
Dynamic Risk Measures and Path-Dependent
Second Order PDEs

Jocelyne Bion-Nadal

Abstract We propose new notions of regular solutions and viscosity solutions for
path-dependent second order partial differential equations.Making use of themartin-
gale problem approach to path-dependent diffusion processes, we explicitly construct
families of time-consistent dynamic risk measures on the set of càdlàg paths IRn val-
ued endowed with the Skorokhod topology. These risk measures are shown to have
regularity properties. We prove then that these time-consistent dynamic risk mea-
sures provide viscosity supersolutions and viscosity subsolutions for path-dependent
semi-linear second order partial differential equations.
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1 Introduction

Diffusion processes are linked with parabolic second order Partial Differential
Equations via the “Feynman-Kac” formula. The field of path-dependent PDEs first
started in 2010 when Peng asked in [19] whether a BSDE (Backward Stochastic
Differential Equation first introduced in [17]) could be considered as a solution to a
path-dependent PDE. In line with the recent literature on the topic, a solution to a
path-dependent second order PDE

H(u, ω, φ(u, ω), ∂uφ(u, ω), Dxφ(u, ω), D2
xφ(u, ω)) = 0 (1)

is searched as a progressive function φ(u, ω) (i.e. a path dependent function depend-
ing at time u on all the path up to time u).
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In contrast with the classical setting, the notion of regular solution for a path-
dependent PDE (1) needs to deal with càdlàg paths. Indeed to give a meaning to
the partial derivatives Dxφ(u, ω) and D2

xφ(u, ω) at (u0, ω0), one needs to assume
that φ(u0, ω) is defined for paths ω admitting a jump at time u0. Peng has intro-
duced in [20] a notions of regular and viscosity solution for path-dependent second
order PDEs. In [20] a regular or a viscosity solution for a path-dependent PDE is a
progressive function φ(t, ω) defined on the space of càdlàg paths endowed with the
uniform norm topology and the notion of continuity and partial derivatives are those
introduced by Dupire [12]. A comparison theorem is proved in this setting [20].
The motivation comes mainly from the theory of BSDE and examples of regular
solutions to path-dependent PDEs can be constructed from BSDEs [18]. The main
drawback for this approach based on [12] is that the uniform norm topology on the
set of càdlàg paths is not separable, hence it is not a Polish space. Recently Ekren et
al. proposed a notion of viscosity solution for path-dependent PDEs in the setting of
continuous paths in [13, 14]. This work was motivated by the fact that a continuous
function defined on the set of continuous paths does not have a unique extension
into a continuous function on the set of càdlàg paths. Therefore it is suitable that
the notion of viscosity solution for functions defined only on the set of continuous
paths does not require to extend the function to the set of càdlàg paths. The approach
developed in [13, 14] is also based on BSDE.
In the present paper we introduce a new notion of regular and viscosity solution
for path-dependent second order PDEs (Sect. 2). A solution to (1) is a progressive
functionφ defined on IR+×Ω whereΩ is the set of càdlàg paths. In contrast with [20]
and many works on path-dependent problems, we consider the Skorokhod topology
on the set of càdlàg paths. Thus Ω is a Polish space. This property is very important.
To define the continuity and regularity properties for a progressive function, wemake
use of the one to one correspondence between progressive functions on IR+ × Ω

and strictly progressive functions on IR+ × Ω × IRn established in [3]. A function
φ defined on IR+ × Ω is progressive if φ(s, ω) = φ(s, ω′) as soon as ω(u) = ω′(u)

for all 0 ≤ u ≤ s. A function φ defined on IR+ × Ω × IRn is strictly progressive
if φ(s, ω, x) = φ(s, ω′, x) as soon as ω(u) = ω′(u) for all 0 ≤ u < s. The one to
one correspondence is given by φ(s, ω, x) = φ(s, ω ∗s x) where (ω ∗s x)(u) = ω(u)

for all 0 ≤ u < s and (ω ∗s x)(u) = x for all u ≥ s. The continuity and regularity
properties that we want for a progressive function φ are derived from the usual
continuity and regularity properties for φ via the above one to one correspondence.
For example, Dxφ(u, ω) is defined as Dxφ(u, ω) := Dxφ(u, ω, ω(u)) where Dxφ is
the usual partial derivative of φ with respect to the third variable. Notice that via the
above one to one correspondence, the regularity properties for a progressive function
φ are defined in a very natural way. This is in contrast with the most commonly used
regularity definitions first introduced in [12].
The notion of viscosity solution that we introduce in the present paper is motivated
by our construction of a solution to semi-linear second order path-dependent PDEs
based on the martingale problem approach.
Our study for viscosity solutions of path-dependent PDEs allows then to introduce a
new definition of viscosity solution for path-dependent functions defined only on the
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set of continuous paths. As in [13, 14], this does not require to extend the function
nor the coefficient functions appearing in the path-dependent PDE to the set of càdlàg
paths. However our approach is very different from the one introduced in [13, 14].
In the present paper we construct then time consistent dynamic risk measures on the
set Ω of càdlàg paths, to produce solutions for path-dependent semi-linear second
order PDEs.

{
∂uv(u, ω) + L av(u, ω) + f (t, ω, Dxv(u, ω)) = 0 on [0, t] × Ω

v(t, ω) = h(ω)
(2)

withL av(u, ω) = 1
2Tr[a(u, ω)D2

xv(u, ω)].
These dynamic risk measures are constructed using probability measures solution
to a path-dependent martingale problem. This approach is motivated by the Feyn-
man Kac formula and more specifically by the link between solutions of a parabolic
second order PDE and probability measures solutions to a martingale problem. The
martingale problem has been first introduced and studied by Stroock and Varadhan
[10, 11] in the case of continuous diffusion processes. The martingale problem is
linked to stochastic differential equations. However the martingale problem formu-
lation is intrinsic and is very well suitable to construct risk measures. In [22] the
martingale problem has been extended and studied to the case of jump diffusions. In
[3], the study of themartingale problem is extended to the path-dependent casewhich
means that the functions a and b (and also the jump measure) are no more defined
on IR+ × IRn but on IR+ ×Ω . The question of existence and uniqueness of a solution
to a path-dependent martingale problem is addressed in [3] in a general setting of
diffusions with a path-dependent jump term. In the case where there is no jump term
and under Lipschitz conditions on the coefficients, the existence and uniqueness of a
solution has been already established in [8] from the stochastic differential equation
point of view.

In Sect. 3, we recall some results from [3] on the martingale problem for path-
dependent diffusion processes and study the support of a probabilitymeasure solution
to the path-dependent martingale problem for L a,b.

The theory of dynamic risk measures on a filtered probability space has been
developped in recent years. In the case of a Brownian filtration, dynamic risk mea-
sures coincide with g-expectations introduced by Peng [21]. An important property
for dynamic risk measures is time consistency. The time consistency property for
dynamic risk measures is the analogue of the Dynamic Programming Principle. For
sublinear dynamic risk measures time consistency has been characterized by Del-
baen [9]. For general convex dynamic risk measures two different characterizations
of time consistency have been given. One by Cheridito et al. [7], the other by Bion-
Nadal [5]. This last characterization of time consistency is very useful in order to
construct time consistent dynamic risk measures.

Following [5], one can construct a time consistent dynamic risk measure as soon
as one has a stable set of equivalent probability measures Q and a penalty defined
on Q satisfying some conditions. In Sect. 4, we construct a stable set of probability
measures on the set Ω of càdlàg paths. In the whole paper a is a given bounded
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progressively continuous function defined on IR+ ×Ω such that a(s, ω) is invertible
for all (s, ω). For all r ≥ 0 andω ∈ Ω the set of probability measuresQr,ω is a stable
set generated by probability measures Qa,b

r,ω solution to the martingale problem for
L a,b starting from ω at time r. The functions b are assumed to satisfy some uniform
BMO condition. In Sect. 5 we construct penalties on the stable setQr,ω from a path-
dependent function g. Some growth conditions are assumed on the function g to
ensure integrability properties for the penalties. With such a stable set and penalties,
we construct in Sect. 6 time consistent convex dynamic riskmeasures.More precisely
for all r and ω we construct a time consistent convex dynamic risk measure ρ

r,ω
s,t on

the filtered probability space (Ω, (Bt), Qa
r,ω) where Qa

r,ω means Qa,0
r,ω and (Bt) is

the canonical filtration.
We prove furthermore in Sect. 7 that these time consistent dynamic risk measures

satisfy the following Feller property: Let Ct be the set of Bt measurable functions
h defined on Ω which can be written as h(ω) = k(ω, ω(t)) for some continuous
function k on Ω × IRn such that k(ω, x) = k(ω′, x) if ω(u) = ω′(u) for all u < t.
Then for all h in Ct , there is a progressively lower semicontinuous function R(h) on
[0, t] × Ω such that R(h)(t, ω) = h(ω),

ρ
r,ω0
r,t (h) = R(h)(r, ω0)∀0 ≤ r ≤ t

Furthermore, for all 0 ≤ r ≤ s ≤ t,

ρ
r,ω0
s,t (h)(ω′) = R(h)(s, ω′) Qa

r,ω0
a.s.

