
BoostMF: Boosted Matrix Factorisation
for Collaborative Ranking

Nipa Chowdhury(B), Xiongcai Cai, and Cheng Luo

The University of New South Wales, Sydney, NSW 2052, Australia
{nipac,xcai,luoc}@cse.unsw.edu.au

Abstract. Personalised recommender systems are widely used informa-
tion filtering for information retrieval, where matrix factorisation (MF)
has become popular as a model-based approach to personalised recom-
mendation. Classical MF methods, which directly approximate low rank
factor matrices by minimising some rating prediction criteria, do not
achieve a satisfiable performance for the task of top-N recommendation.
In this paper, we propose a novel MF method, namely BoostMF, that
formulates factorisation as a learning problem and integrates boosting
into factorisation. Rather than using boosting as a wrapper, BoostMF
directly learns latent factors that are optimised toward the top-N rec-
ommendation. The proposed method is evaluated against a set of state-
of-the-art methods on three popular public benchmark datasets. The
experimental results demonstrate that the proposed method achieves sig-
nificant improvement over these baseline methods for the task of top-N
recommendation.

Keywords: Recommender system · Collaborative filtering · Matrix fac-
torisation · Learning to rank · Boosting

1 Introduction

Recommender systems (RS) have gained much attention in information retrieval
(IR) to guide users when searching information from the information pool. Col-
laborative filtering (CF) is widely used to build personalised recommender sys-
tems such as book recommendation in Amazon [2], movie recommendation in
Netflix [2] and friend recommendation in Facebook [2]. It aims to predict the
preference of a user on its unseen items by learning the preference from the
historic feedback of this user and other like-minded users to provide the user
with a list of recommended items or prediction score of items. The personalised
prediction problem [1–3,15] in presenting recommendation list can be regarded
as estimating the preference function in CF. Usually, this problem can be solved
by either i) generating the recommendation list by sorting the predicted ratings
in descending order, known as rating-oriented CF or ii) learning the ranking
function directly, known as ranking-oriented CF. When the recommendation list
itself becomes large, it will be obsolete since people prefer only top listed items

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-23525-7 1

4 N. Chowdhury et al.

[2,15]. So recommender systems should not only be optimised to reflect user
tastes and preferences but also rank top items correctly.

Matrix factorisation is a popular model-based CF method, which demon-
strates great success in Netflix prize competition [7]. In MF, given N users and
M items, the user-item preference matrix R ∈ �N×M can be approximated by
two low rank matrices P ∈ �N×K and Q ∈ �M×K as R ≈ P · Q′

by minimising
the sum of squared errors, where K � min(N,M) is the dimensionality of latent
factors representing user preferences and item characteristics. The major purpose
of MF is to obtain some forms of lower-rank approximation to original matrix
for understanding the interaction of user preferences and item attractiveness in
forms of latent factors [7].

Nevertheless, traditional matrix factorisation algorithms [7,13] based on
rating-oriented CF do not achieve satisfactory ranking performance in the task
of top-N recommendation [2,14,15,17]. As users are more concerned about rec-
ommended items in the top of the recommendation list, items with higher rat-
ings (i.e., higher possibilities to be preferred by users) should be modelled more
correctly than low rating items. Hence, it is important to consider the accu-
racy of ranked list during learning, and give different emphasises on items with
different users’ feedback. However, the conventional approach usually does not
discriminate the significances of different feedback of items, and the learned
latent factors representing user preferences and item characteristics are thus
not the optimal ones for generating personalised recommendations. Meanwhile,
most of existing methods assume that each latent factor could not contribute
differently during the learning of user preferences and item characteristics. This
assumption leads to simply update the latent factors as a whole, which may
not perform well. In reality, users who originate from different backgrounds are
highly proportional to select preferable items based on their different character-
istics. These various characteristics are compactly represented by different latent
factors. Furthermore, most of existing methods for the top-N recommendation
task minimise some error metrics, such as the sum of squared errors, to generate
the recommendation list. Unlike optimising against some ranking metrics such
as the one used in the paper, this approach is actually an indirect approach that
degrades the ranking performance. For example, probabilistic matrix factorisa-
tion [13] (PMF), which forms the basis of many model-based recommendation
algorithms, adopts even weights on all items and learns all latent factors at a
time by minimising the sum of squared errors via stochastic gradient descent.

To improve the accuracy of the top ranked items in the recommendation lists
during learning and exploit the contribution of each latent factor separately, we
develop a novel method, namely BoostMF, that uses boosting to learn the low
rank factor matrices by directly optimising the ranking measure to improve
top-N recommendation performance. Specially, rather than treating all observed
items with equal importance for each user, BoostMF imposes different empha-
sises on observed items using a personalised feature selection scheme based on
the current estimation of IR evaluation measure. Without computing any struc-
tured estimation of ranking loss or continuous approximations of non-smooth IR

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 5

measure, the proposed method optimises the IR measure directly by integrating
boosting into the optimisation, i.e. by gradient descent, of matrix factorisation
methods. As the iteration of the optimisation procedure continues, the algorithm
is able to place more focus on training examples that have not yet been ranked
in top positions correctly. As in real-world deployment, users are more interested
in top-N recommended items; this shifting on focus is important and rational
for our method to achieve an improved recommendation performance, which will
be demonstrated in Section 4. In the end, the learned latent factors represent-
ing user preferences and item characteristics are more suitable for generating
top-N recommendation. To empirically study the performance of BoostMF, we
evaluate our algorithm with some state-of-the-art methods in top-N recommen-
dation and the results demonstrate that our method significantly outperforms
these methods for top-N recommendation in terms of recommendation accuracy.
Because contextual information is sensitive and expensive to collect, we only
focus on user feedback without bothering contextual information. Therefore, we
do not compare our method with other rating or ranking-oriented CF methods
that use contextual information in addition to user feedback.

