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Abstract. FACT, the First G-APD Cherenkov Telescope, detects air
showers induced by high-energetic cosmic particles. It is desirable to
classify a shower as being induced by a gamma ray or a background par-
ticle. Generally, it is nontrivial to get any feedback on the real-life train-
ing task, but we can attempt to understand how our classifier works
by investigating its performance on Monte Carlo simulated data. To
this end, in this paper we present the SCaPE (Soft Classifier Perfor-
mance Evaluation) model class for Exceptional Model Mining, which
is a Local Pattern Mining framework devoted to highlighting unusual
interplay between multiple targets. The SCaPE model class highlights
subspaces of the search space where the classifier performs particularly
well or poorly. These subspaces arrive in terms of conditions on attributes
of the data, hence they come in a language a human understands, which
should help us understand where our classifier does (not) work.

1 Introduction

The FACT telescope [1,2] is an Imaging Air Cherenkov Telescope, designed to
detect light emitted by secondary particles, generated by high-energetic cosmic
particles interacting with the atmosphere of the Earth. For astrophysical reasons,
it is important to classify the light as resulting from the atmosphere being hit
by a gamma ray or a proton; the latter occur much more frequently, but the
former are the more interesting in gamma astronomy. Currently, one of the used
classifiers is a random forest, whose performance needs our detailed attention.

The problem with training a classifier on real astrophysical data is that there
is no clear feedback. Based on the observed light, we could deduce whether the
inducing particle is a gamma ray or a proton. Then, we can look in the direction
from which the particle originated, and strive to find an astrophysical source
generating gamma rays. But even if we find such a source, there is no certain
way of telling what kind of particle induced the original observation. Effectively,
we are dealing with a feedbackless learning task, and it is typically hard to
finetune a classifier without feedback.

This Nectar Track submission presents the paper [4]. A significantly longer version
of that paper appeared as a technical report [5].
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To study our learning performance, we turn to Monte Carlo data. We simulate
particle interactions with the atmosphere, as well as reflections of the resulting
Cherenkov light with telescope mirrors on the one hand and the FACT camera
electronics on the other hand. This gives us a dataset of camera images that is
equivalent in form to a dataset we would get from real astrophysical observations,
except that we also know the true label of our classification task. By training
our random forest on this dataset, we obtain the soft classifier probabilities for
each record. Through studying the interaction between the binary ground truth
that we already knew and the soft classifier probabilities we learned from the
data, we can understand where our classifier performs exceptionally.

We study this interaction with Exceptional Model Mining (EMM) [3,7]: a
Local Pattern Mining framework, seeking coherent subsets of the dataset where
multiple targets interact in an unusual way. We present the SCaPE (Soft Classi-
fier Performance Evaluation) model class for EMM, seeking subgroups for which
a soft classifier represents a ground truth exceptionally well or poorly. This pro-
vides us with insight where our classifier does (not) work.

2 Related Work

Previous work exists on discovering subgroups displaying unusual interaction
between multiple targets, for instance in the previously developed model classes
for EMM: correlation, regression, Bayesian network, and classification (cf. [3,7]).
The last of these model classes is particularly related to the SCaPE model class,
with some major differences. Most notably, the classification model class inves-
tigates classifier behavior in the absence of a ground truth, whereas the SCaPE
model class evaluates classifier performance in the presence of a ground truth.
Hence, the two model classes are different means to achieve different ends.

Automated guidance to improve a classifier has been studied in the data min-
ing subfield of meta-learning: how can knowledge about learning be put to use
to improve the performance of a learning algorithm? In almost all of the existing
meta-learning work, the focus is on letting the machine learn how the machine
can perform better. By contrast, the SCaPE model class for EMM focuses on
providing understanding to the domain expert where his/her classifier works well
or fails. As such, SCaPE provides progress on the path sketched by Vanschoren
and Blockeel [10, Section 5]: “We hope to advance toward a meta-learning app-
roach that can explain not only when, but also why an algorithm works or fails
[. . . ]”. Vilalta and Drissi [11, Section 4.3.1] do devote a subsubsection to “Find-
ing regions in the feature space [. . . ]”, but this is in the context of algorithm
selection.