We prove furthermore in Sect. 8 that the lower semicontinuous function R(h) is
a viscosity supersolution for the path-dependent semi linear second order partial
differential equation (2). The function f : IR+ × IRn × IRd → IR appearing in Eq. (2)
is linked to the choice of the penalty of the risk measure. It is convex in the last
variable.
We prove also that the upper semi-continuous envelope of R(h) is a viscosity subso-
lution for (2).
When the above function h is defined only on the set of continuous paths, it is the same
for the function R(h). We prove then that R(h) provides a viscosity supersolution and
a viscosity subsolution for (2) on the set of continuous paths.

2 Solution of Path-dependent PDEs

In this sectionwe introduce newnotions for regular and viscosity solutions for second
order path-dependent PDEs on the set of càdlàg paths. In contrast with [20] and all
the papers using the notions of continuity and derivative introduced by Dupire [12],
we work with the Skorohod topology on the set of càdlàg paths. A solution to a
path-dependent PDE (1) is a progressive function φ(t, ω)where t belongs to IR+ and
ω belongs to the set of càdlàg paths.
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2.1 Topology and Regularity Properties

In the whole paper Ω denotes the set of càdlàg paths with the Skorohod topology.
The setΩ is then a Polish space (i.e. is metrizable and separable). Polish spaces have
nice properties which are very important in the construction of solutions for path-
dependent PDEs. Among them are the existence of regular conditional probability
distributions, the equivalence between relative compactness and tightness for a set
of probability measures, to name a few.
To define the continuity and regularity properties for progressive functions, we use
the one to one correspondence between progressive functions on IR+×Ω and strictly
progressive functions on IR+ × Ω × IRn that we have established in [3].
A function φ defined on IR+ × Ω is progressive if φ(s, ω) = φ(s, ω′) as soon as
ω(u) = ω′(u) for all 0 ≤ u ≤ s.
A function φ defined on IR+ × Ω × IRn is strictly progressive if φ(s, ω, x) =
φ(s, ω′, x) as soon as ω(u) = ω′(u) for all 0 ≤ u < s.

The one to one correspondence φ → φ is given by φ(s, ω, x) = φ(s, ω ∗s x) where

ω ∗s x(u) = ω(u) ∀ 0 ≤ u < s and ω ∗s x(u) = x ∀ u ≥ s. (3)

Notice that φ(s, ω) = φ(s, ω, ω(s)). Accordingly a progressive function φ (in 2
variables (s, ω)) is said to be progressively continuous if the associated function φ

(in 3 variables (s, ω, x)) is continuous on IR+ × Ω × IRn.

2.2 Regular Solution

Making use of the one to one corrrespondence between progressive functions on
IR+ × Ω and strictly progressive functions on IR+ × Ω × IRn, we can then give the
following definition for a solution to a general path-dependent PDE.

Definition 1 Let v be a progressive function on IR+ × Ω where Ω is the set of
càdlàg paths with the Skorokhod topology. v is a regular solution to the following
path-dependent second order PDE

H(u, ω, v(u, ω), ∂uv(u, ω), Dxv(u, ω), D2
xv(u, ω)) = 0 (4)

if the function v belongs to C 1,0,2(IR+ ×Ω × IRn) and if the usual partial derivatives
of v satisfy the equation

H(u, ω ∗u x, v(u, ω, x), ∂uv(u, ω, x), Dxv(u, ω, x), D2
xv(u, ω, x) = 0 (5)

with v(u, ω, x) = v(u, ω ∗u x)
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(ω ∗u x)(s) = ω(s) ∀s < u, and (ω ∗u x)(s) = x ∀s ≥ u. The partial derivatives of v
are the usual ones, the continuity notion for v is the usual one.

2.3 Viscosity Solutions on the Set of Càdlàg Paths

The following definitions are motivated by the construction of viscosity solutions for
path-dependent PDEs that we develop in the following sections. Our construction of
solutions is based on themartingale problem approach for path-dependent diffusions.
The support of every probability measure Qa,b

r,ω0
solution to the martingale problem

forL a,b starting fromω0 at time r is contained in the set of pathswhich coincidewith
ω0 up to time r. This is a motivation for the following weak notion of continuity and
also for the weak notion of local minimizer (or local maximizer) that we introduce
in the definition of viscosity solution.

Definition 2 A progressively measurable function v defined on IR+ × Ω is contin-
uous in viscosity sense at (r, ω0) if

v(r, ω0) = lim
ε→0

{v(s, ω), (s, ω) ∈ Dε(r, ω0)} (6)

where

Dε(r, ω0) = {(s, ω), r ≤ s < r + ε, ω(u) = ω0(u), ∀0 ≤ u ≤ r

ω(u) = ω(s) ∀u ≥ s, and sup
r≤u≤s

||ω(u) − ω0(r)|| < ε} (7)

v is lower (resp. upper) semi continuous in viscosity sense if Eq. (6) is satisfied
replacing lim by lim inf (resp. lim sup).

Definition 3 Let v be a progressively measurable function on (IR+ × Ω, (Bt))

where Ω is the set of càdlàg paths with the Skorokhod topology and (Bt) the canon-
ical filtration.

1. v is a viscosity supersolution of (4) if v is lower semi-continuous in viscosity
sense, and if for all (t0, ω0) ∈ IR+ × Ω ,

• v is bounded from below on Dε(t0, ω0) for some ε > 0.
• for all strictly progressive function φ ∈ C 1,0,2

b (IR+ × Ω × IRn) such that
v(t0, ω0) = φ(t0, ω0), and (t0, ω0) is a minimizer of v − φ on Dε(t0, ω0) for
some ε > 0,

H(u, ω ∗u x, φ(u, ω, x), ∂uφ(u, ω, x), Dxφ(u, ω, x), D2
xφ(u, ω, x) ≥ 0 (8)

at point (t0, ω0, ω0(t0)).
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2. v is a viscosity subsolution of (4) if v is upper semi-continuous in viscosity sense,
and for all (t0, ω0),

• v is bounded from above on Dε(t0, ω0) for some ε > 0
• for all strictly progressive function φ ∈ C 1,0,2

b (IR+ × Ω × IRn) such that
v(t0, ω0) = φ(t0, ω0), and (t0, ω0) is a maximizer of v − φ on Dε(t0, ω0) for
some ε > 0,

H(u, ω ∗u x, φ(u, ω, x), ∂uφ(u, ω, x), Dxφ(u, ω, x), D2
xφ(u, ω, x) ≤ 0 (9)

at point (t0, ω0, ω0(t0)).

3. v is a viscosity solution if v is both a viscosity supersolution and a viscosity
subsolution.

2.4 Viscosity Solution on the Set of Continuous Paths

Recently Ekren et al. [13, 14] introduced a notion of viscosity solution of a path-
dependent second order PDE for a function v defined on the set of continuous paths.
One motivation for this was to define the notion of viscosity solution without extend-
ing the function v to the set of càdlàg paths.
We can notice that within our setting we can also define a notion of viscosity solution
for a function v defined only on the set of continuous paths without extending v. We
give the following definition which is very different from that of [13, 14] and much
simpler.

Definition 4 Let v be a progressively measurable function defined on IR+ ×
C (IR+, IRn) with the usual uniform norm topology. v is a viscosity supersolu-
tion of (4) if v is lower semi-continuous in viscosity sense and for all (t0, ω0) ∈
IR+ × C (IR+, IRn)

• v is bounded from below on D̃ε(t0, ω0) for some ε > 0,
• for all function strictly progressiveφ ∈ C 1,0,2

b (IR+×Ω×IRn) such that v(t0, ω0) =
φ(t0, ω0), and (t0, ω0) is a minimizer of v − φ on D̃ε(t0, ω0) for some ε > 0,

H(u, ω ∗u x, φ(u, ω, x), ∂uφ(u, ω, x), Dxφ(u, ω, x), D2
xφ(u, ω, x) ≥ 0 (10)

at point (t0, ω0, ω0(t0)).
HereΩ is the set of càdlàgpathswith theSkorokhod topology, D̃ε is the intersection
of Dε with the set of continuous paths, and φ(u, ω) = φ(u, ω, ω(u)).

