We have an object on a table and an arm that can push the object in a
set of directions; the goal is to move the object close to a point g, avoiding an
undesired region (Fig. 1). The state consists of the object position (x, y), with
push actions parameterized by the displacement (DX, DY). The state transition
model is a Gaussian around the previous position plus the displacement:

pos(ID)t+1∼ gaussian(�(pos(ID)t)+ (DX, DY), cov)←push(ID, (DX, DY)). (11)

The clause is valid for any object ID; nonetheless, for simplicity, we will consider
a scenario with a single object. The terminal states and rewards in DDC are:

stopt← dist(�(pos(A)t), (0.6, 1.0)) < 0.1.

reward(100)t← stopt.

reward(−1)t← not(stopt), dist(�(pos(A)t), (0.5, 0.8)) >= 0.2.

reward(−10)t← not(stopt), dist(�(pos(A)t), (0.5, 0.8)) < 0.2. (12)

That is, a state is terminal when there is an object close to the goal point
(0.6, 1.0) (i.e., distance lower than 0.1), and so, a reward of 100 is obtained. The
nonterminal states have reward −10 whether inside an undesired region centered
in (0.5, 0.8) with radius 0.2, and R(st, at) = −1 otherwise.

Let us assume we previously sampled some episodes of length T = 10, and
we want to sample the m = 4-th episode starting from s0 =(0, 0). We compute
Q̃m

10((0, 0), a) for each action a (line 6). Thus we compute the weights wi using
(10) for each stored sample Ṽ i

9 (si
1). For example, Figure 1 shows the computation

of Q̃m
10((0, 0), a) for action a′ = (−0.4, 0.3) and a′′ = (0.9, 0.5), where we have

three previous samples i = {1, 2, 3} at depth 9. A shadow represents the likeli-
hood p(si

1|s0 = (0, 0), a) (left for a′ and right for a′′). The weight wi (10) for each
sample si

1 is obtained by dividing this likelihood by q(si
1) (with α = 1). If q(si

1)
is uniform over the three samples, sample i = 2 with total reward Ṽ 2

9 (s21) = 98

334 D. Nitti et al.

will have higher weight than samples i = 1 and i = 3. The situation is reversed
for a′′. Note that we can estimate Q̃m

d (sm
t , a) using episodes i that may never

encounter sm
t , at provided that p(si

t+1|sm
t , at) > 0.

Computing the (Approximate) Q-Function

The purpose of this section is to motivate our approximation to the Q-function
using the weighted average of the V -function points in line 6. Let us begin by
expanding the definition of the Q-function from (2) as follows:

Qπ
d (st, at)=R(st, at)+γ

∫

st+1:T ,at+1:T

Gd−1p(st+1:T , at+1:T |st, at, π)dst+1:T , at+1:T , (13)

where Gd−1 is the total (discounted) reward from time t + 1 for d − 1 steps:
Gd−1 =

∑d−1
k=1 γk−1R(st+k, at+k). Given that we sample trajectories from the

target distribution p(st+1:T , at+1:T |st, at, π), we obtain the following approxima-
tion to the Q-function equaling the true value in the sampling limit:

Qπ
d (st, at) ≈ R(st, at) +

1
N

γ
∑

i

Gi
d−1. (14)

Policy evaluation can be performed sampling trajectories using another policy,
this is called off-policy Monte-Carlo [28]. For example, we can evaluate the greedy
policy while the data is generated from a randomized one to enable exploration.
This is generally performed using (normalized) importance sampling [25]. We let
wi be the ratio of the target and proposal distributions to restate the sampling
limit as follows:

Qπ
d (st, at) ≈ R(st, at) +

1
∑

wi
γ

∑

i

wiGi
d−1. (15)

In standard off-policy Monte-Carlo the proposal distribution is of the form:

p(st+1:T , at+1:T |st, at, π
′) =

T−1∏

k=t

π′(ak+1|sk+1)p(sk+1|sk, ak)

The target distribution has the same form, the only difference is that the policy
is π instead of π′. In this case the weight becomes equal to the policy ratio
because the transition model cancels out. This is desirable when the model is
not available, for example in model-free Reinforcement Learning. The question is
whether the availability of the transition model can be used to improve off-policy
methods. This paper shows that the answer to that question is positive.

