
Flexible Sliding Windows for Kernel Regression
Based Bus Arrival Time Prediction

Hoang Thanh Lam(B) and Eric Bouillet

IBM Research, Building 3, IBM Technology Campus, Damastown, Dublin 15, Ireland
{t.l.hoang,bouillet}@ie.ibm.com

Abstract. Given a set of historical bus trajectories D and a partially
observed bus trajectory S up to position l on the bus route, kernel regres-
sion (KR) is a non-parametric approach which predicts the arrival time of
the bus at location l+h (h > 0) by averaging the arrival times observed at
same location in the past. The KR method does not weights the historical
data equally but it gives more preference to the more similar trajectories
in the historical data. This method has been shown to outperform the
baseline methods such as linear regression or k-nearest neighbour algo-
rithms for bus arrival time prediction problems [9]. However, the perfor-
mance of the KR approach is very sensitive to the method of evaluating
similarity between trajectories. General kernel regression algorithm looks
back to the entire trajectory for evaluating similarity. In the case of bus
arrival time prediction, this approach does not work well when outdated
part of the trajectories does not reflect the most recent behaviour of the
buses. In order to solve this issue, we propose an approach that considers
only recent part of the trajectories in a sliding window for evaluating the
similarity between them. The approach introduces a set of parameters
corresponding to the window lengths at every position along the bus
route determining how long we should look back into the past for evalu-
ating the similarity between trajectories. These parameters are automat-
ically learned from training data. Nevertheless, parameter learning is a
time-consuming process given large training data (at least quadratic in
the training size). Therefore, we proposed an approximation algorithm
with guarantees on error bounds to learn the parameters efficiently. The
approximation algorithm is an order of magnitude faster than the exact
algorithm. In an experiment with a real-world application deployed for
Dublin city, our approach significantly reduced the prediction error com-
pared to the state of the art kernel regression algorithm.

1 Introduction

Recently, bus arrival time prediction using GPS data has become an impor-
tant problem attracting many researchers from both academia and industry
labs [9,11]. Beside having important application in urban transportation man-
agement systems, GPS data providing accurate real-time locations of buses is
very cheap and easy to collect. In such system, GPS devices equipped on-board
continuously update real-time locations of the buses in a reasonable fine-grained
c© Springer International Publishing Switzerland 2015
A. Bifet et al. (Eds.): ECML PKDD 2015, Part III, LNAI 9286, pp. 68–84, 2015.
DOI: 10.1007/978-3-319-23461-8 5



Flexible Sliding Windows for Kernel Regression 69

time resolution (from seconds to minutes). Updated locations of the buses are
used to predict bus arrival time at any location of the trajectory. Prediction can
be used to provide urban citizens with real-time information about bus arrival
time at any bus stop or to estimate the likelihood of bus bunching from which
bus operators can direct bus drivers to avoid those unexpected events.

Literature on bus arrival time prediction problem is very rich [2-3,6-14].
Depending on type of data used for prediction, different methods were pro-
posed. However, when only GPS data is available, the state-of-the-art algorithm
is relied on the kernel regression (KR) method [9]. The KR algorithm exploits
the similarity of the currently observed trajectory of the bus and the historical
trajectories to make prediction. Since behaviour of buses travelling on a fixed
bus route is highly repeated, KR approach has been shown to outperform the
baseline approaches such as linear regression or k-nearest neighbour [9].

Example 1 (Kernel regression). In order to illustrate the intuition behind the
KR method we show an example with 4 different historical spatio-temporal tra-
jectories A,B,C,D and a partially observed trajectory S at location l in Figure 1.
The y-axis shows the time offsets since the time when the buses start and the
x-axis shows the distance (in meters) from the departure stop.

Prediction of the arrival time of the bus at location l + h (h > 0) denoted
as Ŝ(l + h) is done by averaging the arrival time of the bus at location l + h
observed in the historical data:

Ŝ(l + h) = αA ∗ A(l + h) + αB ∗ B(l + h) + αC ∗ C(l + h) + αD ∗ D(l + h)
Where the weight values αA, αB , αC , αD summing up to 1 and can be calcu-

lated as follows:

αA = sim(S,A)
sim(S,A)+sim(S,B)+sim(S,C)+sim(S,D)

αB = sim(S,B)
sim(S,A)+sim(S,B)+sim(S,C)+sim(S,D)

αC = sim(S,C)
sim(S,A)+sim(S,B)+sim(S,C)+sim(S,D)

αD = sim(S,D)
sim(S,A)+sim(S,B)+sim(S,C)+sim(S,D)

Function sim(S,A) denotes the similarity between two trajectories S and
A till position l. The larger the value of sim(S,A) the more similar the two
trajectories are.