The lower semi-continuity property in viscosity sense at (t0, ω0) in Definition 4
means

v(t0, ω0) = lim
ε→0

{v(s, ω), (s, ω) ∈ D̃ε(t0, ω0)}
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We have a similar definition for a viscosity subsolution. Notice that the continuity
along the sets D̃ε is also considered in [13, 14]. However the notion of viscosity
solution introduced in [13, 14] is fundamentally different from ours.
We will now construct time consistent dynamic risk measures making use of proba-
bility measures solution to a path-dependent martingale problem.We will then prove
that this leads to viscosity solutions to path-dependent PDEs (2).

3 Path-dependent Martingale Problem

In the classical setting, the Feynman Kac formula establishes a link between a solu-
tion of a parabolic second order PDE and probability measures solutions to a mar-
tingale problem. Assume that v is a solution of the PDE ∂uv(t, x)+L a,bv(t, x) = 0,
v(T , .) = h with

L a,bv(t, x) = 1

2
Tr(a(t, x))D2

x(v)(t, x) + b(t, x)∗Dxv(t, x)

From the Feynman Kac formula, the value v(t, x) can be expressed from the prob-
ability measure Qa,b

t,x solution to the martingale problem associated to the operator
L a,b starting from x at time t. v(t, x) = EQa,b

t,x
(h(XT )), where (Xu) is the canonical

process.
One natural way to construct soliutions for path-dependent parabolic second order
partial differential equations is thus to start with probability measures solution to
the path-dependent martingale problem associated to the operator L a,b for path-
dependent coefficients a and b. Let Ω be the set of càdlàg paths and (Bt) be the
canonical filtration. Let a and b be progressively measurable functions on IR+ × Ω

(a takes values in non negative invertible matrices and b in IRn). Let L a,b be the
operator defined on C 2

b (IRn) by

L a,b(t, ω) = 1

2

n∑
1

aij(t, ω)
∂2

∂xi∂xj
+

n∑
1

bi(t, ω)
∂

∂xi
(11)

Definition 5 Let r ≥ 0, ω0 ∈ Ω . A probability measure Q defined on (Ω, (Bt))

is a solution to the path-dependent martingale problem forL a,b starting from ω0 at
time r if

Q({ω ∈ Ω |ω(u) = ω0(u)∀0 ≤ u ≤ r}) = 1

and if for all f ∈ C 1,2
b (IR+ × IRn), and all t, (Za,b

r,t )r≤t given by

Za,b
r,t = f (t, Xt(ω)) − f (r, Xr(ω)) −

∫ t

r
(

∂

∂u
+ La,b(u, ω))(f )(u, Xu(ω))du (12)

is a (Q, (Bt)) martingale.
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In [3] we have studied the more general martingale problem associated with path-
dependent diffusions with jumps. We have shown that the good setting to prove
that the martingale problem is well posed is to deal with diffusions operators whose
coefficients a and b are progressively continuous.

Recall the following result from [3].

Theorem 1 1. Let a be a progressively continuous bounded function defined on
IR+ × Ω with values in the set of non negative matrices. Assume that a(s, ω) is
invertible for all (s, ω). Let b be a progressively measurable bounded function
defined on IR+ × Ω with values in IRn. For all (r, ω0), the martingale problem
for L a,ab starting from ω0 at time r is well posed i.e. admits a unique solution
Qa,ab

r,ω0
on the set of càdlàg paths.

2. Assume furthermore that b is progressively continuous bounded. Consider the
set of probability measures M1(Ω) equipped with the weak topology. Then the
map

(r, ω, x) ∈ IR+ × Ω × IRn → Qa,ab
r,ω∗rx ∈ M1(Ω)

is continuous on {(r, ω, x) | ω = ω ∗r x}.

3.1 The Role of Continuous Paths

In all the following Qa
r,ω0

means Qa,0
r,ω0

We start with a result which proves that the probability measure Qa,ab
r,ω0

is supported
by paths which are continuous after time r.

Proposition 1 Every probability measure Qa,ab
r,ω0

solution to the martingale problem
for L a,ab starting from ω0 at time r is supported by paths which are continuous after
time r, i.e. continuous on [r,∞[.
More precisely

Qa,ab
r,ω0

({ω, ω(u) = ω0(u) ∀u ≤ r, and ω|[r,∞[ ∈ C ([r,∞[, IRn)} = 1

Proof The probability measure Qa,ab
r,ω0

is equivalent with Qa
r,ω0

. Thus we can assume
that b = 0.
The function a is progressively continuous. This means that the function a is contin-
uous. Let an be the 1

n delayed function defined as an(u, ω, x) = a(u − 1
n , ω, x) for

all u ≥ r + 1
n and an(u, ω, x) = a(r, ω, x) for all 0 ≤ u ≤ r + 1

n . The function an

is also progressively continuous. Given n, let tn
k be an increasing sequence such that

tn
0 = r and |tn

k+2 − tn
k | < 1

n .
On a Polish space for every subsigma algebra of the Borel sigma algebra there
exists a regular conditional probability distribution. It follows from [22] and the
uniqueness of the solution for L an,0 starting from ω at time tn

k , that for all tn
k ,

Qan
tn
k ,ω

(ξ) = EQan
r,ω0

(ξ |Btn
k
)(ω) for Qan

r,ω0 almost all ω. Let an,ω(u, x) = an(u, ω, x)
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Let Ak = {ω′, ω′
[tn

k ,tn
k+2[ ∈ C ([tn

k , tn
k+2[)}. Given ω the function an,ω is not path-

dependent. It follows then from [11] that Q
an,ω

tn
k ,ω

is supported by paths continuous on

[tn
k ,∞[. We remark that an(u, ω′, x) = an,ω(u, x) for all tn

k ≤ u ≤ tn
k+2 and all ω′

such that ω′(u) = ω(u) for all u ≤ tn
k . It follows that Qan

tn
k ,ω

(Ak) = 1 for all ω. We

deduce by induction that Qan
r,ω0({ω′, ω′|[r,∞[ ∈ C ([r,∞[, IRn)} = 1.

The an being uniformly bounded, for given r and ω0, the set of probabilty mea-
sures {Qan

r,ω0 , n ∈ IN∗} is weakly relatively compact. There is a subsequence weakly
converging to a probability measure Q. From the continuity assumption on a, it fol-
lows that Q solves the martingale problem for L a,0 starting from ω0 at time r. The
uniqueness of the solution to this martingale problem implies that Q = Qa

r,ω0
. The

set {ω′, ω′|[r,∞[ ∈ C ([r,∞[, IRn)} is a closed subset of Ω . It follows from
the Portmanteau Theorem, see e.g. [2] Theorem 2.1, that Qa

r,ω0
({ω′, ω′|[r,∞[ ∈

C ([r,∞[, IRn)} = 1

Corollary 1 For all continuous path ω0 and all r, the support of the probability
measure Qa,ab

r,ω0
is contained in the set of continuous paths:

Qa,b
r,ω0

C ([IR+, IRn)) = 1

Remark 1 In the simpler case where the function a is only defined on the set of con-
tinuous paths, the continuity hypothesis is just the usual continuity hypothesis for a
function defined on IR+ × C ([IR+, IRn)) for the uniform norm topology. The asso-
ciated martingale problem: probability measure solution to the martingale problem
forL a,0 starting from ω0 at time r can only be stated for initial continuous paths ω0
(otherwise the path-dependent function a(u, ω) should be defined for paths ω which
can have jumps before time u).

4 Stable Set of Probability Measures Solution to a
Path-dependent Martingale Problem

In all the paperΩ denotes the set of càdlàg paths endowed with the Skorokhod topol-
ogy. From now on, a(s, ω) is a given progressively continuous function on IR+ × Ω

with values in non negative matrices. We assume that a is bounded and that a(s, ω)

is invertible for all (s, ω). The explicit construction of dynamic risk measures devel-
oped here, making use of probability measures solutions to a martingale problem
was first initiated in the unpublished preprint [4] in the Markovian case. We have
introduced in [5] a general method to construct time consistent convex dynamic risk
measures. This construction makes use of two tools. The first one is a setQ of equiv-
alent probability measures stable by composition and stable by bifurcation (cf. [5]
Definition 4.1). The second one consists in penalties αs,t(Q), s ≤ t defined for every
probability measure Q inQ, satisfying the local condition and the cocycle condition.
The corresponding definitions are recalled in the Appendix.
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4.1 Multivalued Mapping and Continuous Selector

Definition 6 X denotes the quotient of IR+ × Ω × IRn by the equivalence relation
∼: (t, ω, x) ∼ (t′, ω′, x′) if t = t′, x = x′ and ω(u) = ω′(u)∀u < t. The metric
topology onX is induced by the one to onemap fromX into a subset of IR+×Ω×IRn:
(t, ω, x) → (t, ω ∗t x, x),
where ω ∗t x has been defined in Sect. 2.2 Eq. (3).