We will now describe the proposed solution. Instead of considering only tra-
jectories that start from st, at as samples, we consider all sampled trajectories
from time t+1 to T . Since we are ignoring steps before t+1, the proposal distri-
bution for sample i is the marginal

p(st+1:T , at+1:T |s0, πi)=q(st+1)πi(at+1|st+1)
T−1∏

k=t+1

πi(ak+1|sk+1)p(sk+1|sk, ak),

Planning in Discrete and Continuous MDPs by Prob. Programming 335

where q is the marginal probability p(st+1|s0, πi). To compute Q̃m
d (sm

t , a) we use
(15), where the weight wi (for 0 ≤ i ≤ m − 1) becomes the following:

p(si
t+1|sm

t , a)πm(ai
t+1|si

t+1)
∏T−1

k=t+1 πm(ai
k+1|si

k+1)p(si
k+1|si

k, ai
k)

q(si
t+1)π

i(ai
t+1|si

t+1)
∏T−1

k=t+1 πi(ai
k+1|si

k+1)p(si
k+1|si

k, ai
k)

=
p(si

t+1|sm
t , a)

q(si
t+1)

∏T−1
k=t πm(ai

k+1|si
k+1)

∏T−1
k=t πi(ai

k+1|si
k+1)

(16)

≈ p(si
t+1|sm

t , a)

q(si
t+1)

α(m−i). (17)

Thus, we obtain line 6 in the algorithm given that Ṽ i
d−1(s

i
t) = Gi

d−1. In our
algorithm the target (greedy) policy πm is not explicitly defined, therefore the
policy ratio is hard to compute. We replace the unknown policy ratio with a
quantity proportional to α(m−i) where 0 < α ≤ 1; thus, formula (16) is replaced
with (17). The quantity α(m−i) becomes smaller for an increasing difference
between the current episode index m and the i-th episode. Therefore, the recent
episodes are weighted (on average) more than the previous ones, as in recently-
weighted average applied in on-policy Monte-Carlo [28]. This is justified because
the policy is improved over time, thus recent episodes should have higher weight.

Since we are performing policy improvement, each episode is sampled from a
different policy. It has been shown [20,25] that samples from different distribu-
tions can be considered as sampled from a single distribution that is the mixture
of the true distributions. Therefore, for a given episode

q(si
t+1) =

1

m − 1

∑

j

p(si
t+1|s0, πj) =

1

m − 1

∑

j

∫

st

∫

at

p(si
t+1|st, at)p(st, at|s0, πj)dstdat

≈ 1

m − 1

∑

j

p(si
t+1|sj

t , a
j
t),

where for each j the integral is approximated with a single sample (sj
t , a

j
t) from

the available episodes. Since each episode is sampled from p(s0:T , a0:T |s0, πj),
samples (sj

t , a
j
t) are distributed as p(st, at|s0, πj) and are used in the estimation

of the integral.
The likelihood p(si

t+1|sm
t , a) is required to compute the weight. This prob-

ability can be decomposed using the chain rule, e.g., for a state with 3 vari-
ables we have: p(si

t+1|sm
t , a) = p(v3|v2, v1, sm

t , a)p(v2|v1, sm
t , a)p(v1|sm

t , a), where
si

t+1 = {v1, v2, v3}. In DDC this is performed evaluating the likelihood of each
variable in vi following the topological order defined in the DDC program. The
target and the proposal distributions might be mixed distributions of discrete
and continuous random variables; importance sampling can be applied in such
distributions as discussed in [19, Chapter 9.8].

To summarize, for each state sm
t , Q(sm

t , at) is evaluated as the immediate
reward plus the weighted average of stored Gi

d−1 points. In addition, for each
state sm

t the total discounted reward Gm
d is stored. We would like to remark

336 D. Nitti et al.

that we can estimate the Q-function also for states and actions that have never
been visited, as shown in example 1. This is possible without using function
approximations (beyond importance sampling).