An benefit of using KR in practice is that there is no need to build a model
for every location along the bus route as does with parametric approaches such
as linear regression. This property is a big plus in an industrial setting when
fast deliver of solution is required. However, KR is sensitive to the choice of the
similarity function which usually considers the whole trajectory for similarity
evaluation [9]. Under the context of bus arrival time prediction application, bus
journeys might be influenced by hidden spatial or temporal contextual factors
such as changes from crowded to less traffic locations or unplanned events like
accidents. In such cases, the entire trajectory is no longer relevant for making
prediction because most of the information is out of date and does not reflect



70 H.T. Lam and E. Bouillet

Fig. 1. Four trajectories A, B, C and D in a historical log and a partially observed
(orange solid points) bus trajectory S up to location l (the orange dotted points are
future positions). As we can observe on the figure, the bus was moving very close to C
and D from the beginning but due to some unplanned events happening at location l
the bus was delayed and started moving closer to A and B during the last part of the
journey. At location l, considering the whole trajectory, S is much closer to C and D
than to A and B. On the other hand, in the sliding window with only recent data, S
is much closer to A and B. Therefore, making prediction based on recent data is more
accurate as it captures recent behaviours of the bus.

the recent behaviour of the buses. The following example shows a situation in
which the KR method is sensitive to the choice of similarity evaluation methods.

Example 2 (Sensitivity to similarity function). Figure 1 shows four historical
trajectories A,B,C and D and a partially observed (orange solid points) trajec-
tory S at location l (the orange dotted points are future positions). Prediction
of bus arrival time at location l+h is made by copying information about arrival
times of the bus at location l + h from similar historical trajectories.

Different predictions (marked with star-like symbols) of bus arrival time Ŝ(l+
h) at location l + h are made using either the entire trajectory or only recent
data in a sliding window with size w > 0. As we can observe on the figure, the
bus on the journey S was moving very close to C and D from the beginning
but due to some reasons, e.g. an unplanned event happening at location l, the
bus was delayed and started moving closer to A and B during the last part of
the journey. At location l, considering the whole trajectory, S is much closer to



Flexible Sliding Windows for Kernel Regression 71

C and D than to A and B. On the other hand, in the sliding window (marked
with a dotted orange box) with only recent data, S is much closer to A and
B. Therefore, making prediction based on recent data in that window is more
accurate as it captures the recent behaviour of the bus.

The key assumption in Example 2 is that each location along the bus route
is associated with a hidden spatial or temporal context that determines how
long we should look back to the past for predicting the future bus arrival times.
An important question to ask is: how do we discover relevant window size for
each location along the bus route to make prediction better? In this work, we
try to answer this question by proposing a method that automatically learns
appropriate window sizes from training data. The key technical contributions of
this work can be summarized as follows:

– A method to optimize the kernel regression based prediction algorithm for
a real-world application relied on flexible sliding window length learning.

– An approximation algorithm (with error bound guarantees) for speeding up
the parameter learning process when the training size is large.

– Our method reduced the prediction error from 40-60 %.
– The approximation algorithm proposed for the window size learning task

achieved a speeds up of 15-20x while preserving high accuracy of the predic-
tion as the brute-force learning method does.

– Our approach speeds up real-time evaluations of the similarity between tra-
jectories as only short parts of the trajectories are considered for evaluation.

2 Problem Definition

In this section, we first recall the kernel regression algorithm, and then formally
define the problem. All the notations are shown in Table 2.

Notation Meaning
S = t1t2, · · · , tn A trajectory with arrival times at n locations
S(l) Arrival time at location l

Ŝ(l) Predicted arrival time at location l of trajectory S

Ŝw(l) Predicted arrival time when window length is w
S(l, h) A sequence of arrival times from location l to h
D = {A1, A2, · · · , Am} A reference set with m historical trajectories
Sim(A,B) A similarity function between two sequences A and B
el(w) Prediction error at location l when window size is w
E[el(w)] Expectation of prediction error when window size is w
w∗

l The best window length at location l



72 H.T. Lam and E. Bouillet

2.1 Kernel Regression

A bus trajectory is a sequence of pairs S = (p1, t1), (p2, t2), · · · , (pn, tn) where pi

is a location on the bus route and tn is the arrival time at that location counting
from the beginning of the journey. In our bus arrival time prediction application,
bus route is fixed beforehand and GPS-based locations are interpolated such that
the trajectory contains arrival time for every location on the route at the distance
one meter. Therefore, a bus trajectory can be considered as a sequence of arrival
times S = t1t2, · · · , tn because the corresponding location can be implicitly
inferred from the context with the index of the arrival time.