The following observation is straightforward.

Remark 2 The set X is equipped with the metric topology defined above. Then every
progressively continuous map on IR+ × Ω defines a unique continuous map on X.
Furthermore every map continuous on the subset {(r, ω, x), ω = ω ∗r x} of IR+ ×
Ω × IRn defines also a unique continuous map on X.

Recall now the definition of a multivalued mapping from X to Y . We use here the
terminology chosen in [9]. Notice that the terminology used in [1] for multivalued
mapping is correspondence.

Definition 7 A multivalued mapping Λ from X into IRn is a map Λ defined on X
such that for all (t, ω, x) ∈ X, Λ(t, ω, x) is a subset of IRn. It can have additional
properties:

1. Λ is convex if ∀(t, ω, x) ∈ X, Λ(t, ω, x) is a convex subset of IRn.
2. Λ is closed if for all (t, ω, x), Λ(t, ω, x) is closed.

Recall the following definition of a continuous selector (Definition16.57 of [1]).

Definition 8 A selector from a multivalued mappingΛ fromX into IRn is a function
s : X → IRn such that s(t, ω, x) ∈ Λ(t, ω, x) for all (t, ω, x) ∈ X. A continuous
selector is a selector which is continuous.

Recall the following definition from [1] (Definition16.2 and Lemma16.5):

Definition 9 A multivalued mapping Λ from X into IRn is lower hemicontinuous if
it satisfies the following equivalent conditions

• For every closed subset F of IRn, Λu(F) = {(t, ω, x) ∈ X : Λ(t, ω, x) ⊂ F} is
closed

• For every open subset V of IRn, Λl(V ) = {(t, ω, x) ∈ X : Λ(t, ω, x) ∩ V 
= ∅} is
open

Recall the following Michael Selection Theorem (cf. [1] Theorem16.61)

Theorem 2 A lower hemicontinuous mapping from a paracompact space into a
Banach space with non empty closed convex values admits a continuous selector.

Recall also that every metrizable space is paracompact (Theorem 2.86 of [1]).
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4.2 Stable Set of Probability Measures Associated to a
Multivalued Mapping

In all the following,Λ is a closed convex lower hemicontinuousmultivaluedmapping
from X into IRn. In the following (Xt) denotes the canonical process on Ω : For all
càdlàg path ω, Xt(ω) = ω(t). (Bt) is the canonical filtration.
Given the progressively continuous matrix valued map a, given r ≥ 0, and ω ∈ Ω ,
we want to associate to Λ a stable set Qr,ω(Λ) of probability measures on (Ω,B)

all equivalent with the probability measure Qa
r,ω on Bt . Furthermore we want to

construct a continuous function v on X. Therefore we start with continuous selectors
λ from Λ.

Definition 10 Let a be progressively continuous bounded defined on IR+ × Ω with
values in non negative matrices, such that a(t, ω) is invertible for all (t, ω). Let Λ be
a closed convex lower hemicontinuous multivalued mapping from X into IRn.

• We define L(Λ) to be the set of continuous bounded selectors from themultivalued
mapping Λ.

• For given r ≥ 0 and ω ∈ Ω , the set Q̃r,ω(Λ) is the stable set of probability
measures generated by the probability measures Qa,aλ

r,ω , λ ∈ L(Λ) with λ(t, ω′) =
λ(t, ω′, Xt(ω

′))

(
dQa,aλ

r,ω

dQa
r,ω

)BT
= exp[

∫ T

r
〈λ(t, ω′), dXt〉 − 1

2

∫ T

r
〈λ(t, ω′), a(t, ω′)λ(t, ω′)〉dt]

We give now a description of the set Q̃r,ω(Λ).

Definition 11 We define L̃(Λ) to be the set of processes μ such that there is a finite
subdivision 0 = s0 < ·· < si < si+1 · · < sk < ∞. There is a continuous selector
λ0,i0 in L(Λ). And for all 0 < i ≤ k there is a finite partition (Ai,j)j∈Ii of Ω intoBsi

measurable sets, and continuous selectors λi,j in L(Λ) such that

∀si < u ≤ si+1, ∀ω′ ∈ Ω, μ(u, ω′, x) =
∑
j∈Ii

λi,j(u, ω′, x)1Ai,j (ω
′)

∀sk < u ∀ω′ ∈ Ω, μ(u, ω′, x) =
∑
j∈Ik

λk,j(u, ω′, x)1Ak,j (ω
′)

∀u ≤ s0, ∀ω′ ∈ Ω, μ(u, ω′, x) = λ0,i0(u, ω′, x) (13)

Remark 3 Every processμ in L̃(Λ) is bounded strictly progressive andP×B(IRn)

measurable whereP is the predictable sigma algebra. However there is no uniform
bound.
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Proposition 2 1. Let a be as above and μ ∈ L̃(Λ). For all r ≥ 0 and all ω ∈ Ω ,
there is a unique solution to the martingale problem for L a,aμ starting from
ω at time r with μ(u, ω) = μ(u, ω, ω(u)). Furthermore for all r < s, the
map ω′ → Qa,aμ

s,ω′ is Bs measurable and is a regular conditional probability

distribution of Qa,aμ
r,ω given Bs.

2. Given 0 ≤ r, the set Q̃r,ω(Λ) is the set of all probability measures Qa,aμ
r,ω for

some process μ belonging to L̃(Λ).

Proof Let μ ∈ L̃(Λ). There is a finite subdivision 0 = s0 < · · · < si < si+1 <

· · · sk < ∞ such that μ is described by Eq. (13). Let r and ω. We prove first by
induction on k that there is a unique solution Q to the martingale problem forL a,aμ

starting from ω at time r and that Q belongs to Q̃r,ω(Λ).
For k = 0 the result is true by hypothesis.

Inductive step: Assume that k ≥ 1 and that the result is proved for k − 1. Let Q be a
solution to themartingale problem forL a,aμ starting fromω at time r. LetQsk ,ω

′ be a
regular conditional probability distribution of Q givenBsk . From [22] it follows that
for Q almost all ω′ in Ak,j, Qsk ,ω

′ is a solution to the martingale problem forL a,aλk,j

starting from ω′ at time sk . The martingale problem for L a,aλk,j is well posed. Let

Q
a,aλk,j

sk ,ω
′ be the unique solution to the martingale problem for L a,aλk,j starting from

ω′ at time sk . It follows that Qsk ,ω
′ = Q

a,aλk,j

sk ,ω
′ on Ak,j Q a.s. Thus for all ξ ,

EQ(ξ |Bsk )(ω
′) =

∑
j∈Ik

1Ak,j (ω
′)Qa,aλk,j

sk ,ω
′ (ξ)

EQ(ξ |Bsk ) =
∑
j∈Ik

1Ak,j EQ
a,aλk,j
r,ω′

(ξ |Bsk ) (14)

On the other hand the restriction ofQ toBsk is a solution to themartingale problem for
L a,aν where ν ∈ L̃(Λ) is associated to the subdivision (si)0≤i≤k−1 and ν coincides
with μ on Bsk . From the induction hypothesis it follows that the restriction of Q to
Bsk is uniquely determined, it coincides with Qa,aν

r,ω and it belongs to Q̃r,ω(Λ).
The end of the proof of the inductive step follows then from Eq. (14), from the Bsk

measurability of the map ω′ → Q
a,aλk,j

sk ,ω
′ (ξ) and from the definition of Q̃r,ω(Λ).