A very recent first inroad towards peeking into the classifier black box is
the method by Henelius et al. [6], who strive to find groups of attributes whose
interactions affect the predictive performance of a given classifier. This is more
akin to the classification model class for EMM. While Henelius et al. study hard
classifiers, the SCaPE model class is designed for soft classifiers.
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3 The SCaPE Model Class for EMM

Exceptional Model Mining (EMM) [3,7] is a framework within Pattern Mining
[8]: the broad subfield of data mining where only a part of the data is described
at a time, ignoring the coherence of the remainder. EMM is a supervised variant
of Pattern Mining, typically invoked in a multi-target setting: there are sev-
eral attributes t1, . . . , tm that are singled out as the targets of EMM. The goal
of EMM is to find subgroups of the datasets where these targets display an
unusual interaction. This interaction is captured by the definition of a model
class, and subgroups are deemed interesting when their model is exceptional,
which is captured by the definition of a quality measure.

In the SCaPE model class for EMM, we assume a dataset Ω, which is a bag
of N records of the form x = (a1, . . . , ak, b, r). We call {a1, . . . , ak} the descrip-
tive attributes, or descriptors, whose domain is unrestricted. The remaining two
attributes, b and r, are the targets. The first, b, is the binary target ; we will denote
its values by 0 and 1. The second, r, is the real-valued target, taking values in
R. The goal of the SCaPE model class is to find subgroups for which the soft
classifier outputs, as captured by r, represent the ground truth, as captured by
b. In [4] and [5], we define a quality measure to assess this quality in a subgroup.
Conceptually, the real-valued target r imposes a total order on the records of the
dataset. The quality measure considers the ranking of the values of the binary
target b under this order, and computes an average ranking loss [9]. This aver-
age ranking loss is computed for the entire dataset, and for each subgroup under
consideration; the quality of a subgroup is compared to the overall quality in the
dataset at hand. Subgroups with a higher-than-usual average ranking loss high-
light areas of poor classifier performance, and subgroups with a lower-than-usual
average ranking loss highlight areas of good classifier performance.

4 Experimental Results

In [4], we have presented subgroups found on the Monte-Carlo simulated FACT
data, along with astrophysical interpretations. Additionally, in [5], we have pre-
sented results on nine UCI datasets. These results showcase what the SCaPE
model class can unearth in your dataset, and describe problematic areas of the
search space for these well-known datasets, which forms an interesting resource
for any data miner striving to evaluate their methods on these datasets.

5 Conclusions

In gamma ray astronomy, the separation of gamma and proton showers marks
an important step in the analysis of astrophysical sources. Better classifier per-
formance leads to less dilution of the interesting physics results and improves
the statement of results of the astrophysical source. The result set will more
frequently contain the infrequently appearing gamma showers, which should
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increase the effective observation time. Due to the importance of the separa-
tion in this field, understanding why the classifier does not perform as desired is
extremely valuable. The SCaPE model class for EMM helps to understand how
to improve the classifier performance.

Beyond its importance within astrophysics, SCaPE is agnostic of the domain
of the dataset it analyzes. In fact, it can be used to assess the performance of any
soft classifier on any dataset when a ground truth is available. This makes SCaPE
an invaluable tool for any data miner who wants to learn where his/her clas-
sifier works well and where its performance can be improved. What one could
practically do with this knowledge depends on the task at hand. Our FACT
experiments teach us at which settings the telescope delivers the best results,
which allows us to improve the effectiveness of future observations. One could
imagine the benefits of oversampling difficult regions, or learning a more expres-
sive classifier on only the difficult regions of the input space. SCaPE provides
you with the understanding where your classifier does (not) work: feel free to
reap the benefits of that knowledge in any way you see fit.
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