A historical dataset is a collection of bus trajectories D = {A1, A2, · · · , Am}
each has length equal to n. Given a trajectory Ai, denote Ai(l) as the bus arrival
time at location l and Ai(l, h) (h > l) as the sequence of arrival times starting
from location l to location h: Ai(l+1)Ai(l+2) · · · , Ai(h). Let denote Sim(A,B)
as a similarity function between two sequences with the same length A and B.
The larger value of Sim(A,B) is the more similar the sequences are.

Let S be a partially observed trajectory up to location l, from now on we
call S the target trajectory while the trajectories in historical data are called as
reference trajectory. Assume that our main goal is to predict the arrival time at
location l + h for a prediction horizon h > 0 of the target trajectory, i.e predict
the unobserved value of S(l + h). The kernel regression algorithm estimates the
value Ŝ(l + h) with the help of the historical dataset D as follows:

Ŝ(l + h) =
∑m

i=1 Sim(S(0, l), Ai(0, l)) ∗ Ai(l + h)
∑m

i=1 Sim(S(0, l), Ai(0, l))
(1)

The prediction is made by averaging observations of arrival time at location
l + h in the historical data. Every observation Ai(l + h) is weighted by the
similarity between the current trace S and the historical trace Ai. For the bus
arrival time prediction application, Sinn et al. [9] suggested to use the Gaussian

kernel Sim(A,B) = e
−∑l

i=0
1
b

(A(i)−B(i))2

σi where σi denotes the variance of arrival
time at location i and b is a bandwidth parameter.

2.2 Problem Definition

As we have discussed earlier, the KR algorithm is sensitive to the way we eval-
uate the similarity between the target trajectory and the reference trajectories.
The state-of-the-art algorithm considers the entire trajectory for evaluating the
similarity score. In this work, we introduce a method that uses recent data for
evaluating the similarity score. Let wl (wl ≤ l) denote the length of the sliding
window which we use to calculate the similarity score at position l. In particular,
the Sim(S(0, l), Ai(0, l)) function in the kernel regression method is replaced by
Sim(S(l − wl, l), Ai(l − wl, l)). Therefore, for a bus route with length n we have
a vector of n window lengths W = (w1, w2, · · · , wn)

An important question is how we determine an appropriate window length
wl for every location l along the bus route. Finding optimal window lengths can



Flexible Sliding Windows for Kernel Regression 73

Algorithm 1. A brute-force algorithm
1: Input: a training set D = {A1, A2, · · · , Am} and a prediction horizon h
2: Output: A vector of window lengths W = {w∗

1 , w∗
2 , · · · , w∗

n}
3: for l=1 to n do
4: for w=1 to l do
5: for i=1 to m do
6: eil(w) ← (Ai(l + h) − Âwi(l + h)2

7: el(w) ← el(w) + eil(w)
8: end for
9: el(w) ← el(w)

m

10: end for
11: w∗

l = argminwel(w)
12: end for

be formulated as an optimization problem as follows. We use the set of historical
trajectories D = {A1, A2, · · · , Am} as a training set and evaluate the set of
window lengths through a leave-one-out cross-validation process.

In particular, let h be a horizon for prediction, l be a location. We pick Ai

from the training set and consider it as a target trajectory while the set D\{Ai}
is considered as a reference set. The prediction error at location l when the
window length is set to w can be calculated as follows:

ei
l(w) = (Ai(l + h) − Âw

i (l + h))2 (2)

Where Âw
i (l + h) denotes the predicted arrival time at location l + h when the

sliding window length is set to w. The leave-one-out cross-validation average
prediction error over the entire training set D can be estimated as : el(w) =
∑m

i=1 ei
l(w)

m . The problem of learning the optimal window length at location l can
be formulated as follows:

Problem 1 (Window length learning). For every location l, find the window
length w∗

l which minimizes the expectation of the leave-one-out cross-validation
average prediction error el(w), i.e. w∗

l = argminwE[el(w)]

3 A Brute-Force Algorithm

In this section, we introduce a brute-force search approach that solves Problem
1. It evaluates all possible values of the window length at every location in the
bus route. At location l, since 0 < w < l we simply calculate el(w) for every
possible value of w and choose w∗

l that minimizes the accumulative prediction
error el(w). The same task can be repeated for every location 1 ≤ l ≤ n to
obtain a complete set of window lengths for every location along the bus route.