On the other hand it is easy to verify that the set {Qa,aμ
r,ω : μ ∈ L̃(Λ)} is stable. �

5 Construction of Penalties

In the preceding section we have constructed for all given (r, ω) a stable set of
probabilitymeasures Q̃r,ω(Λ) associated to amultivaluedmappingΛ. In this section
we construct penalties αst(Q) for all r ≤ s ≤ t and all Q ∈ Q̃r,ω(Λ) making use of
a function g.
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Let g : IR+×Ω×IRn → IR∪{+∞} be a progressivelymeasurable function. LetΛ be
a closed convexmultivaluedBorelmapping such that for all (t, ω, x) ∈ IR+×Ω×IRn,
{0} ⊂ Λ(t, ω, x) ⊂ {y ∈ IRn| g(t, ω ∗t x, y) < ∞}. Define f as follows:

∀z ∈ IRd f (t, ω, z) = sup
y∈Λ(t,ω,Xt(ω))

(−z.y − g(t, ω, y)) (15)

The following lemma is straightforward:

Lemma 1 For all (t, ω), f (t, ω, .) is a closed convex function which is the dual
transform of the function g̃(t, ω, .) where

g̃(t, ω, y) = g(t, ω, y) if y ∈ Λ(t, ω, Xt(ω))

= +∞ else (16)

For every (t, ω) dom(g̃(t, ω, .)) = Λ(t, ω, Xt(ω))

If g(t, ω, 0) = 0 ∀(t, ω), f takes values in [0,∞].
If g takes values in [0,∞] and satisfies ∀(t, ω), infy∈Λ(t,ω,Xt(ω))g(t, ω, y) = 0 then
for all (t, ω), f (t, ω, 0) = 0.

Notice that, sinceΛ is a closed convexmultivaluedmapping, replacing g by g̃, one
can always assume that for all (t, ω), dom(g(t, ω, .) = {y ∈ IRd |g(t, ω, y) < ∞} is
closed, convex and equal to Λ(t, ω, Xt(ω)). We assume this in all the remainder.

Definition 12 1. g satisfies the following polynomial growth condition (GC1) if
there is K > 0, m ∈ IN∗ and ε > 0 such that

∀y ∈ Λ(u, ω, Xu(ω)), |g(u, ω, y)| ≤ K(1+sup
s≤u

||Xs(ω)||)m(1+||y||2−ε) (17)

2. g satisfies the growth condition (GC2) if there is K > 0 such that

∀y ∈ Λ(u, ω, Xu(ω)), |g(u, ω, y)| ≤ K(1 + ||y||2) (18)

Recall the following definition of BMO processes.

Definition 13 Let C > 0. Let P be a probability measure. A progressively measur-
able process μ belongs to BMO(P) and has a BMO norm less or equal to C if for all
stopping times τ ,

EP(

∫ ∞

τ

||μs||2ds|Fτ ) ≤ C

Recall also from [15] that the stochastic exponential E (μ) of a BMO process μ

is uniformly integrable, and that the BMO norms with respect to P and P(E (μ).)

are equivalent. Also from [15], for all C > 0 there is 1 < p0 < ∞ such that for all
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BMO(P) process μ with ||μ||BMO(P) ≤ C, the stochastic exponential E (μ) satisfies
the reverse Hölder inequality:

[EP(E (μ)p0 |Bs)]
1

p0 ≤ KCE (μ)s (19)

Definition 14 Assume that g is non negative or satisfies one of the growth conditions
(GC1) or (GC2). Let 0 ≤ r ≤ T . For all BMO(Qa

r,ω) process μ Λ-valued, for all
r ≤ s ≤ t ≤ T , define the penalty αs,t(Q

a,aμ
r,ω ) as follows

αs,t(Q
a,aμ
r,ω ) = EQa,aμ

r,ω
(

t∫
s

g(u, ω, μ(u, ω))du|Bs) (20)

We need to verify that the penalties are well defined for all BMO processes and that
they satisfy the local property and the cocycle condition. (Definition introduced in
[5], Definition 4.3 and recalled in the Appendix).

Proposition 3 Assume that the process μ belongs to BMO(Qa
r,ω). Let C such that

||μ||BMO(Qa
r,ω) ≤ C.

•1. Assume that g satisfies the growth condition (GC1). Then Eq. (20) defines a
random variable in Lp(Qa

r,ω) for all 1 ≤ p < ∞, and for given p, the Lp(Qa
r,ω)

norms of αs,t(Q
a,aμ
r,ω ) are uniformly bounded for r ≤ s ≤ t ≤ T, for all μ such

that ||μ||BMO(Qa
r,ω) ≤ C.

αs,t(Q
a,aμ
r,ω ) belongs also to L1(Q

a,aμ
r,ω ) and the L1(Q

a,aμ
r,ω ) norms of αs,t(Q

a,aμ
r,ω )

are uniformly bounded for ||μ||BMO(Qa
r,ω) ≤ C and r ≤ s ≤ t ≤ T.

2. Assume that g satisfies (GC2), then the random variables αs,t(Q
a,aμ
r,ω ) belong to

L∞(Qa
r,ω) and are uniformly bounded for ||μ||BMO(Qa

r,ω) ≤ C and r ≤ s ≤ t ≤
T.

3. In case g is non negative, Eq. (20) defines a non negative Br
s random variable.

• Assume that g satisfies the growth condition (GC1) or (GC2). Then the penalty
defined in (20) satisfies the cocycle condition for every Qa,aμ

r,ω : Let r ≤ s ≤ t ≤ u

αs,u(Q
a,aμ
r,ω ) = αs,t(Q

a,aμ
r,ω ) + EQa,aμ

r,ω
(αt,u(Q

a,aμ
r,ω )|Bs) (21)

• The penalty defined in (20) is local on Q̃r,ω(Λ)

• If g(t, ω, 0) = 0 ∀(t, ω) ∈ IR+ × Ω , The probability measure Qa
r,ω has zero

penalty.

Proof 1. Assume that the function g satisfies the growth condition (GC1). Without
loss of generality one can assume that m ≥ 2. Choose p1 > 1 such that (2 −
ε)p1 = 2. Let q be the conjugate exponent of p1.
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It follows from the conditional Hölder inequality and the equivalence of the
BMO norms with respect to Qa

r,ω and Qa,aμ
r,ω that

EQa,aμ
r,ω

(

t∫
s

(1 + sup
s≤u

||Xs(ω)||)m||μu(ω)||2−εdu|Bs)

≤ K1C
1

p1 [EQa,aμ
r,ω

( sup
s≤s′≤u

(1 + ||Xs′ ||)mq)|Bs]
1
q (t − s)

1
q (22)

Let p0 be such that Eq. (19) is satisfied for P = Qa
r,ω. Let q0 be the conjugate

exponent of p0. It follows from conditional Hölder inequality and (19) that

EQa,aμ
r,ω

(sup
s′≤u

(1 + ||Xs′ ||)mq|Bs)) ≤ KCEQa
r,ω

( sup
s≤s′≤t

(1 + ||Xs′ ||)mqq0 |Bs)
1

q0

≤ KCEQa
r,ω

( sup
s≤s′≤t

(1 + ||Xs′ ||)mqjq0 |Bs)
1

q0 j (23)

for all j ≥ 1. The first assertion of 1 of the proposition follows then from the
Eqs. (22) and (23) and the inequality EQa

r,ω
(sups≤u≤t(1 + ||Xt ||)k)) < ∞ for all

k ≥ 2 ( [16], Chap. 2 Sect. 5).
The second asssertion of 1. of the proposition follows from Eq. (22) and then
from Eq. (23) applied withBs equal to the trivial sigma algebra.

2. Assume that g satisfies the the growth condition (GC2). Thus

|αst(Q
a,aμ
r,ω )| ≤ KEQa,aμ

r,ω
(

t∫
s

(1 + ||μu(ω)||2)du|Bs)

The result follows then from the BMO condition.
3. The case g non negative is trivial.

• The cocycle condition (21) follows easily from the definition (20) and the above
integrability.

• We prove now that the penalty α is local on Q̃r,ω(Λ). Let μ, ν ∈ L̃(Λ). The
probability measures Qa,aμ

r,ω and Qa,aν
r,ω are equivalent to Qa

r,ω. Let r ≤ s ≤ t
and A be Bs-measurable. Assume that for all X in L∞(Bt), EQa,aμ

r,ω
(X|Bs)1A =

EQa,aν
r,ω

(X|Bs)1A. It follows from the equality E (aμ)t
E (aμ)s

1A = E (aν)t
E (aν)s

1A and the P ×
B(IRn) measurability of μ and ν that 1|]s,t[1Aμ = 1|]s,t[1Aν Qa

r,ω a.s. From (20)

we get αs,t(Q
a,aμ
r,ω )1A = αs,t(Qa,aν

r,ω )1A. Thus the penalty α is local on Q̃r,ω(Λ).
• The last point follows easily from the definition of the penalty. �



Dynamic Risk Measures and Path-Dependent … 163

6 Time Consistent Dynamic Risk Measures Associated
to Path-dependent Martingale Problems

We change the sign in the classical definition of risk measures in order to avoid the
minus sign which appears in the time consistency property for usual dynamic risk
measures. In fact ρst(−X) are “usual” dynamic risk measures.