Extensions

Our derivation follows a Monte-Carlo perspective, where each stored point is the
total discounted reward of a given trajectory: Ṽ m

d (sm
t) ← Gm

d . However, following
the Bellman equation, Ṽ m

d (sm
t) ← maxaQ̃m

d (sm
t , a) can be stored instead. The Q

estimation formula in line 6 is not affected; indeed we can repeat the same deriva-
tion using the Bellman equation and approximate it with importance sampling:

Qπ
d (st, at) = R(st, at) + γ

∫

st+1

V π
d−1(st+1)p(st+1|st, at)dst+1

≈ R(st, a) + γ
∑ wi

∑
wi

Ṽ i
d−1(s

i
t+1) = Q̃m

d (st, at), (18)

with wi = p(si
t+1|st,at)

q(si
t+1)

and si
t+1 the state sampled in episode i for which we

have an estimation of Ṽ i
d−1(s

i
t+1), while q(si

t+1) is the probability with which
si

t+1 has been sampled. This derivation is valid for a fixed policy π; for a chang-
ing policy we can make similar considerations to the previous approach and
add the term α(m−i). If we choose Ṽ i

d−1(s
i
t+1) ← Gi

d−1, we obtain the same
result as in (9) and (17) for the Monte-Carlo approach. Instead of choosing
between the two approaches we can use a linear combination, i.e., we replace
line 16 with Ṽ m

d (sm
t) ← λGm

d + (1 − λ)maxaQ̃m
d (sm

t , a). The analysis from ear-
lier applies by letting λ = 1. However, for λ = 0, we obtain a local value iteration
step, where the stored Ṽ is obtained maximizing the estimated Q̃ values. Any
intermediate value balances the two approaches (this is similar to, and inspired
by, TD(λ) [28]). Another strategy consists in storing the maximum of the two:
Ṽ m

d (sm
t) ← max(Gm

d ,maxaQ̃m
d (sm

t , a)). In other words, we alternate Monte-
Carlo and Bellman backup according to which one has the highest value. This
strategy works often well in practice; indeed it avoids a typical issue in Monte
Carlo methods: bad policies or exploration lead to low rewards, averaged in the
estimated Q/V -function. For this reason it may occur that optimal actions are
rarely chosen. The mentioned strategy avoids this, and a high ε value (line 9) is
possible without affecting the performance.

5 Related Work

There is an extensive literature on MDP planners, we will focus mainly on Monte-
Carlo approaches. The most notable sample-based planners include Sparse Sam-
pling (SST) [8], UCT [11] and their variations. SST creates a lookahead tree of
depth D, starting from state s0. For each action in a given state, the algorithm
samples C times the next state. This produces a near-optimal solution with theo-
retical guarantees. In addition, this algorithm works with continuous and discrete

Planning in Discrete and Continuous MDPs by Prob. Programming 337

domains with no particular assumptions. Unfortunately, the number of samples
grows exponentially with the depth D, therefore the algorithm is extremely slow
in practice. Some improvements have been proposed [31], although the worst-
case performance remains exponential. UCT [11] uses upper confidence bound
for multi-armed bandits to trade off between exploration and exploitation in the
tree search, and inspired successful Monte-Carlo tree search methods. Instead
of building the full tree, UCT chooses the action a that maximizes an upper
confidence bound of Q(s, a), following the principle of optimism in the face of
uncertainty. Several improvements and extensions for UCT have been proposed,
including handling continuous actions [13] (see [16] for a review), and continuous
states [1] with a simple Gaussian distance metric; however the knowledge of the
probabilistic model is not directly exploited. For continuous states, parametric
function approximation is often used (e.g., linear regression), nonetheless the
model needs to be carefully tailored for the domain to solve [32].

There exist algorithms that exploit instance-based methods (e.g. [3,5,26])
for model-free reinforcement learning. They basically store Q-point estimates,
and then use e.g., neighborhood regression to evaluate Q(s, a) given a new point
(s, a). While these approaches are effective in some domains, they require the user
to design distance metric that takes into account the domain. This is straightfor-
ward in some cases (e.g., in Euclidean spaces), but it might be harder in others.
We argue that the knowledge of the model can avoid (or simplify) the design of
a distance metric in several cases, where the importance sampling weights and
the transition model, can be considered as a kernel.