Algorithm 1 describes the main steps of the brute-force algorithm. It iterates
over every location l along the bus route (lines 3-12) and evaluate the accumu-
lative prediction error el(w) for every candidate window length w (lines 4-10).
Evaluation of the accumulative prediction error is done by summing up the



74 H.T. Lam and E. Bouillet

prediction error made when each trajectory Ai is picked as a target and the
remaining trajectories are combined to a reference set (lines 5-8). In line 11, the
best window length w∗

l for location l is selected as the one that minimizes the
accumulative prediction error.

The complexity of Algorithm 1 is O(m2n2) because of the three outer loops
and the computation of the prediction error in lines 5-8 (requiring another loop
over the training set). It is important to notice that the calculation of the pre-
diction error at location l in lines 5-8 requires a full pass over the training data
which incurs a complexity of O(mn). However, this number can be reduced to
O(m) when the computation only needs to update from the result of the prior
step at location l − 1. In general, the brute-force algorithm is not scalable espe-
cially when the training size is large because of the quadratic complexity. In the
next subsection, we will discuss an approximation algorithm that speeds up the
brute-force method significantly.

4 An Approximation Algorithm

The complexity of Algorithm 1 is O(m2n2), where m is the training size and
n is the trajectory length. Since trajectory length is usually fixed, it can be
considered as a large constant number. The training size m is equal to the number
of historical trajectories collected so far. The training size increases as long as
data is collected everyday, so we propose a method called FLOW (flexible sliding
window for kernel regression) which approximates the solution of Problem 1 by
optimizing the expensive computation caused by the training size m.

4.1 Approximation Algorithm

Recall that in Algorithm 1, for every candidate window length w, the prediction
error el(w) is accumulated by looping over every trace Ai in the training set.
Our key intuition is that at a certain iteration i where i is large enough, we
can estimate how likely a window length w is the optimal window length for the
given location. For instance, if we observe that the value of el(w1) is significantly
less than el(w2) then we can conclude that w2 has a very low chance of being
the optimal window length. In that case, we can stop evaluating el(w2) as long
as the accuracy of the learning process is not too much sacrificed.

Algorithm 2 is not much different from Algorithm 1. It iterates over every
location l on the bus route and find the best window length among a set of
candidates stored in a list L (lines 3-4). Different from the brute-force algo-
rithm, in each iteration of the leave-one-out cross-validation (lines 5-15), FLOW
checks if the remaining candidates in the list L have very low probability (less
than a user defined parameter ε) of being the best window (line 11). If the
answer is yes then the candidates are removed from the list (line 12) and never
be considered in the following iterations. In experiments, we will show that
Algorithm 2 is much more efficient than the brute-force algorithm because it



Flexible Sliding Windows for Kernel Regression 75

Algorithm 2. FLOW algorithm
1: Input: a training set D = {A1, A2, · · · , Am}, a parameter ε and a prediction

horizon h
2: Output: A vector of window lengths W = {w∗

1 , w∗
2 , · · · , w∗

n}
3: for l=1 to n do
4: L ←= {1, 2, · · · , l}
5: for i=1 to m do
6: for each w in L do
7: el(w) ← el(w)∗(i−1)+(Ai(l+h)−Âw

i (l+h))2

i

8: end for
9: w∗ ← argminwel(w)

10: for each w in L do
11: if el(w) > el(w

∗) + Δ(i, ε) then
12: L.remove(w)
13: end if
14: end for
15: end for
16: w∗

l = argminwel(w)
17: end for

prunes the computation significantly. An important point need to explain is the
condition used for pruning a candidate w:

el(w) > el(w∗) + Δ(i, ε) (3)

Where w∗ is the current best candidate (up to the current iteration of
the loop in line 5) with the smallest accumulative prediction error, i.e. w∗ ←
argminwel(w), and Δ(i, ε) is a function that depends on the tolerance parameter
ε and the current iteration i.

The tolerance ε << 1 is given as an input parameter which tells the program
the desired bounded probability of missing the best window length during the
search process. In the next subsection we will show how to derive the value of the
function Δ(i, ε) in each iteration. The key meaning of the pruning condition is: if
the accumulative error of the candidate w is far deviated from the accumulative
prediction error of the best candidate by a large number Δ(i, ε) then it is safe to
prune w from the list of candidates with a small chance of missing the optimal
candidate (less than ε).