The rest of the paper is arranged as follows: in Section 2, we summarise
related work and place our work with respect to it. In Section 3, we present the
proposed boosted matrix factorisation method. Experimental results are pre-
sented in Section 4. Finally, we draw conclusions in Section 5.

2 Related Work

Learning to rank (LTR) is an important research direction in information
retrieval where the goal is to present a ranked list of information in response
to a query or request [10]. AdaRank [18], MPBoost [19], and RankBoost [4] are
well known LTR methods that use boosting to improve ranking performance.
If we consider a query as a user and a list of information as items, recom-
mender systems focus on the personalised view of same ranking task as that of
LTR. However, incorporating LTR techniques in personalised recommendation
is challenging. LTR methods can only handle non-personalised ranking prob-
lems rather than personalised ranking and recommendation problems, and also
consider that feature vector of items are given and unchanged during learning.
But in recommendation settings, user feature and item feature are not explicitly
presented during training. The challenge also arises from learning the low rank
matrices by optimising the training criterion which is different from the final
evaluation criterion that is used to measure the ranking performance. Although
different approaches [2,14,15,17] in LTR are adopted to minimise the ambiguity
between learning objective criterion and final evaluation measure, these methods
either have unsatisfactory performance or incur with computational overhead.
The developed BoostMF method in this paper thus aims to simultaneously learn
feature vectors and optimise ranking.

Existing methods in ranking-oriented CF can be generally divided into three
categories based on the type of issues needed to be addressed. The first class

6 N. Chowdhury et al.

of methods relies on the transformation of ranking measure. CofiRank [17] and
CLiMF [14] are the methods that fall into this category. CofiRank uses struc-
tured estimation of the ranking loss and CLiMF derives a lower bound of the
smooth ranking measure to solve ranking problem in recommendation. How-
ever, these transformation results to significantly computational overhead. Our
proposed BoostMF algorithm directly accounts the final evaluation criteria into
approximating low rank matrices from a high rank matrix. Specifically, based
on PMF, we incorporate boosting procedure to learn low rank factor matrices
directly for top-N recommendations. To the best of our knowledge, this app-
roach has not been applied before for top-N recommendations. The second class
of methods views the recommendation problem as a list-wise ranking problem
and uses list-wise loss functions. For example, ListRank-MF [15] uses list-wise
loss function based on cross entropy of the top one probability of items. Uni-
fied recommendation model (URM) [16] combines both rating-oriented CF, (i.e.,
PMF) and a ranking-oriented CF, (i.e., ListRank-MF) to improve ranking per-
formance. However, these methods optimise loss function which is not directly
related to the final ranking measure, which is not optimal to improve the perfor-
mance of top-N recommendation. In this regard, BoostMF employs personalised
weak ranker at each round to relate the final evaluation measure into the learn-
ing process of the model. The third class of methods solves the ranking problem
as a regression problem. In collaborative ranking [2], PMF is used to generate
feature vectors and regression based LTR algorithm (i.e., point-wise and pair-
wise) is constructed by these feature vectors to produce the ranking. OrdRec
is proposed in [8] as a CF framework following point based approach, and it
aims to minimise ordinal regression loss. BPR-MF uses [12] different pair-wise
optimisation criterion where pairs are formed by taking one from observed items
and the other from unobserved items by assuming a user prefers observed items
over unobserved items. But, these methods optimise ranking criterion which is
different from the final evaluation measure and hence the final ranking measure
is not directly applied to the learning process of the model. The learning model
of these methods also imposes equal errors on items misplacement in all positions
of the recommendation list. However, in BoostMF, the final ranking measure is
directly related to the learning process of the model. BoostMF also uses person-
alised weight distribution for each user on its rated items to emphasize errors of
the learning model on misplacing items in higher positions than lower positions.
Thus BoostMF is able to generate better recommendation list which is optimal
for the task of top-N recommendation.

3 Boosted Matrix Factorisation (BoostMF)

In this section, we firstly present a key component related to our algorithm proba-
bilistic matrix factorisation (PMF) [13] and then show how to integrate boosting
procedure in PMF to learn the best feature vectors for top-N recommendations.

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 7

3.1 Probabilistic Matrix Factorisation (PMF)

Assuming there are N users and M items in the data, let matrix R ∈ �N×M be a
user preference matrix. PMF [13] learns two low rank matrices, user factor matrix
P ∈ �N×K and item factor matrix Q ∈ �M×K to approximate R ∈ �N×M using
probabilistic inference of conditional distributions of observed rating, user priors
and item priors, where K is the number of dimensions of latent factors. We
use Pu to indicate the latent feature vector of user u, Qi to indicate the latent
feature vector of item i and Rui to indicate the rating that user u gives to item
i, respectively. The maximum of the log posterior in PMF can be formulated as

P, Q = argminP,Q{1

2

N∑

u=1

M∑

i=1

Iui(Rui − PuQ
′
i)

2 +
λp

2
‖P‖2

F +
λq

2
‖Q‖2

F }, (1)

where Iui is an indicator function which equals to 1 for all observed rating,
otherwise 0; λp and λq are regularisation parameters. As the user preference
matrix is usually very sparse, ‖P‖F and ‖Q‖F are the Frobenius norms of the
matrices P and Q used as regularisation to prevent the learning procedure from
overfitting. We use λp = λq = λ for computational simplicity.