6.1 Normalized Time-Consistent Convex Dynamic Risk
Measures

Proposition 4 Let Q̃r,ω(Λ) be the stable set of probability measures defined in
Definition10. Assume that g is non negative, and that for all (u, ω′), g(u, ω′, 0) = 0.
Let r ≤ s ≤ t. The formula

ρ
r,ω
s,t (Y) = esssupQa,aμ

r,ω ∈Q̃r,ω()
(EQa,aμ

r,ω
(Y|Bs) − αs,t(Q

a,aμ
r,ω )) (24)

where αs,t(Q
a,aμ
r,ω ) is given by Eq. (20) defines a normalized time consistent convex

dynamic risk measure on L∞(Ω,B, Qa
r,ω).

For given 0 ≤ r ≤ t and Y in L∞(Ωr,Br
t , Qa

r,y), the process (ρ
r,ω
s,t (Y))r≤s≤t admits

a càdlàg version.

Proof Notice that for all bounded Y ,

−||Y ||∞ ≤ EQa
r,ω

(Y |Bs) ≤ ρ
r,ω
s,t (Y) ≤ esssupQa,aμ

r,ω ∈Q̃r,ω()
(EQa,aμ

r,ω
(Y|Bs) ≤ ||Y||∞

Thus for all r ≤ s ≤ t, ||ρr,ω
s,t (Y)||∞ ≤ ||Y ||∞. The first statement follows then

from Definition 10, from Propositions 2 and 3 and from Theorem 4.4 of [5].
The proof of the regularity of paths which was given in [6] Theorem3 for normalized
convex dynamic risk measures time consistent for stopping times can be extended
to normalized convex dynamic risk measures time consistent for deterministic
times. �

We have the following extension of the dynamic risk measure to random variables
essentially bounded from below:

Corollary 2 The definition of ρr,ω
s,t (Y) can be extended to random variables Y (Bt)-

measurable which are only essentially bounded from below.
ρ

r,ω
s,t (Y) = limn→∞ ρ

r,ω
s,t (Y ∧ n). For every Y essentially bounded from below, the

process (ρ
r,ω
s,t (Y)) is optional.

Proof Let Y be Bt-measurable and Qa
r,ω-essentially bounded from below, Y is the

increasing limit of Yn = Y ∧n as n tends to∞. Define ρ
r,ω
s,t (Y) as the increasing limit

of ρ
r,ω
s,t (Yn). As we already know that for given s and t, ρr,ω

s,t (Y) defined on bounded
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random variables by formula (24) is continuous from below, the extended definition
coincides with the previous one on Qa

r,ω-essentially bounded random variables.
From Proposition 4 for every n one can choose a càdlàg version of the process
ρ

r,ω
s,t (Yn). Thus the map (s, ω) → ρ

r,ω
s,t (Y) = lim ρ

r,ω
s,t (Yn) is measurable for the

optional sigma algebra. �

6.2 General Time-Consistent Convex Dynamic Risk Measures

In this section the function g (and thus the penalty) is not assumed to be non negative.

Definition 15 Let Q be a probability measure on (Ω, (Bt)t∈IR+). The multivalued
mapping Λ is BMO(Q) if there is a map φ ∈ BMO(Q) such that

∀(u, ω), sup{||y||, y ∈ Λ(u, ω)} ≤ φ(u, ω)

In the following, p0 is chosen such that the reverse Hölder inequality (19) is satisfied
for aφ.

Theorem 3 Let (r, ω). Assume that the multivalued set Λ is BMO(Qa
r,ω). Let

Q̃r,ω(Λ) be the stable set of probability measures defined in Definition10.
Let r ≤ s ≤ t. Let

ρ
r,ω
s,t (Y) = esssupQa,aμ

r,ω ∈Q̃r,ω()
(EQa,aμ

r,ω
(Y|Bs) − αs,t(Q

a,aμ
r,ω )) (25)

where αs,t(Q
a,aμ
r,ω ) is given by Eq. (20)

• Assume that g satisfies the growth condition (GC1). The above Eq. (25) defines a
dynamic risk measure (ρ

r,ω
s,t ) on Lp(Qa

r,ω, (Bt)) for all q0 ≤ p < ∞, (where q0 is
the conjugate exponent of p0 chosen as above). These dynamic risk measures are
time consistent for stopping times taking a finite number of values.

• Assume that g satisfies the growth condition (GC2). The above Eq. (25) defines
a dynamic risk measure (ρ

r,ω
s,t ) on L∞(Qa

r,ω, (Bt)) , and also on every Lp(Qa
r,ω,

(Bt)) for q0 ≤ p < ∞. These dynamic risk measures are time consistent for
stopping times taking a finite number of values.

Proof There is a constantC > 0 such that for allQa,aμ
r,ω ∈ Q̃r,ω(Λ), ||aμ||BMO(Qa

r,ω) ≤
C. It follows from the reverseHölder inequality (19), that for all non negativemeasur-

able Y , EQa,aμ
r,ω

(Y |Bs) ≤ KC(EQa
r,ω

(||Y ||q0 |Bs)
1

q0 . Thus Y → EQa,aμ
r,ω

(Y |Bs) defines
a linear continuous map on Lp(Qa

r,ω) with values Lp(Qa
r,ω) for all q0 ≤ p ≤ ∞, and

that for given p, the norms of these linear maps are uniformly bounded for Λ valued.
From Proposition 3, it follows then that Eq. (25) defines a dynamic risk measure
(ρ

r,ω
s,t ) on Lp(Qa

r,ω, (Bt)) for all q0 ≤ p < ∞ in case (GC1). Under assumption
(GC2), equation (25) defines a dynamic risk measure (ρ

r,ω
s,t ) on Lp(Qa

r,ω, (Bt)) for
all Lp, q0 ≤ p ≤ ∞.
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The time consistency for stopping times taking a finite number of values follows
from the stability property of the set of probability measures as well as the cocycle
and local property of the penalties (cf. [5] in L∞ case). The proof is the same in Lp

case.

7 Strong Feller Property

7.1 Feller Property for Continuous Parameters

We assume that the progressively measurable function g is a Caratheodory function
on IR+ × Ω × IRn, that is for all u, (ω, x) → g(u, ω, x) is continuous. The support
of Qa,μ

r,ω is contained in the paths ω′ continuous on [r,∞[ (Proposition 1) and which
coincidewithω on [0, r]. It follows that for every functionλ progressively continuous
bounded, and all u > r, the function ω′ → g(u, ω′, λ(u, ω′)) is continuous on the
support of Qa,aλ

r,ω . We prove then the following Feller property for the penalty.

Proposition 5 Let a be progressively continuous bounded such that a(s, ω) is invert-
ible for all (s, ω). Let λ be progressively continuous bounded. Assume that g is a real
valued Caratheodory function satisfying the growth condition (GC1) or (GC2).

1. There is a strictly progressive real valued map L(g) on [0, t]×Ω×IRn continuous
on {(s, ω, x), ω = ω ∗s x} such that

EQa,aλ
s,ω∗sx

∫ t

s
g(u, ω′, λ(u, ω′)du) = L(g)(s, ω, x) ∀s ≤ t ω and x (26)

2. For all 0 ≤ r ≤ s ≤ t, and ω ∈ Ω , there is a Qa,λ
r,ω-null set N such that for all

ω1 ∈ Nc,

EQa,aλ
r,ω

(

∫ t

s
g(u, ω′, λ(u, ω′))du|Bs)(ω1) = L(g)(s, ω1, Xs(ω1)) (27)

Proof We only need to prove 1.
Step 1: Assume that the function g is bounded. Then

∫ t
s g(u, ω′, λ(u, ω′))du is a

continuous bounded function of ω′ on the support of Qa,aλ
s,ω . The map λ being pro-

gressively continuous bounded, the continuity property for L(g) follows easily from
Theorem 1.
Step 2: general case. Notice that λ is bounded.
Thus under assumption (GC2), g(u, ω′, λ(u, ω′) is uniformly bounded and the con-
tinuity property of L(g) follows from step 1.
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Under assumption (GC1), let (sn, ωn, xn), ωn = ωn ∗sn xn with limit (s, ω, x), ω =
ω ∗s x. By definition the sequence ωn ∗sn xn has limit ω ∗s x. It follows from [3] that
the set of probability measures Q = {Qaλ

sn,ωn∗sn xn
, n ∈ IN} ∪ {Qaλ

s,ω∗sx} is weakly
relatively compact and thus tight. Thus for all η > 0, there is a compact setK such
that Q(K c) < η for all Q ∈ Q. From the growth condition (GC1), the existence
of a uniform bound for EQ[∫ t

s (1 + sups≤u ||Xu||m)du]k for Q ∈ Q and the Hölder
inequality, it follows that there is a progressively continuous bounded function g1
such that for all Q inQ,

EQ

∫ t

s
(||g(u, ω, (aλ)(u, ω) − g1(u, ω)||))du ≤ ε. (28)

The result follows then from step 1. �

We introduce now a class ofBt measurable functions onΩ satisfying a continuity
condition derived from the progressive continuity condition that we have introduced
for progressive functions and from the continuity property proved in Theorem 1.