The closest related works include [20,21,24,25], they use importance sam-
pling to evaluate a policy from samples generated with another policy. Nonethe-
less, they adopt importance sampling differently without the knowledge of
the MDP model. Although this property seems desirable, the availability of
the actual probabilities cannot be exploited, apart from sampling, in their
approaches. The same conclusion is valid for practically any sample-based plan-
ner, which only needs a sample generator of the model. The work of [9] made a
similar statement regarding PROST, a state-of-the-art discrete planner based on
UCT, without providing a way to use the state transition probabilities directly.
Our algorithm tries to alleviate this, exploiting the probabilistic model in a
sample-based planner via importance sampling.

For more general domains that contain discrete and continuous (hybrid) vari-
ables several approaches have been proposed under strict assumptions. For exam-
ple, [23] provide exact solutions, but assume that continuous aspects of the tran-
sition model are deterministic. In a related effort [4], hybrid MDPs are solved
using dynamic programming, but assuming that transition model and reward is
piecewise constant or linear. Another planner HAO* [14] uses heuristic search
to find an optimal plan in hybrid domains with theoretical guarantees. However,
they assume that the same state cannot be visited again (i.e., they assume plans
do not have loops, as discussed in [14, sec.5]), and they rely on the availability of
methods to solve the integral in the Bellman equation related to the continuous
part of the state. Visiting the same state in our approach is a benefit and not a

338 D. Nitti et al.

limit; indeed a previous visited state s′ is useful to evaluate Qd(s, a), when the
weight is positive (i.e., when s′ is reachable from s with action a).

There exists several languages specific for planning, the most recent is RDDL
[22]. A RDDL domain can be mapped in DDC and solved with HYPE. Nonethe-
less, RDDL does not support a state space with an unknown number of variables
as in Example 2. Some planners are based on probabilistic logic programming,
for example DTProbLog [29] and PRADA [12], though they only support dis-
crete action-state spaces. For domains with an unknown number of objects, some
probabilistic programming languages such as BLOG [15], Church [6], and DC
[7] can cope with such uncertainty. To the best of our knowledge DTBLOG [27]
and [30] are the only proposals that are able to perform decision making in such
domains using a POMDP framework. Furthermore, BLOG is one of the few
languages that explicitly handles data association and identity uncertainty. The
proposed paper does not focus on POMDP, nor on identity uncertainty; however,
interesting domains with unknown number of objects can be easily described as
an MDP that HYPE can solve.

Among the mentioned sample-based planners, one of the most general is
SST, which does not make any assumption on the state and action space, and
only relies on Monte-Carlo approximation. In addition, it is one of the few plan-
ners that can be easily applied to any DDC program, including MDPs with an
unknown number of objects. For this reason SST was implemented for DDC and
used as baseline for our experiments.

6 Experiments

This section answers the following questions: (Q1) Does the algorithm obtain
the correct results? (Q2) How is the performance of the algorithm in different
domains? (Q3) How does it compare with state-of-the-art planners?

The algorithm was implemented in YAP Prolog and C++, and run on a Intel
Core i7 Desktop.

To answer (Q1) we tested the algorithm on a nonlinear version of the hybrid
mars rover domain (called simplerover1) described in [23] for which the exact V -
function is available (depth d=3 and 2 variables: a two-dimensional continuous
position and one discrete variable to indicate if the picture was taken). We choose
31 initial points and ran the algorithm for 100 episodes each. Each point took
on average 1.4s. Fig. 2 shows the results where the line is the exact V , and dots
are estimated V points. The results show that the algorithm converges to the
optimal V -function with a negligible error. This domain is deterministic, and so,
to make it more realistic we converted it to a probabilistic MDP adding Gaussian
noise to the state transition model. The resulting MDP (simplerover2) is hard
(if not impossible) to solve exactly. Then we performed experiments for different
horizons, number of pictures points (1 to 4, each one is a discrete variable) and
summed the rewards. For each instance the planner searches for an optimal policy
and executes it, and after each executed action it samples additional episodes
to refine the policy (replanning). The proposed planner is compared with SST

Planning in Discrete and Continuous MDPs by Prob. Programming 339

Table 1. Experiments: d is the horizon used by the planner, T the total number of
steps, M is the maximum number of episodes sampled for HYPE, while C is the SST
parameter (number of samples for each state and action). Time limit of 1800s per
instance. PROST results refer to IPPC2011.