3.2 BoostMF

In matrix factorisation, if one of the factor matrices, say Q
′

is fixed and only
P needs to be learned, then fitting each row of the target matrix R is a linear
prediction problem where Q

′
is the feature vector and each row of P is the

model parameter of the linear predictor. The approximation can be formulated
as a learning problem for each row R(u, :) : R(u, :) = P (u, :)∗Q

′
. Similarly, when

P is fixed and Q
′

needs to be learned, each column of Q
′

works as the model
parameter of the linear prediction model for feature vector P to fit each column
of target matrix R. For each column R(:, i), we have: R(:, i) = P ∗ Q(:, i)

′
. In

this way, the MF can be thought as a linear regression problem where P and Q
′

are both unknown and need to be learned. Therefore, an appropriate learning
algorithm to solve the linear regression problem is required.

In this work, we use boosting-based techniques to solve the linear regres-
sion problem in collaborative learning. Boosting-based techniques come with
better convergence properties and stability [5]. We use boosting optimisation
technique inside MF to learn low rank factor matrices directly for ranking. We
aim at constructing a set of weak learners {F t|t = 1, . . . , T − 1} sequentially to
learn user preferences and item characteristics that reside in the data. Based on
latent factor selection in the weak learner construction, therefore, the algorithm
will be able to stochastically focus on different aspects of user preferences and
item characteristics that are modeled by the different selected latent compo-
nents. By treating each rating as a training instance, a set of training weights
{W t|t = 1, . . . , T − 1} is imposed on the ratings. An overall strong learner F
is finally assembled by linearly combining weak rankers, which is expected to
perform better than any individual learner. The weights of training ratings are
updated to reflect the accuracy of the prediction of the weak learner. People

8 N. Chowdhury et al.

usually follow information that appears at the top-N positions in the recommen-
dation list. Therefore, the items that are ranked at the top should be consid-
ered more than those at the bottom of the recommendation list. To this end,
we dynamically construct personalised weak rankers1 and modify personalised
weights by considering the ranking performance on training items. In next iter-
ations, the learning procedure will give more attention on those items that have
not yet been ranked in correct positions. Due to the automatic selection and
optimisation of the personalised weak ranker and the dynamic updating of the
personalised weights, the learned latent factors for users and items are best suited
for top-N recommendation.

The BoostMF method creates weak rankers in the direction that has maxi-
mum IR performance improvement over training data. At each boosting round,
the method constructs a weak ranker for each user based on IR performance
over the items rated by the same user with personalised weight distribution. If
user u rates mk items and the set of items is indicated by i = i1, i2, . . . , imk

2

then for round t, BoostMF creates a weak ranker for each user by

F (t)
u (l) = argmax

l∈{1,...,K}

(
E
[
πu(W

(t)
ui f

(t)
uil), Rui

])
, (2)

where f
(t)
uil = P

(t)
ul Q

(t)′

il is the ranking score according to the l-th dimension
of latent factors, Wui is the weights of user u on its item set i, E represents
the IR performance measure and K is the feature dimension of the low rank
matrices, respectively. For user u, its permutation list πu is used to order the
items i by taking as inputs W

(t)
ui and f

(t)
uil . The design of permutation list πu is

usually correlated with the adoption of E. For simplicity, the weights W
(t)
ui is

linearly combined with the ranking score f
(t)
uil in the permutation to emphasize

its confidence.
The purpose of Equation (2) is to select weak ranker for each user based on

the items score f
(t)
uil . But in the same time we need to select the weak ranker

that will be able to contribute more on items on which previous ranker did not
perform well. To provide this information in weak ranker selection as well as
to reflect the individual tastes and rating scale of a user, BoostMF uses weight
distribution W

(t)
ui for each user u on every training item i from item set i. The

weight value W
(t)
ui is different in each round from user to user and even for the

same item belongs to different user. The weight W
(t)
ui restricts the factor selection

formula in Equation (2) not to select ranker that gives just best E measure,
but to select ranker that has the ability to place the items in correct positions
on which previous rankers do not perform well. BoostMF increases the values
of weights on items that are not ranked well by the dynamically constructed
ranking model. So in next iteration, these weight values will make more effect in
next ranker selection to improve overall ranking performance.

1 The term weak learner and weak ranker are used interchangeably throughout the
paper.

2 Bold font of i is used to denote set of items and normal to denote single item.

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 9

The weight value of an item is calculated based on the performance of the
current ranker in placing the item w.r.t. other items in the ranking list. Ideally,
we aim for a ranking model that makes no mistake in item placement. But the
error in placing two items with rating 5 and 1 has a heavier influence on the
IR performance measure than that of placing two items with rating 5 and 4.
To reflect this loss, we add the pairwise preference term (Rui − Ruj) into the
weight function to give more penalties for misplacing the items in higher position.
Specifically, if the current ranking model for user u is F

(t)
u with selected latent

factor l, and its updated ranking score on an item i is indicated by f
(t+1)
uil =

P
(t+1)
ul Q

(t+1)′

il , the weight value of item i for that user on the l-th latent factor
at t + 1 iteration is expressed as,

W
(t+1)
uil =

∑mk
j=1,j �=i exp{−(f

(t+1)
uil − f

(t+1)
ujl)(Rui − Ruj)}

maxiεmk

∑mk
j=1,j �=i exp{−(f

(t+1)
uil − f

(t+1)
ujl)(Rui − Ruj)}

. (3)

Note that the pairwise preference term in BoostMF is different from the com-
mon pairwise preference formulation used in [9,12]. In these methods, with only
implicit feedback, the pair of items consists of one observed item and one unob-
served item where the observed item is assumed to have higher preference over
the unobserved one. However, the formulation may be inconsistent with the real
world scenario because unobserved items could be either unfavoured by the user
or simply just unexposed to the user. In contrast, BoostMF uses explicit pref-
erences to construct the personalised pairwise preference term, which is more
reliable. Meanwhile, to facilitate the computation, uniform sampling is adopted
in almost all of the models with the pairwise preference in order to select the set
of pairs of items. However, it is shown [11] that this approach is very inefficient
because most of selected items will be correctly ranked after a few of iterations
and almost all the gradient magnitude from the selected pairs become less infor-
mative. In this regards, BoostMF provides an efficient and informative selection
and updating mechanism by constantly focusing on the disordered items for
every user across the whole procedure of learning.