Definition 16 Let t > 0. The function h defined on Ω belongs to Ct if there is a
function h̃ on Ω × IRn such that

• h(ω) = h̃(ω ∗t Xt(ω), Xt(ω))

• h̃(ω, x) = h̃(ω′, x) if ω(u) = ω′(u) ∀u < t

and such that h̃ is continuous bounded on {(ω, x), ω = ω ∗t x} ⊂ Ω × IRn

Corollary 3 Assume that a is progressively continuous bounded and that a(s, ω)

is invertible for all (s, ω). Let λ be progressively continuous bounded. Let h ∈ Ct .
Asssume that the penalty αs,t is given by Eq. (20) for some Caratheodory function g
on IR+ × Ω × IRn satifying the growth condition (GC1) or (GC2). There is a strictly
progressive map La,λ(h) continuous on {(u, ω ∗u x, x), 0 ≤ u ≤ t} such that for all
0 ≤ r0 ≤ r ≤ t,

La,λ(h)(t, ω, x) = h̃(ω, x)

La,λ(h)(r, ω, x) = EQa,aλ
r,ω∗r x

(h) − αr,t(Q
a,aλ
r,ω∗rx)

= [EQa,aλ
r0,ω0

(h|Br) − αr,t(Q
a,aλ
r0,ω0

)](ω ∗r x) Qa,aλ
r0,ω0

a.s. (29)

Proof The result follows from Theorem 1 and from Proposition5. �

7.2 Feller Property for the Dynamic Risk Measure

Proposition 6 Let μ in L̃(Λ) (Definition11). Let t > 0 and h ∈ Ct . Asssume that the
penalty αs,t is given by Eq. (20) for some Caratheodory function g on IR+ ×Ω × IRn

satifying the growth condition (GC1) or (GC2). There is a strictly progressive map
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Φμ(h) continuous on {(u, ω, x), ω = ω ∗u x, u ≤ t} such that Φμ(h)(t, ω, x) =
h̃(ω, x) for all ω, and such that for all r ≤ s ≤ t, there is a process νs in L̃(Λ) such
that

Φμ(h)(s, ω, x) = EQa,aνs
s,ω∗sx

(h) − αs,t(Q
a,aνs
s,ω∗sx) (30)

EQa,aνs
r,ω0

(h|Bs)(ω
′) − αs,t(Q

a,aνs
r,ω0

)(ω′) = Φμ(h)(s, ω′, Xs(ω
′)) Qa

r,ω0
a.s. (31)

and

EQa,aμ
r,ω0

(h|Bs) − αs,t(Q
a,aμ
r,ω0

) ≤ EQa,aνs
r,ω0

(h|Bs) − αs,t(Q
a,aνs
r,ω0

) Qa
r,ω0

a.s. (32)

Proof The proof is done in two steps. The first step is the construction of Φμ(h)

given μ. The second step is the construction of νs given μ and s. μ belongs to L̃(Λ).
From Definition 11, let 0 = s0 < ·· < si < si+1 · · < sk < sk+1 = ∞ be a finite
partition such that Eq. (13) is satisfied.

• First step: construction of Φμ(h). We construct Φμ(h) recursively on [si, si+1[.
Let sn be such that sn < t ≤ sn+1. From Corollary 3, for all j ∈ In there is a
strictly progressive map La,λn,j (h) continuous on {(u, ω, x), ω = ω ∗u x, u ≤ t}
satisfying Eq. (29). Let

Φμ(h)(s, ω, x) = sup
j∈In

La,λn,j (h)(s, ω, x) ∀s ∈ [sn, t[ (33)

Let hn(ω) = Φμ(h)(sn, ω, Xsn(ω)). The function hn belongs to Csn and
h̃n(ω, x) = Φμ(h)(sn, ω, x). Then we can proceed on [sn−1, sn[ with hn. We con-
struct recursively the strictly progressivemapΦμ(h) continuouson {(u, ω, x), ω =
ω ∗u x, u ≤ t}. Notice that for all s ∈ [si, si+1], there are Bs measurable sets
(Cs,j)j∈Ii , such that

Φμ(h)(s, ω, x) =
∑
j∈Ii

1Cs,j (ω)La,λi,j (hi+1)(s, ω, x) (34)

• Second step: Given s ∈ [r, t], construction of the process νs.
There is a unique k such that s ∈]sk, sk+1]. For i > k for all u ∈]si, si+1], define

νs(u, ω) =
∑
j∈Ii

1Csi ,j
(ω)λi,j(u, ω) (35)

And for u ∈]s, sk+1], define

νs(u, ω) =
∑
j∈Ik

1Cs,j (ω)λk,j(u, ω) (36)
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and νs(u, ω) = μ(u, ω) for all 0 ≤ u ≤ s. It follows from the construction of νs

that the process νs belongs to L̃(Λ). It follows also recursively that for all i > k
and ω ∈ Ω ,

EQa,aνs
si ,ω

(h) − αsi,t(Q
a,aνs
si,ω

) = Φμ(h)(si, ω, Xsi(ω)) (37)

and for all ω ∈ Ω ,

EQa,aνs
s,ω

(h) − αs,t(Q
a,aνs
s,ω ) = Φμ(h)(s, ω, Xs(ω)) (38)

By construction the following inequality is satisfied:

EQa,aμ
s,ω

(h) − αs,t(Q
a,aμ
s,ω ) ≤ Φμ(h)(s, ω, Xs(ω)) (39)

It follows then from Proposition 2 that

EQa,aμ
r,ω0

(h|Bs) − αs,t(Q
a,aμ
r,ω0

) ≤ EQa,aνs
r,ω0

(h|Bs) − αs,t(Q
a,aνs
r,ω0

) Qa
r,ω0

a.s.

and

[EQa,aνs
r,ω0

(h|Bs) − αs,t(Q
a,aνs
r,ω0

)](ω′) = Φμ(h)(s, ω′, ω′(s)) Qa
r,ω0

a.s. �

Theorem 4 Assume that the hypothesis of Theorem3 are satisfied and that g
is Caratheodary function. The time consistent dynamic risk measure (ρ

r,ω
s,t )r≤s≤t

defined on L∞(Ω,B, Qa
r,ω) by Eq. (25) satisfies the following Feller property: For

every function h ∈ Ct , there is a progressive map R(h)on IR+×Ω , R(h)(t, ω) = h(ω),
such that R(h) is lower semi continuous on {(u, ω, x), u ≤ t, ω = ω ∗u x} and such
that the following equation is satisfied

∀s ∈ [r, t], ∀ω′ ∈ Ω, ρ
s,ω′
s,t (h) = R(h)(s, ω′) (40)

∀0 ≤ r ≤ s ≤ t, ρ
r,ω
s,t (h)(ω′) = R(h)(s, ω′, ω′(s)) Qa

r,ω a.s. (41)

(R(h) denotes the strictly progressive map on IR+ × Ω × IRn associated to R(h) in
the one to one corrrespondence introduced in Sect.2).

Proof For all μ ∈ L̃(Λ), let Φμ(h) be the strictly progressive map, continuous
on {(u, ω, x), ω = ω ∗u x, u ≤ t} constructed in Proposition 6. Let R(h) =
supμ∈L̃(Λ) Φμ(h). The functionR(h) is then lower semi continuouson {(u, ω, x), ω =
ω ∗u x, u ≤ t}. Let R(h)(u, ω) = R(h)(u, ω, Xu(ω)). Equations (40) and (41) follow
easily from Proposition 6.
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8 Existence of Viscosity Solutions for Path-dependent PDEs

8.1 Existence of Viscosity Supersolutions

Recall that Λ is a closed convex lower hemicontinuous multivalued mapping from
X into IRn (Sect. 4.2). Let f be the convex conjugate of g defined as

f (u, ω, z) = sup
y∈Λ(u,ω)

(z∗y − g(u, ω, y)) (42)

We prove now that for all h ∈ Ct the map R(h) of Theorem4 leads to viscosity
solutions for the following semi-linear second order PDE.