4.2 Theoretical Analysis

Recall that at iteration i, el(w) =
∑i

k=1 ek
l (w)

i , where ek
l (w) is the prediction

error when the Ak trajectory is picked as a target. Our main assumption in the
analysis is that each ek

l (w) is a random variable with the same mean value and
they are independent to each other. Therefore, from the definition of ek

l (w) for
any k: E[ek

l (w)] = E[el(w)].
Let us denote the maximum and the minimum value of the arrival time at

location l+h as max and min. The following theorem shows how to calculate the



76 H.T. Lam and E. Bouillet

function Δ(i, ε) to guarantee that the probability of missing the optimal window
length is less than ε:

Theorem 1 (Error Bound). In Algorithm 2, if in each iteration we choose
Δ(i, ε) =

√
2(max−min)2√

i
log 2

ε then the probability that FLOW misses the optimal
candidate is upper-bounded by ε.

Proof. Because of space limit, please refer to the link1 to see the proof.

Theorem 1 shows that the value of function Δ(i, ε) decays linearly with the
value of

√
i. Therefore, when i is large enough FLOW can prune the computation

substantially.

4.3 Further Optimization

In order to find the best window length for any location l along the bus route,
we need to evaluate all values of window length 1 ≤ w ≤ l. Our observation
with the bus dataset shows that the prediction error in the leave-one-out cross-
validation process is a smooth function of window lengths. Its value does not
change significantly when the window length is slightly modified.

Therefore, instead of considering all values of w, we limit the search for the
best window length to a subset with maximum log(l) values: {l, � l

2�, � l
22 �, · · · , 1}.

This well-known technique in data stream called as pyramidal time frame [1] usu-
ally used for reducing the search space with preference to recent part of data.
With this minor change to the FLOW and the brute-force algorithm we can
reduce the worst-case complexity to m2n log(n). This techniques allows us to
speed up the search algorithm especially for the case when n is large. In exper-
iments, the results were reported when both brute-force and FLOW algorithm
used this technique to reduce the search space.

5 Experiments

We will first start with a subsection that describes detail information about the
dataset used in the paper and the experiment settings. Subsequently, we will
report the empirical results including the prediction accuracy and the effective-
ness of the approximation method.

The original implementation of the KR algorithm was chosen for comparison
because it is considered as the state-of-the-art algorithm for this application.
Finally, we performed several analyses on the distribution of the optimal window
lengths chosen by our learning method for every location along the bus route to
understand the hidden contexts existing in the data.

1 https://drive.google.com/file/d/0BwWtvZfA5UCSUHpfS0d3a2pMVTQ/view?
usp=sharing

https://drive.google.com/file/d/0BwWtvZfA5UCSUHpfS0d3a2pMVTQ/view?usp=sharing
https://drive.google.com/file/d/0BwWtvZfA5UCSUHpfS0d3a2pMVTQ/view?usp=sharing


Flexible Sliding Windows for Kernel Regression 77

Fig. 2. One hundred bus trajectories sampled from the 46A bus dataset. The length of
the journey is about 18 Km, in average, buses need one hour to complete the journey.

5.1 Dataset and Experiment Settings

The dataset used for empirical study consists of 1500 bus traces from the bus
route 46A (outbound) in Dublin city in a period of one month. This route was
chosen because it is the most frequent route in the city. The dataset is available
for download at Dublinked2. Each bus trace was created from GPS data updated
every 20-30 seconds. The GPS trajectories were projected to the known bus route
and the positions were interpolated at one-meter long resolution.

All traces can be considered as sequences with the same length with 18587
data points corresponding to a 18 Km long bus route. More detail about the
dataset and the preprocessing steps can be found in [4,9]. All the source codes
were written in Java and the program was run on a Linux machine with 4GB
of RAM. The implementation of the KR algorithm for comparison follows the
description in Sinn et al. [9]. In that implementation, a parameter needs to set
concerning the bandwidth of prediction. We fixed that value to 1 as suggested
in the original work to ensure a fair comparison [9].