At the initialisation, the value of user weight W
(t)
ui on every item is identical.

At the current round t, BoostMF increases the values of weights on items that
are not ranked well by the dynamically constructed ranking model. Hence in
round t + 1 these weights will make more contribution to construct the next
ranking model that will attempt to rectify the incorrect ranking of these items.
The value of W

(t)
ui yields a clear indication how much the item i is misplaced in

the rank list of user u. So in next iteration, this weight will make more effect in
next ranker selection to improve the performance.

To model the fact that various users will judge their preferences over different
items based on different criteria, BoostMF also selects the direction that has
maximum capacity to generate a good ranking list on the training items for
each user at every round and performs maximum adjustment in that direction.
All other factors for that user are remaining unchanged on the round. Let l
denote the dimension of the selected latent factors for the current weak ranker.
If the objective function in Equation (1) is denoted by L, then for the ranking

10 N. Chowdhury et al.

Algorithm 1. Boosted Matrix Factorisation
Input: Rating matrix R, no. of iterations T , performance measure E, no. of users
N and no. of items M , no. of training items per user mk, feature dimension K and
learning rate η
Output: Low rank factor matrices P and Q
Initialisation: Initialise P (1) and Q(1) randomly, and initialise W

(1)
ui = 1

mk
for each

user u on available training items.

for t=1:T-1 do
for u=1:N do

Select ranking model F
(t)
u (l), l ∈ {1, . . . , K} using Equation (2) for user u on

its rated item set i with weighted distribution of W
(t)
ui .

Compute δL

δP
(t)
ul

and δL

δQ
(t)
il

using Equation (4) and (5).

Update Pul and Qil by
P

(t+1)
ul = P

(t)
ul − η δL

δP
(t)
ul

, Q
(t+1)
il = Q

(t)
il − η δL

δQ
(t)
il

Update W
(t+1)
ui using Equation (3).

end for
end for

Output: P (T)Q(T)′

model F
(t)
u , BoostMF updates user and item latent factor by

δL

δP
(t)
ul

=

mk∑

i=1

Iui(P
(t)
ul Q

(t)′
il − Rui)Q

(t)
il + λP

(t)
ul (4)

δL

δQ
(t)
il

= Iui(P
(t)
ul Q

(t)′
il − Rui)P

(t)
ul + λQ

(t)
il .3 (5)

Compared with the updating stages of latent factors in conventional MF methods,
the difference terms in Equation (4) and Equation (5) in BoostMF have also shifted
the focus to the contribution of individual latent factor. Instead of combining the weak
learner estimation to form final strong learner, BoostMF takes all latent dimensions of
P (T)Q(T)′

as strong learner after the completion of round T − 1, as the weak ranking
models are updated during learning. Finally, personalised ranking list is generated by
sorting the ratings which are predicted by using all latent dimensions of P (T) and
Q(T)′

. At each boosting round t = 1, . . . , T − 1, BoostMF creates a weak ranker F
(t)
u

for each user, updates the ranker, modifies weights based on the ranking performance
and finally outputs a personalised ensemble model as F ≈ P (T)Q(T)′

. An overview of
the algorithm is presented in Algorithm 1.

The complexity of weak ranker selection is in the order of O(NK), where N is the
number of users and K is the feature dimension size. The complexity of the gradient
computation in Equation (4) and (5) is in order of O(R), where R is the number of
observed ratings in the given user-item matrix. The computation complexity of the
weight updating formula in Equation (3) is O(Nm2

k), where mk denotes the number
of training items per user. In collaborative filtering, R � N, M and even dominates

3 The summation sign is not used on the right hand side of (5), because we formulate
the algorithm user-wise and the item set i is rated by one user as shown in Algorithm
1.

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 11

the term Nm2
k. When Nm2

k dominates R, BoostMF has complexity in the order of
O(Nm2

k), otherwise it has linear time complexity in the order of O(R).

3.3 Theoretical Analysis

In this section, we show theoretical insights by developing an upper error bound of
BoostMF following MPBoost [19] and RankBoost [4]. Allowing both rating magnitude
in the ranking loss and dynamic changes in the feature vectors for the weak learner
model at each boosting round in BoostMF leads to the following theorem:

Theorem 1. The misplacement loss of the personalised ranking model in BoostMF
is bounded by

∑mk
i=1

∑mk
j=1,j �=i|Ri>Rj

�Fi ≤ Fj� +
∑mk

i=1

∑mk
j=1,j �=i|Ri<Rj

�Fi ≥ Fj� ≤ ZT ,

where ZT =
∑mk

i=1

∑mk
j=1,j �=i exp{−[(Fi − Fj)(Ri − Rj)]} and �x� is defined to be 1 if

predicate x is true and 0 otherwise.