Domain game1 game2 sysadmin1 sysadmin2

Planner T = 40 T = 40 T = 40 T = 40

HYPE

reward 0.87 ± 0.11 0.77±0.22 0.94 ± 0.07 0.87±0.11

time (s) 622 608 422 475

param M =1200 M =1200 M = 1200 M = 1200

d=5 d=5 d= 5 d=5

SST

reward 0.34 ± 0.15 0.14 ± 0.20 0.47 ± 0.13 0.31 ± 0.12

time (s) 986 1000 1068 1062

param C =1 C =1 C =1 C =1

d=5 d=5 d=5 d=5

HYPE

reward 0.89±0.07 0.76 ± 0.19 0.98 ± 0.06 0.86 ± 0.11

time (s) 312 582 346 392

param M =1200 M =1200 M =1200 M =1200

d=4 d=4 d= 4 d=4

SST

reward 0.79 ± 0.08 0.27 ± 0.22 0.66 ± 0.08 0.46 ± 0.12

time (s) 1538 1528 1527 1532

param C =2 C =2 C =2 C =2

d=4 d=4 d=4 d=4

PROST reward 0.99 ± 0.02 1.00 ± 0.19 1.00 ± 0.05 0.98 ± 0.09

Domain objpush simplerover2 marsrover objsearch

Planner T = 30 d=T T = 40 d=T

HYPE

reward 83.7 ± 7.6 11.8 ± 0.2 249.8 ± 33.5 2.53 ± 1.03

time (s) 472 38 985 13

param M =4500 M =200 M = 6000 M =500

d=9 d = T = 8 d=6 d=T = 5

SST

reward 82.7 ± 2.7 11.4 ± 0.3 227.7 ± 27.3 1.46 ± 1.0

time (s) 330 48 787 45

param C =1 C =1 C =1 C = 5

d=9 d = T = 8 d=6 d=T = 5

HYPE

reward 86.4 ± 1.0 11.7 ± 0.2 269.0 ± 29.4 3.64±1.09

time (s) 1238 195 983 17

param M = 4500 M =500 M = 6000 M =600

d=10 d = T = 9 d=7 d=T = 5

SST

reward 82.4 ± 1.9 11.3 ± 0.3 N/A 2.48 ± 1.0

time (s) 1574 238 timeout 138

param C = 1 C =1 C =1 C = 6

d = 10 d = T = 9 d=7 d=T = 5

HYPE

reward 87.5 ± 0.5 11.9 ± 0.3 296.3±19.5 3.3 ± 1.6

time (s) 373 218 1499 20

param M = 2000 M =500 M = 4000 M =600

d=12 d = T = 10 d=10 d=T = 6

SST

reward N/A 11.2 ± 0.3 N/A 0.58 ± 1.4

time (s) timeout 1043 timeout 899

param C = 1 C =1 C =1 C = 5

d ≥ 11 d = T = 10 d ≥ 8 d=T = 6

that requires replanning every step. The results for both planners are always
comparable, which confirms the empirical correctness of HYPE (Table 1).

To answer (Q2) and (Q3) we studied the planner in a variety of settings,
from discrete, to continuous, to hybrid domains, to those with an unknown
number of objects. We performed experiments in a more realistic mars rover
domain that is publicly available1, called marsrover (Fig. 2). In this domain we
consider one robot and 5 picture points that need to be taken, the movement
of the robot causes a negative reward proportional to the displacement and the
pictures can be taken only close to the interest point. Each taken picture provides
a different reward. Other experiments were performed in the continuous objpush
MDP described in Section 4 (Fig. 1), and in discrete benchmark domains of the
IPPC 2011 competition. In particular, we tested a pair of instances of game of
life and sysadmin domains. The results are compared with PROST [9], the IPPC
2011 winner, and shown in table 1 in terms of scores, i.e., the average reward
normalizated with respect to IPPC 2011 results; score 1 is the highest result
obtained, score 0 is the maximum between the random and the no operation
policy.