Recall that the FLOW algorithm uses the tolerance parameter ε to control
the early pruning strategy. In our experiments, the tolerance parameter ε was
set to 0.01 which limits the probability of missing the optimal window length
to less than one percent. In addition to that, the Max and Min values in the

2 http://www.dublinked.ie/

http://www.dublinked.ie/


78 H.T. Lam and E. Bouillet

Fig. 3. Prediction error (in seconds, smaller is better) at each location along the bus
route. The FLOW algorithm outperformed the KR algorithm. The brute-force algo-
rithm was only slightly better than the FLOW algorithm. This confirmed our theo-
retical analysis in section 2 which shows that we didn’t loose a lot of accuracy when
approximation algorithm is used instead of the brute-force search.

formula calculating the pruning factor Δ(i, ε) were set to the maximum and the
minimum value of the arrival time observed in the training data.

5.2 Prediction Accuracy

In this subsection, we show the prediction accuracy calculated as rooted mean
square error (RMSE smaller is better) at every location along the bus route.
Given a test set T = {T1, T2, · · · , TM} and a prediction horizon value h, the root
mean square prediction error at location l is calculated as follows:

RMSEl =

√
√
√
√

M∑

i=1

(Ti(l + h) − T̂
w∗

l
i (l + h))2 (4)

The experimental settings and the dataset were kept to the same as described
in [9]. Since Sinn et al. has shown that the KR method outperformed the linear
regression and the k-nearest neighbour algorithm, so in this work we just need
to compare FLOW directly with to the original implementation of the kernel
regression algorithm denoted as KR.

Figure 3 shows the RMSE (in seconds on the y-axis) at every location along
the bus route (x-axis) when the prediction horizon h was set to 500, 1000, 1500



Flexible Sliding Windows for Kernel Regression 79

Fig. 4. (A). With the early pruning strategy, FLOW can prune a substantial amount of
computation as the number of window length candidates decreases exponentially with
the number of iterations. (B). Comparison of running time between the FLOW and
brute-force algorithms when the prediction horizon is varied. FLOW achieves about an
order of magnitude (15-20x) faster than the brute-force algorithm.

and 2000 meters respectively. The RMSE were reported via a ten-fold cross-
validation. The first impression from Figure 3 is that the FLOW algorithm out-
performed the KR algorithm with 40-60 % reduction in prediction error. The
results are stable across different locations and with various prediction horizons.

Moreover, The difference between the FLOW and the brute-force algorithm
is negligible. In fact, as we can see from the plots, the brute-force algorithm was
only slightly better than the FLOW algorithm. This empirical results confirmed
our theoretical analysis in section 3 that we didn’t loose much accuracy when
the approximation algorithm was used instead of the brute-force algorithm.

At the locations near to the end of the route, we can see that the errors
increase significantly. The reason is that in the set of trajectories there are a
few outliers on which the bus needs about more than four hours to complete the
journey instead of one hour in average as usual. For those outlier traces, delay
happened close to the end of the journey which explains why we see a peak in
prediction error at the end of the trajectories.

5.3 Effectiveness of Approximation

In subsection 5.2, we have shown that the prediction accuracy of the approxima-
tion algorithm is very similar to the prediction error of the brute-force algorithm.
In this subsection, we will show that the FLOW algorithm is significantly more
efficient than the brute-force algorithm.

First, recall that the approximation algorithm works by early pruning the
set of candidate window lengths that with high confidence cannot be the opti-
mal window length. In order to evaluate how effective the pruning strategy is in
practice we plotted the number of candidate window lengths observed in each
iteration (lines 5-15) of Algorithm 2 in Figure 4.A. In that figure, the x-axis



80 H.T. Lam and E. Bouillet

shows the index of the iteration and the y-axis shows the total number of can-
didate window lengths. If no pruning was used, the total number of candidate
window lengths should be always equal to the initial number of candidates at
the first iteration. When pruning strategy was used we can see that the number
of candidate window lengths decreases exponentially with the iterations. There-
fore, after only a few hundred iterations the number of candidate window lengths
reaches its minimum value and the searching process can stop early.

The running times of the FLOW and the brute-force algorithms are reported
in Figure 4.B. We can see that the FLOW algorithm achieves an order of magni-
tude (from 15x to 20x) faster than the brute-force algorithm. This result shows
that the pruning strategy deployed in the implementation of the FLOW algo-
rithm is very effective.

5.4 Interpretation of the Results

The distribution of the best window length at different locations along the bus
route is shown in Figure 5. As we can observe, in most location, FLOW only picks
a few recent data points. Thanks to this, evaluation of similarity between the
target and the reference trajectories is very efficient because the window length is
very short. Interestingly, there are several locations in which the window length
suddenly increases. This may concern a hidden spatio-temporal context that
causes the change. These shifting contexts might provide bus operators with
deep insights about the data.