Proof. The personalised ranking model in BoostMF produces two types of misplace-
ment. The first one is when Fi ≥ Fj but Ri < Rj and the second one is when Fi ≤ Fj

but Ri > Rj . Note that �x ≥ 0� ≤ exp{αx} and �x ≤ 0� ≤ exp{−αx} hold for all α > 0
and all real x. We can write the total loss as
∑mk

i=1

∑mk
j=1,j �=i|Ri>Rj

�Fi ≤ Fj� +
∑mk

i=1

∑mk
j=1,j �=i|Ri<Rj

�Fi ≥ Fj�

≤∑mk
i=1

∑mk
j=1,j �=i|Ri>Rj

exp{−[(Fi − Fj)(Ri − Rj)]}
+
∑mk

i=1

∑mk
j=1,j �=i|Ri<Rj

exp{[−(Fi − Fj)(Ri − Rj)]}
=
∑mk

i=1

∑mk
j=1,j �=i exp{−[(Fi − Fj)(Ri − Rj)]} = ZT �

This bound is guaranteed to produce a combined low ranking loss if we choose
the weak ranker that minimises

∑mk

i=1

∑mk

j=1,j �=i exp{−[(Fi − Fj)(Ri − Rj)]} on
each round t [4]. Minimising the misplacement loss is equivalent to maximising
the IR measure [19]. In BoostMF, the weak ranker is set to select the ranking
model that maximises the IR measure which is equivalent to minimising the
misplacement loss and the weight update formula is set to give more penalties
to the ranking model that makes misplacement in higher position. Finally, in
terms of misplacement loss, the total error of BoostMF is bounded by ZT .

4 Experiments

4.1 Datasets and Evaluation Metric

We test the performance of BoostMF on three publicly available datasets for the
task of personalised top-N recommendation: MovieLens 100K4 dataset, Movie-
Lens 1M dataset4 and Netflix5 dataset. MovieLens 100K dataset consists of
100,000 ratings from 943 users on 1682 movies. MovieLens 1M dataset consists
of 1,000,000 ratings from 6040 users and 3900 movies. Ratings are integers and
scaled on 1-5. and each user has rated at least 20 movies on both datasets. For
Netflix dataset, we use a sampled version, which is extracted from 4% of the

4 http://www.grouplens.org/node/73
5 B. James and L. Stan, The Netflix prize, (2007).

http://www.grouplens.org/node/73

12 N. Chowdhury et al.

Netflix dataset with 20% users and 20% movies are randomly selected from the
whole pool. The Netflix dataset contains 3,843,340 ratings on scaled 1-5 from
95526 users on 3561 movies.

As our goal is to generate efficient recommendation list that would contain
higher rating items in top-N position, we prefer a metric capable of award-
ing models that correctly rank items in higher positions and penalising models
that make more errors in higher positions than in lower positions. Following
the standard evaluation metric used in [2,15,17], we use normalised discounted
cumulative gain (NDCG) as IR performance measure for testing and evaluation
of our algorithm.

4.2 Experimental Setup

We adopt the same experimental protocol from [2,17]. We use 3 different set-
tings of training data based on the number of randomly selected items for each
user, namely SN=10, SN=20 and SN=50. The remaining items are used for
testing. Users with less than 20, 30 or 60 rated items are removed respectively
in each setting to ensure the feasibility to compute NDCG@10. Following the
common practice in RS [2,17], items that are not rated by at least 5 users in
the dataset are also removed. We also eliminate items from test dataset those
are not appeared in training dataset. These settings cause a slightly decrement
of user-movie combination than the original dataset. We report the number of
users and items available in each setting for all datasets in Table 1. For each
setting, we generate 10 versions of the dataset, by randomly sampling items.
We report the mean and standard deviation of NDCG@5 and NDCG@10 on
those 10 sets over all users. We compare BoostMF with a sets of the state-
of-the-art algorithms including PMF [13], and OrdRec [8] which are the state-
of-the-art rating-oriented CF methods; ListRank-MF [15], CofiRank [17], and
BPR-MF [12], which are the state-of-the-art ranking-oriented CF methods; and
URM [16], which combines both rating-oriented and ranking-oriented methods.
From the experimental results in [17], CofiRank method that optimises root
mean square loss (denote as CofiRankReg) performs better than CofiRank that
optimises NDCG directly (denote as CofiRankNDCG). Therefore, we compare
BoostMF with both CofiRankReg and CofiRankNDCG.

Table 1. No. of users and items for experimental settings SN=10, 20 and 50 on the
datasets.

Dataset No. of users for SN=10/20/50 No. of items for SN=10/20/50

MovieLens 100K 941/743/496 1349/1336/1312
MovieLens 1M 6035/5286/3937 3415/3411/3400
Netflix 45508/35749/20067 3558/3556/3546

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 13

4.3 Results

Before comparing the performance of our algorithm with other state-of-the-art
approaches, we at first examine whether the weak ranker selection and weight
update formula in BoostMF improve the algorithms performance or not. To this
end, we create two versions of BoostMF algorithm named (1) RandomBoostMF
that selects weak ranker randomly for each user, (2) ModifiedBoostMF that
selects ranking model by NDCG but updates item weights without consider-
ing the effect of the pairwise preference term (Rui − Ruj). The comparison of
BoostMF with RandomBoostMF indicates whether factor selection by NDCG in
BoostMF makes any benefits over random factor selection, and the comparison
with ModifiedBoostMF indicates the advantages of using the modified weight
update mechanism in Equation (3). We also want to see how these algorithms
perform with respect to various feature dimensions. To apply these algorithms,
MovieLens 100K dataset with user/item settings SN=50 is used. We record
NDCG@10 for each data fold for factor dimension 5, 10, 15, 25 and 50 and the
mean of NDCG over 10 folds for each feature dimension is presented in Fig. 1.

From the results in Fig. 1, we can see that BoostMF performs much bet-
ter than RandomBoostMF, which verifies that factor selection by NDCG in
BoostMF helps improve the performance of top-N recommendation as random
selection is not able to generate suitable feature vectors to boost the learning
procedure of MF. BoostMF also outperforms ModifiedBoostMF, which shows
the success of the developed pairwise preference scheme in the procedure of
dynamic weight updating. Most importantly, the performance of BoostMF is
stable under different settings of the feature dimension size. It performs the best
for feature dimension size of 15 which the NDCG score is 0.7139. The NDCG
score slightly decreases for feature dimension size of 50 which is 0.7020 but still
much better in comparison to the performance of RandomBoostMF (0.6765) and
ModifiedBoostMF (0.6908).