As suggested by [9], limiting the horizon of the planner increases the per-
formance in several cases. We exploited this idea for HYPE as well as SST
(simplerover2 excluded). For SST we were forced to use small horizons to keep
plan time under 30 minutes. In all experiments we followed the IPPC 2011

1 http://users.cecs.anu.edu.au/∼ssanner/IPPC 2014/index.html

http://users.cecs.anu.edu.au/~ssanner/IPPC_2014/index.html

340 D. Nitti et al.

schema, that is each instance is repeated 30 times (objectsearch excluded), the
results are averaged and the 95% confidence interval is computed. However, for
every instance we replan from scratch for a fair comparison with SST. In addi-
tion, time and number of samples refers to the plan execution of one instance.
The results (Table 1) highlight that our planner obtains generally better results
than SST, especially at higher horizons. HYPE obtains good results in discrete
domains but does not reach state-of-art results (score 1) for two main reasons.
The first is the lack of a heuristic, that can dramatically improve the perfor-
mance, indeed, heuristics are an important component of PROST [9], the IPPC
winning planner. The second reason is the time performance that allows us to
sample a limited number of episodes and will not allow to finish all the IPPC
2011 domains in 24 hours. This is caused by the expensive Q-function evalu-
ation; however, we are confident that heuristics and other improvements will
significantly improve performance and results.

Finally, we performed experiments in the objectsearch scenario (Section 3),
where the number of objects is unknown. The results are averaged over 400 runs,
and confirm better performance for HYPE with respect to SST.

Fig. 2. V-function for different rover positions (with fixed X = 0.16) in simplerover1
domain (left). A possible episode in marsrover (right): each picture can be taken inside
the respective circle (red if already taken, green otherwise).

7 Practical Improvements

In this section we briefly discuss issues and improvements of HYPE. To evaluate
the Q-function the algorithm needs to query all the stored examples, making
the algorithm potentially slow. This issue can be mitigated with solutions used
in instance-based learning, such as hashing and indexing. For example, in dis-
crete domains we avoid multiple computations of the likelihood and the pro-
posal distribution for samples of the same state. In addition, assuming policy
improvement over time, only the Nstore most recent episodes are kept, since
older episodes are generally sampled with a worse policy.

The algorithm HYPE relies on importance sampling to estimate the Q-
function, thus we should guarantee that p > 0 ⇒ q > 0, where p is the target
and q is the proposal distribution. This is not always the case, like when we

Planning in Discrete and Continuous MDPs by Prob. Programming 341

sample the first episode. Nonetheless we can have an indication of the estima-
tion reliability. In our algorithm we use

∑
wi with expectation equals to the

number of samples: E[
∑

wi] = m. If
∑

wi < thres the samples available are
considered insufficient to compute Qm

d (sm
t , a), thus action a can be selected to

perform exploration.
A more problematic situation is when, for some action at in some state st,

we always obtain null weights, that is p(si
t+1|st, at) = 0 for each of the previous

episodes i, no matter how many episodes are generated. This issue is solved by
adding noise to the state transition model, e.g., Gaussian noise for continuous
random variables. This is equivalent to adding a smoothness assumption to the
V -function. Indeed the Q-function is a weighted sum of V -function points, where
the weights are proportional to a noisy version of the state transition likelihood.

8 Conclusions

We proposed a sample-based planner for MDPs described in DDC under weak
assumptions, and showed how the state transition model can be exploited in off-
policy Monte-Carlo. The experimental results show that the algorithm produces
good results in discrete, continuous, hybrid domains as well as those with an
unknown number of objects. Most significantly, it challenges and outperforms
SST. For future work, we will consider heuristics and hashing to improve the
implementation.

References

1. Couetoux, A.: Monte Carlo Tree Search for Continuous and Stochastic Sequential
Decision Making Problems. Université Paris Sud - Paris XI, Thesis (2013)

2. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In:
De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Induc-
tive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg
(2008)

3. Driessens, K., Ramon, J.: Relational instance based regression for relational rein-
forcement learning. In: Proc. ICML (2003)

4. Feng, Z., Dearden, R., Meuleau, N., Washington, R.: Dynamic programming for
structured continuous Markov decision problems. In: Proc. UAI (2004)

5. Forbes, J., André, D.: Representations for learning control policies. In: Proc. of the
ICML Workshop on Development of Representations (2002)