6 Related Work

Recently, bus arrival time prediction problem attracts a lot of attention because
of its useful application in public transport management systems. The most
popular methods were relied on artificial neutral networks (ANNs) [2,3,8]. The
issue with an ANN is that it is very sensitive to the network structure design
and easily overfits data [15]. Besides ANNs, methods based on Kalman filters
are also very popular. For instance, Wall et al. [12], Son et al. [10] and Yang
et al. [14] combined data from automatic vehicle location services and historical
data to make bus arrival time prediction.

Other machine learning approaches have also been proposed for this problem.
Li et al. [7] used linear regression model with fused data from different sources
such as GPS sensors, wired loop sensors and red radio radar etc. for bus arrival
time prediction. Zhou et al. [16] used mobile sensing data from participating
users for making prediction. Bin et al. [15] used support vector machine (SVM)
using different features extracted from weather condition, type and time of the
date, travel time in the previous segments. The SVM method has been shown
to be superior to the methods based on ANN.

Under the context of the bus arrival time prediction problem, no method
works well for all applications because each of them requires a specific type of



Flexible Sliding Windows for Kernel Regression 81

Fig. 5. Distribution of window length (y-axis) as a function of the location (x-axis). We
can see that in most case FLOW only picks a few recent data. Interestingly, there are
several locations in which the window length suddenly increases. This may concern a
hidden spatio-temporal context that causes the change. These shifting contexts might
provide bus operators with deep insights about the data.

data used for prediction. In practice, not always different types of data are avail-
able, e.g. mobile sensing data is only owned by telco companies while GPS data
is collected by bus operator companies. When only GPS data is available, there
are several approaches [9,11,13,17]. Nevertheless, the state-of-the-art algorithm
for the bus arrival time prediction problem is relied on the kernel regression algo-
rithm [9] in which Sinn et al. showed that the kernel regression approach out-
performed the other methods based on linear regression models and k-nearest
neighbour prediction algorithms.

Another reason that makes kernel regression attractive is that it is a non-
parametric approach. Therefore, we don’t need to learn different predictive mod-
els for every location along the bus route. It doesn’t require intensive human
efforts for feature extraction and selection. This property enables us to deploy
scalable online prediction algorithms for large-scale applications because it does
not require expensive training tasks and bookkeeping a model for every loca-



82 H.T. Lam and E. Bouillet

tions along the bus route. The KR method has been deployed as a service for
bus arrival time prediction at the city of Dublin3.

Therefore, our work most relates to [9]. An important difference is that we
focused on optimizing the kernel regression methods. Although our proposal
makes KR no longer a non-parametric approach, we just need to keep one param-
eter corresponding to the sliding window length at each location along the route.
This approach is still much cheaper than the methods that keeps a set of param-
eters corresponding to each features used for prediction for each location along
the bus route.

Other related work tries to optimize the bandwidth parameter of the KR
method [5]. An important difference between those and our work is that our
optimization concerns the feature selection problem (how far we should look
back into the historical data to make prediction better) while the bandwidth
optimization problem more concerns normalization factor optimization. There-
fore our approach is orthogonal to the bandwidth optimization problem. In fact,
bandwidth selection can be performed in parallel with the window length learn-
ing task to improve the prediction further.

Finally, the idea of using a sliding window with predefined size for making
prediction is very popular in data stream mining community [1]. Nevertheless,
these methods require users to set a fixed window length in advance for all
locations. These methods do not work well because of two reasons. First, the
users do not know which value they should choose for the window size. Second,
the optimal window lengths as observed in Figure 5 vary a lot depending on the
location along the bus. Different from those work, our method can automatically
learn appropriate window lengths for every location along the bus route.

7 Conclusion and Future Work

In this work, we exploited the implicit spatial or temporal contexts to improve
the prediction accuracy of the state of the art prediction algorithm for bus arrival
time prediction problem with GPS data. Our algorithm searches for relevant data
at each location that needs to use for improving the prediction. The results with
a real-world dataset show that our method can improve the prediction accuracy
significantly (from 40-60 % reduction in RMSE). Since the learning algorithm
is time consuming, we proposed an approximation algorithm for the learning
process which reduces the learning time significantly (15x-20x faster).

There are several possibilities to extend the current work. For instance, our
algorithm was proposed for static data. It is interesting to discover and search
for relevant data in an online settings to capture the real-time effect of several
unplanned events such as accidents. Another important problem needs to solve
is how to associate the discovered window lengths with the hidden spatial con-
textual information in order to better understand the behaviour of the bus on
each segment of the route.