Now we compare our algorithm with PMF, ListRank-MF, URM, OrdRec,
BPR-MF and CofiRank. We tune parameters separately on a validation set for
all algorithms by cross validation to achieve their best performance on the used
datasets. NDCG performance on validation set is used to choose the hyperparam-
eters with the best performance. We implement CofiRank using publicly available
software.6 OrdRec[8] and BPR-MF[12] are implemented by publicly available
software Lenskit7 and Mymedialite8, respectively. BoostMF uses η=0.01, λ=0.02
and K=5 for MovieLens datasets and η=0.00005, λ=0.000009 and K=10 for
Netflix dataset. As each method has different settings of hyperparameters under
different settings of experiments, due to the space limitation, we do not state
the hyperparameters of other algorithms. We also perform paired t test [6] with
significant level of 5%, and all the improvement are statistically significant. The
mean and standard deviation over 10 data folds for different approaches with
respect to different experimental settings are reported in Table 2-4.
6 http://www.cofirank.org/downloads.
7 http://lenskit.org/download/
8 http://mymedialite.net/download/index.html

http://www.cofirank.org/downloads.
http://lenskit.org/download/
http://mymedialite.net/download/index.html

14 N. Chowdhury et al.

Fig. 1.Performance comparison of RandomBoostMF, ModifiedBoostMF and BoostMF.

According to Table 2, BoostMF significantly outperforms all compared state-
of-the-art algorithms in most of the cases. BoostMF achieves 10∼12% improve-
ment over CofiRankNDCG for settings SN=50 and gains 6∼8% improvement
for settings SN=10 and SN=20 on both NDCG@5 and NDCG@10 metrics for
MovieLens 100K dataset. It also gains 1.6∼4% improvement over PMF, 1∼4.7%
improvement over URM and 3∼5% improvement over CofiRankReg on both eval-
uation measures for all experimental settings. BoostMF also shows 0.7∼2.3%
improvement over ListRank-MF. Although for settings SN=10, BoostMF per-
forms slightly worse than ListRank-MF on NDCG@5, it performs better than
ListRank-MF for all other settings on both metrics. BoostMF outperforms BPR-
MF and OrdRec for all experimental settings on both NDCG@5 and NDCG@10
metrics. It achieves 8∼11% improvement over BPR-MF and 10∼20% improve-
ment over OrdRec.

Results on MovieLens 1M dataset are shown in Table 3. BoostMF achieves
significant improvement over CofiRank, BPR-MF and OrdRec for all experimen-
tal settings on all the evaluations. It achieves 10-19% improvement over OrdRec,
5-8% improvement over BPR-MF, and 4-9% improvement over CofiRankNDCG

and CofiRankReg respectively on both evaluations for all experimental settings.
In comparison with URM, BoostMF achieves 2∼2.4% improvement on NDCG@5
metric and 1.1∼2.14% improvement on NDCG@10 metric over all experimen-
tal settings. BoostMF also outperforms ListRank-MF by 9∼10% for settings
SN=10, 6.5∼6.8% for setting SN=20 and also achieves more than 1% improve-
ment for settings SN=50 on both evaluations. It gains 5∼6% improvement for
settings SN=10 and 3∼4% improvement for settings SN=20 and SN=50 on both
metrics when comparison is made with PMF.

From the results in Table 4, it is clear that BoostMF outperforms all other
state-of-art approaches on Netflix dataset. It outperforms CofiRankNDCG by
10∼12% over all experimental settings on both NDCG computations. It achieves
7∼10% improvement over CofiRankReg for experimental settings SN=10, SN=20
and 4∼5% improvement for experimental settings SN=50 on both metrics.
Compared to OrdRec and BPR-MF, BoostMF results 8∼16% improvement for
all settings on both metrics. It also gains 9∼14% performance improvement for

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 15

Table 2. The NDCG@5 and NDCG@10 accuracy and standard deviation over 10 data
folds for PMF, BPR-MF, ListRank-MF, URM, OrdRec, CofiRank and BoostMF on
MovieLens 100K dataset. The best performance is in bold.

SN=10 SN=20 SN=50

NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10

PMF 0.6330±.009 0.6606±.005 0.6762±.007 0.6864±.007 0.6765±.005 0.6819±.007
BPR-MF 0.5558±.002 0.5942±.003 0.5872±.002 0.6098±.004 0.6292±.001 0.6309±.002
CofiRankNDCG 0.5927±.006 0.6314±.006 0.6098±.005 0.6331±.003 0.5897±.006 0.6096±.005
CofiRankReg 0.6381±.008 0.6629±.004 0.6398±.003 0.6540±.004 0.6580±.004 0.6708±.002
OrdRec 0.5197±.001 0.5687±.001 0.4852±.003 0.5290±.002 0.58±.002 0.6081±.004
ListRank-MF 0.6725±.005 0.6844±.005 0.6834±.004 0.6947±.003 0.6887±.003 0.6982±.004
URM 0.6421±.005 0.6561±.006 0.6778±.004 0.6851±.007 0.6919±.005 0.7034±.004
BoostMF 0.6722±.008 0.7034±.007 0.6921±.005 0.7019±.004 0.7117±.004 0.7135±.004

Table 3. The NDCG@5 and NDCG@10 accuracy and standard deviation over 10 data
folds for PMF, BPR-MF, ListRank-MF, URM, OrdRec, CofiRank and BoostMF on
MovieLens 1M dataset. The best performance is in bold.