6. Goodman, N., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: A language for generative models. In: Proc. UAI, pp. 220–229 (2008)

7. Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., De Raedt, L.: The magic
of logical inference in probabilistic programming. Theory and Practice of Logic
Programming (2011)

8. Kearns, M., Mansour, Y., Ng, A.Y.: A Sparse Sampling Algorithm for Near-
Optimal Planning in Large Markov Decision Processes. Machine Learning (2002)

9. Keller, T., Eyerich, P.: PROST: probabilistic planning based on UCT. In: Proc.
ICAPS (2012)

342 D. Nitti et al.

10. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the
efficient execution of problog programs. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 175–189. Springer, Heidelberg (2008)

11. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212,
pp. 282–293. Springer, Heidelberg (2006)

12. Lang, T., Toussaint, M.: Planning with Noisy Probabilistic Relational Rules. Jour-
nal of Artificial Intelligence Research 39, 1–49 (2010)

13. Mansley, C.R., Weinstein, A., Littman, M.L.: Sample-Based planning for continu-
ous action markov decision processes. In: Proc. ICAPS (2011)

14. Meuleau, N., Benazera, E., Brafman, R.I., Hansen, E.A., Mausam, M.: A heuris-
tic search approach to planning with continuous resources in stochastic domains.
Journal of Artificial Intelligence Research 34(1), 27 (2009)

15. Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., Kolobov, A.: BLOG: prob-
abilistic models with unknown objects. In: Proc. IJCAI (2005)

16. Munos, R.: From Bandits to Monte-Carlo Tree Search: The Optimistic Princi-
ple Applied to Optimization and Planning. Foundations and Trends in Machine
Learning, Now Publishers (2014)

17. Nitti, D., De Laet, T., De Raedt, L.: A particle filter for hybrid relational domains.
In: Proc. IROS (2013)

18. Nitti, D., De Laet, T., De Raedt, L.: Relational object tracking and learning. In:
Proc. ICRA (2014)

19. Owen, A.B.: Monte Carlo theory, methods and examples (2013)
20. Peshkin, L., Shelton, C.R.: Learning from scarce experience. In: Proc. ICML,

pp. 498–505 (2002)
21. Precup, D., Sutton, R.S., Singh, S.P.: Eligibility traces for off-policy policy evalu-

ation. In: Proc. ICML (2000)
22. Sanner, S.: Relational Dynamic Influence Diagram Language (RDDL): Language

Description (unpublished paper)
23. Sanner, S., Delgado, K.V., de Barros, L.N.: Symbolic dynamic programming for

discrete and continuous state MDPs. In: Proc. UAI (2011)
24. Shelton, C.R.: Policy improvement for POMDPs using normalized importance sam-

pling. In: Proc. UAI, pp. 496–503 (2001)
25. Shelton, C.R.: Importance Sampling for Reinforcement Learning with Multiple

Objectives. Ph.D. thesis, MIT (2001)
26. Smart, W.D., Kaelbling, L.P.: Practical reinforcement learning in continuous

spaces. In: Proc. ICML (2000)
27. Srivastava, S., Russell, S., Ruan, P., Cheng, X.: First-order open-universe

POMDPs. In: Proc. UAI (2014)
28. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press

(1998)
29. Van den Broeck, G., Thon, I., van Otterlo, M., De Raedt, L.: DTProbLog: a

decision-theoretic probabilistic prolog. In: Proc. AAAI (2010)
30. Vien, N.A., Toussaint, M.: Model-Based relational RL when object existence is

partially observable. In: Proc. ICML (2014)
31. Walsh, T.J., Goschin, S., Littman, M.L.: Integrating sample-based planning and

model-based reinforcement learning. In: Proc. AAAI (2010)
32. Wiering, M., van Otterlo, M.: Reinforcement learning: state-of-the-art. In: Adap-

tation, Learning, and Optimization. Springer (2012)

	Planning in Discrete and Continuous Markov Decision Processes by Probabilistic Programming
	1 Introduction
	2 Preliminaries
	3 Dynamic Distributional Clauses
	4 Planning by Importance Sampling
	5 Related Work
	6 Experiments
	7 Practical Improvements
	8 Conclusions
	References