3 http://dublinbus.ie/

http://dublinbus.ie/


Flexible Sliding Windows for Kernel Regression 83

Acknowledgments. We would like to thank Dublin City Council (DCC) for providing
us with the Dublin bus dataset. We also thank Dr. Mathieu Sinn for his useful comments
during the development of the work.

References

1. Aggarwal, C.C. (ed.): Data Streams - Models and Algorithms, Advances in
Database Systems, vol. 31. Springer (2007)

2. Chen, M., Liu, X., Xia, J., Chien, S.I.: A dynamic bus-arrival time prediction model
based on APC data. In: Computer-Aided Civil and Infrastructure Engineering,
pp. 364–376, July 2004

3. Chien, S., Ding, Y., Wei, C.: Dynamic bus arrival time prediction with artificial
neural networks. Journal of Transportation Engineering 128(5), 429–438 (2002)

4. Coffey, C., Pozdnoukhov, A., Calabrese, F.: Time of arrival predictability horizons
for public bus routes. In: Proceedings of the 4th ACM SIGSPATIAL International
Workshop on Computational Transportation Science, CTS 2011, pp. 1–5. ACM,
New York (2011)

5. Hardle, W., Marron, J.S.: Optimal bandwidth selection in nonparametric regression
function estimation. The Annals of Statistics, 1465–1481 (1985)

6. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), 13–30 (1963)

7. Li, F., Yu, Y., Lin, H., Min, W.: Public bus arrival time prediction based on traffic
information management system. In: IEEE International Conference on Service
Operations, Logistics, and Informatics (SOLI), pp. 336–341, July 2011

8. Mazloumia, E., Rosea, G., Curriea, G., Sarvia, M.: An integrated framework to pre-
dict bus travel time and its variability using traffic flow data. Journal of Intelligent
Transportation Systems: Technology, Planning, and Operations (2011)

9. Sinn, M., Yoon, J.W., Calabrese, F., Bouillet, E.: Predicting arrival times of buses
using real-time gps measurements. In: 15th International IEEE Conference on Intel-
ligent Transportation Systems (ITSC), pp. 1227–1232, September 2012

10. Son, B., Kim, H.-J., Shin, C.-H., Lee, S.-K.: Bus arrival time prediction method
for ITS application. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004.
LNCS (LNAI), vol. 3215, pp. 88–94. Springer, Heidelberg (2004)

11. Sun, D., Luo, H., Fu, L., Liu, W., Liao, X., Zhao, M.: Predicting bus arrival time
on the basis of global positioning system data. Transportation Research Record:
Journal of the Transportation Research Boardg (2007)

12. Wall, Z., Dailey, D.J.: An algorithm for predicting the arrival time of mass tran-
sit vehicles using automatic vehicle location data. In: 78th Anual Meeting of the
Transportation Research Board (1999)

13. Xinghaoa, S., Jinga, T., Guojuna, C., Qichongb, S.: Predicting bus real-time travel
time basing on both GPS and RFID data. In: 13th COTA International Conference
of Transportation Professionals (CICTP 2013), pp. 2287–2299, November 2013

14. Yang, J.-S.: Travel time prediction using the GPS test vehicle and kalman filter-
ing techniques. In: Proceedings of the 2005 American Control Conference, vol. 3,
pp. 2128–2133, June 2005



84 H.T. Lam and E. Bouillet

15. Yu, B., Yang, Z., Yao, B.: Bus arrival time prediction using support vector
machines. Journal of Intelligent Transportation Systems, 151–158, July 2006

16. Zhou, P., Zheng, Y., Li, M.: How long to wait?: Predicting bus arrival time with
mobile phone based participatory sensing (2013)

17. Zhu, T., Ma, F., Ma, T., Li, C.: The prediction of bus arrival time using global
positioning system data and dynamic traffic information. In: Wireless and Mobile
Networking Conference, pp. 1–5, October 2011


	Flexible Sliding Windows for Kernel Regression Based Bus Arrival Time Prediction
	1 Introduction
	2 Problem Definition
	2.1 Kernel Regression
	2.2 Problem Definition

	3 A Brute-Force Algorithm
	4 An Approximation Algorithm
	4.1 Approximation Algorithm
	4.2 Theoretical Analysis
	4.3 Further Optimization

	5 Experiments
	5.1 Dataset and Experiment Settings
	5.2 Prediction Accuracy
	5.3 Effectiveness of Approximation
	5.4 Interpretation of the Results

	6 Related Work
	7 Conclusion and Future Work
	References