SN=10 SN=20 SN=50

NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10

PMF 0.6814±.007 0.6842±.005 0.7030±.002 0.7043±.003 0.7224±.002 0.7189±.003
BPR-MF 0.6734±.007 0.6873±.006 0.6747±.005 0.6790±.006 0.6711±.007 0.6769±.006
CofiRankNDCG 0.6485±.002 0.6685±.002 0.6587±.005 0.6763±.001 0.6679±.007 0.6812±.007
CofiRankReg 0.6698±.005 0.6838±.006 0.6728±.005 0.7005±.005 0.6844±.007 0.7049±.006
OrdRec 0.5095±.002 0.5431±.003 0.4948±.002 0.5312±.002 0.6288±.002 0.6485±.001
ListRank-MF 0.6424±.005 0.6423±.004 0.6792±.007 0.6827±.006 0.7406±.004 0.7344±.004
URM 0.7205±.004 0.7222±.002 0.7236±.001 0.7365±.001 0.7328±.003 0.7301±.002
BoostMF 0.7433±.007 0.7389±.007 0.7475±.005 0.7480±.004 0.7528±.004 0.7515±.004

settings SN=10, 7∼8% for settings SN=20 and more than 4% for settings SN=50
over PMF on both NDCG evaluations. Over ListRank-MF, BoostMF gains
1.6∼3.8% improvement on NDCG@5 metric for settings SN=20 and SN=50, and
it gains 7∼10% improvement on NDCG@10 for experimental settings SN=10.
It also outperforms URM by 2∼4.8% on NDCG@5 computation and 1.4∼2.8%
on NDCG@10 computation for all experimental settings.

To gain a deep understanding of the success of BoostMF, the reasons for the
experimental results will be explored as follows. PMF is the rating-oriented col-
laborative filtering algorithm that minimises sum of squared errors at each step
of learning process. Hence, the learning procedure spends its efforts on a criterion
that is not directly related to the task of top-N recommendation. OrdRec, which
is a regression based rating-oriented CF method, assumes users’ feedback as ordi-
nal rather than number. Although it considers users’ personalised rating scales,
the ranking measure is not directly applied to the learning model. ListRank-
MF is the ranking-oriented CF algorithm that aims to present better ranking
list, however, unlike BoostMF, the IR evaluation measure of ListRank-MF is not
directly related to the learning process of the model. BPR-MF, which is a ranking

16 N. Chowdhury et al.

Table 4. The NDCG@5 and NDCG@10 accuracy and standard deviation over 10 data
folds for PMF, BPR-MF, ListRank-MF, URM, OrdRec, CofiRank and BoostMF on
Netflix dataset. The best performance is in bold.

SN=10 SN=20 SN=50

NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10

PMF 0.6239±.007 0.5913±.006 0.6481±.004 0.6689±.004 0.6876±.007 0.6980±.005
BPR-MF 0.5724±.003 0.6005±.005 0.5725±.004 0.5982±.005 0.5783±.003 0.6095±.003
CofiRankNDCG 0.6203±.001 0.6272±.005 0.6134±.002 0.6139±.003 0.6249±.005 0.6316±.002
CofiRankReg 0.6146±.005 0.6128±.004 0.6252±.003 0.6599±.005 0.6790±.006 0.6931±.005
OrdRec 0.5597±.002 0.6076±.003 0.5908±.005 0.6315±.006 0.6264±.002 0.6556±.003
ListRank-MF 0.6453±.002 0.6359±.001 0.7011±.004 0.7017±.007 0.7156±.007 0.7118±.002
URM 0.6808±.006 0.7217±.002 0.7118±.002 0.7188±.005 0.6831±.002 0.7099±.004
BoostMF 0.7216±.006 0.7364±.002 0.7352±.004 0.7398±.006 0.7317±.003 0.7383±.002

based model, solves personalised ranking problem by optimising area under the
curve (AUC). Unlike the optimisation criterion used in BoostMF, AUC imposes
equal error on misplacing items irrespective of their positions in the generated
recommendation list; thus BPR-MF does not perform well on list based top-N
recommendation. URM employs both rating and ranking information together
but still the IR evaluation measure is not directly applied in the learning model.
Meanwhile, the relative contribution of rating information and ranking infor-
mation depends on the particular dataset. CofiRank is also a ranking-oriented
CF method, but from our experimental results, CofiRankNDCG that uses NDCG
information directly into learning phases performs worse than CofiRankReg that
optimises for regression with root mean square loss. This finding is consistent
with experimental results from [2,15,17]. On the other hand, BoostMF is pro-
posed to improve the underlying factor learning in matrix factorisation using
boosting with feature selection and to optimise IR measure directly aiming at
resolving the mismatch between training objective function and evaluation met-
ric. Without imposing any overhead of IR measure conversion, BoostMF creates
ranking model and updates according to the correctness of the ranking list. Thus,
BoostMF presents a better ranked recommendation list than the state-of-the-art
recommendation approaches by focusing on the factors that are best suited to
represent ranking task.

In addition to the comparison, we carry the experiment to see in what extent
PMF and BoostMF handle overfitting, which is an important issue when the
data is extremely sparse which is common in recommender systems. Note that
this is also important for the boosting algorithm whose capability of generalisa-
tion is usually considered under non-sparse dataset [4,19]. Specifically, we want
to evaluate the IR performance of both algorithms, i.e. PMF and BoostMF,
on the test set while the IR performance keeps increasing on training set as
the number of training round increases. For experimental settings of SN=50 on
MovieLens 100K dataset, we record the performance of the models on both train
set and test set for every iteration of PMF and BoostMF. Fig. 2 and 3 show the
average NDCG@10 on train set and test set over 10 folds. Learning rate and

BoostMF: Boosted Matrix Factorisation for Collaborative Ranking 17

Fig. 2. Average NGCG@10 of PMF and
BoostMF over 10 folds on train set

Fig. 3. Average NGCG@10 of PMF and
BoostMF over 10 folds on test set

regularisation parameter of PMF and BoostMF are set separately according to
their best performance on validation set. The stopping conditions for both algo-
rithms are also set from cross validation and marked as black circle in Fig. 2
and 3.

As shown in the Fig. 2 and 3, PMF suffers from serious overfitting problem
whereas BoostMF is very robust to overfitting. This overfitting behaviour of
PMF shows its inappropriateness to the ranking problem. As the iteration con-
tinues, it ignores the information from IR measure and thus deviates away from
improving NDCG. The test performance in PMF is decreasing while the train-
ing performance is steadily improving. On the contrary, BoostMF constructs
weak learner in the direction that gives maximum ranking accuracy on training
data, performs maximum update in that ranking direction and reweights items
according to the correctness of the ranking list. All of those three features are
the keys for stable ranking as the number of training round increases and thus
it avoids overfitting issues.

5 Conclusion

In this paper, we present a novel method, BoostMF, to the problem of matrix
factorisation by learning the best feature vectors for ranking and apply it to the
task of personalised top-N recommendation. In addition to using latent factors to
represent various user preferences and item characteristics, the BoostMF method
uses boosting procedure to select best factors to optimise for the ranking task
and performs updating only on that factor. In contrast to other ranking-oriented
CF methods, the BoostMF method optimises the ranking measure directly by
learning low rank factor matrices rather than using the structured estimation of
ranking loss or computing continuous approximations of IR measure. To demon-
strate the efficiency of BoostMF, we evaluate it against a set of state-of-the-art
approaches on three real-world publicly available datasets with different user-
item distributions. The experimental results verify that the BoostMF method
achieves significant improvement over these baseline methods for the task of
top-N recommendation.

18 N. Chowdhury et al.

Our method will cope with cold start user problems in the future that users
have very few ratings (one or two). We would like to apply our boosting-based
collaborative filtering model with other IR evaluation metrics, such as minimum
average precision (MAP) and minimum reciprocal ranking (MRR) for recom-
mendation. We also want to apply this algorithm to other problems where MF
approach is frequently applied. As MF consists of the fundamentals of many
existing methods in top-N recommendation, it is reasonable to expect the pro-
posed method also to be valuable for existing top-N recommendation methods
that are based on PMF such as these methods shown in Section 2.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems:
a survey of the state-of-the-art and possible extensions. IEEE TKDE 17(6) (2005)

2. Balakrishnan, S., Chopra, S.: Collaborative ranking. In: WSDM (2012)
3. Cai, X., Bain, M., Krzywicki, A., Wobcke, W., Kim, Y., Compton, P.,

Mahidadia, A.: Learning collaborative filtering and its application on people-to-
people recommendation in social networks. In: ICDM (2010)

4. Freund, Y., Iyer, R., Schapire, R., Singer, Y.: An efficient boosting algorithm for
combining preferences. J. Mac. Learn. Res. 4 (2003)

5. Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regression: a Statistical
View of Boosting. The Annals of Statistics 38(2) (2000)

6. Goulden, C.: Methods of Statistical Analysis. Wiley (1956)
7. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender

systems. J Comput. 42 (2009)
8. Koren, Y., Sill, J.: Ordrec: an ordinal model for predicting personalized item rating

distributions. In: RecSys (2011)
9. Krohn-Grimberghe, A., Drumond, L., Freudenthaler, C., Schmidt-Thieme, L.:

Multi-relational matrix factorization using bayesian personalized ranking for social
network data. In: WSDM (2012)

10. Liu, T.: Learning to rank for information retrieval. Found. and Trends in Inf. Retr.
3 (2009)

11. Rendle, S., Freudenthaler, C.: Improving pairwise learning for item recommenda-
tion from implicit feedback. In: WSDM (2014)

12. Rendle, S., Freudenthaler, C., Gantner, Z., Thieme, L.: BPR: bayesian personalized
ranking from implicit feedback. In: UAI (2009)

13. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS (2008)
14. Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N., Hanjalic, A.:

CLiMF: Learning to maximize reciprocal rank with collaborative less-is-more fil-
tering. In: RecSys (2012)

15. Shi, Y., Larson, M., Hanjalic, A.: List-wise learning to rank with matrix factoriza-
tion for collaborative filtering. In: RecSys (2010)

16. Shi, Y., Larson, M., Hanjalic, A.: Unifying rating-oriented and ranking-oriented
collaborative filtering for improved recommendation. J. of Inf., Sci. (2013)

17. Weimer, M., Karatzoglou, A., Le, Q.V., Smola, A.: CofiRank-maximum margin
matrix factorization for collaborative ranking. In: NIPS (2007)

18. Xu, J., Li, H.: AdaRank: a boosting algorithm for information retrieval. In: SIGIR
(2007)

19. Zhu, C., Chen, W., Zhu, Z., Gang, W., Wang, D., Chen, Z.: A general magnitude-
preserving boosting algorithm for search ranking. In: CIKM (2009)

	BoostMF: Boosted Matrix Factorisation for Collaborative Ranking
	1 Introduction
	2 Related Work
	3 Boosted Matrix Factorisation (BoostMF)
	3.1 Probabilistic Matrix Factorisation (PMF)
	3.2 BoostMF
	3.3 Theoretical Analysis

	4 Experiments
	4.1 Datasets and Evaluation Metric
	4.2 Experimental Setup
	4.3 Results

	5 Conclusion
	References