⎧⎨
⎩

−∂uv(u, ω) − L v(u, ω) − f (u, ω, a(u, ω)Dxv(u, ω)) = 0
v(t, ω) = f (ω)

L v(u, ω) = 1
2Tr(a(u, ω)D2

x(v)(u, ω))

(43)

Theorem 5 Fix (t0, ω0). Assume that the mutivalued set Λ is BMO(Qa
t0,ω0

) (Def-
inition15). Assume that the function g satisfies the preceding hypothesis (g is
a Caratheodory function and satisfies the growth condition (GC1) or (GC2)).
Assume furthermore that g is upper semicontinuous on {(s, ω, y), (s, ω) ∈ X, y ∈
Λ(s, ω, ω(s)}. For all r and ω, let (ρ

r,ω
s,t ) be the dynamic risk measure given by

Eq. (24) where the penalty satisfies Eq. (20).
Let h ∈ Ct . The function R(h) is progressive and R(h) is lower semi continuous on
{(u, ω, x), ω = ω ∗u x, u ≤ t} (Theorem4). R(h) is a viscosity supersolution of the
path-dependent second order partial differential equation (43) at each point (t0, ω0)

such that f (t0, ω0, a(t0, ω0)z) is finite for all z.

Proof Let x0 = ω0(t0). From Theorem4, the function R(h) is progressive and R(h)

is lower semi continuous on {(u, ω, x), ω = ω ∗u x, u ≤ t}. We prove first that R(h)

is bounded from below on some Dε(t0, ω0). R(h)(u, ω) ≥ EQa
u,ω

(h)−αut(Qa
u,ω). For

all given k ≥ 2, EQa
u,ω

(sups≤u≤t(1 + ||Xt ||)k)) is uniformly bounded for (u, ω) ∈
Dε(t0, ω0). The result follows then from either the (GC1) condition or the (GC2).
Let φ progressive, φ in C 1,0,2

b (IR+ × Ω × IRn) such that φ(t0, ω0) = R(h)(t0, ω0)

and (t0, ω0) is a local minimizer of R(h) − φ on Dη(t0, ω0) for some η > 0.

• Step 1: Continuity properties
By hypothesis f (t0, ω0, a(t0, ω0)Dxφ(t0, ω0, x0)) < ∞. Thus for all ε > 0, there
is λ0 ∈ Λ(t0, ω0) such that

Dxφ(t0, ω0, x0)
ta(t0, ω0)λ0 − g(t0, ω0, λ0) > f (t0, ω0, a(t0, ω0)Dxφ(t0, ω0, x0)) − ε

(44)
The multivalued set Λ is assumed to be lower hemicontinuous. It follows that
for all K > 0, ΛK is also lower hemicontinuous, where ΛK (u, ω, x) = {z ∈
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Λ(u, ω, x), ||z|| < K}. ChooseK > ||λ0||. FromTheorem2, there is thus a contin-
uous bounded selector λ(u, ω, x) ofΛK defined on X such that λ(t0, ω0, x0) = λ0.
From the upper semi-continuity condition satisfied by g, and the continuity of the
map λ, it follows that for all ε > 0, there is η1 > 0, such that for t0 ≤ u ≤ t ≤
t0 + η1, d(ω, ω0) < η1 and ||ω(t) − x0|| < η1,

g(t, ω, λ(t, ω, ω(t))) − g(t0, ω0, λ0) < ε (45)

From the continuity of the function λ, the hypothesis φ ∈ C 1,0,2
b and the progres-

sive continuity of a, there is η2 such that for t0 ≤ u ≤ t ≤ t0 + η2, ||x − x0|| < η2
and d(ω ∗u x, ω0) < η2,

|∂uφ(u, ω, x) + 1

2
Trace(D2

xφa(u, ω, x)) + (Dxφ
t
aλ)(u, ω, x)−

∂uφ(t0, ω0, x0) + 1

2
Trace(D2

xφa)(t0, ω0, x0)) + Dxφ
t
a(t0, ω0, x0)λ0| ≤ ε (46)

The maps a and λ are bounded. It follows from [22] that there is 0 < α <

inf (η, η1, η2) such that

Qa,aλ
t0,ω0

(A) < ε with A = {ω | sup
t0≤u≤t0+α

||ω(u) − ω0(t0)|| ≥ inf (η, η1, η2) }
(47)

Let C = {ω, ω(u) = ω0(u) ∀0 ≤ u ≤ t0, supt0≤u≤t0+α ||ω(u) − ω0(t0)|| <

inf (η, η1, η2)}
• Step 2: Time consistency
For all 0 < β < α, let δ be the stopping time δ = β1C . The stopping time δ takes
only 2 different values. By definition of the probability measure Qa,aλ

t0,ω0
, it follows

from (47) that Qa,aλ
t0,ω0

(C) > (1 − ε).
The dynamic risk measure (ρ

t0,ω0
u,v )0≤u≤v, is time consistent for stopping times

taking a finite number of values, thus

ρ
t0,ω0
t0,t (h) = ρ

t0,ω0
t0,t0+δ(ρ

t0,ω0
t0+δ,t(h)) (48)

From Theorem 4, the lower semi continuous function R(h) satisfies: (ρ
t0,ω0
t0+δ,t

(h)(ω) = R(h)(t0 + δ, ω, Xt0+δ(ω)) Qa
t0,ω0

a.s., and ρ
t0,ω0
t0,t (h) = R(h)(t0, ω0).

Let λ be the continuous function defined in step 1. By hypothesis R(h) ≥ φ on
Dη(t0, ω0). For all ω ∈ C and u ≤ β, (u, ω ∗u ω(u)) ∈ Dη(t0, ω0). Since the
functions R(h) and φ are progressive it follows that R(h) ≥ φ on [t0, t0 + β] × C.
It follows then from the equality φ(t0, ω0) = R(h)(t0, ω0) and from the definition
of ρ

t0,ω0
t0,t0+δ that

φ(t0, ω0) ≥ EQa,aλ
t0,ω0

[φ(t0 + δ, ω, Xt0+δ(ω)) −
∫ t0+δ

t0
g(u, ω, λ(u, ω, Xu(ω)))du]

(49)
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• Step 3: Martingale problem
The probability measure Qa,aλ

t0,ω0
is solution to the martingale problem for L a,aλ

starting from ω0 at time t0. The function φ is strictly progressive and belongs to
C 1,0,2

b (IR+ × Ω × IRn). It follows from the martingale property proved in [3] that

0 ≥ EQa,aλ
t0,ω0

[
∫ t0+δ

t0
(∂uφ(u, ω, Xu(ω)) + 1

2
Trace((D2

xφa)(u, ω, Xu(ω))))du]

+ EQa,aλ
t0,ω0

[
∫ t0+δ

t0
(Dxφ

t
aλ)(u, ω, Xu(ω)) − g(u, ω, λ(u, ω, Xu(ω)))du] (50)

• Step 4: Conclusion
Divide (50) by β and let β tend to 0. It follows from the definitions of C and δ and
the Eqs. (44)–(46) proved in step 1 and Qa,aλ

t0,ω0
(C) > 1 − ε that

−∂uφ(t0, ω0, x0) − L φ(t0, ω0, x0) − f (t0, ω0, σ
t(t0, ω0)Dxφ(t0, ω0, x0)) ≥ −2ε(1−ε)

This gives the result. �

8.2 Existence of Viscosity Subsolutions

In this section we will assume that the set Λ has some uniform BMO property.

Definition 17 The multivalued mapping Λ is uniformly BMO with respect to a if
there is a non negative progressively measurable map ϕ and C > 0 such that for all
0 ≤ s,

sup{|λ|, λ ∈ Λ(s, ω)} ≤ ϕ(s, ω) (51)

and such that for all (s′, ω′), the unique solution to the martingale problem L a

starting from ω′ at time s′ satisfies:

Qa
s′,ω′(

∫ ∞

s′
ϕ(s, ω)2ds) ≤ C (52)

Of course the above condition is satisfied if supω

∫ ∞
0 ϕ(s, ω)2ds < ∞.

The name “uniform BMO” property is justifed by the following result.

Lemma 2 Assume that the multivalued mapping Λ is uniformly BMO with respect
to a. Then for all (r, ω) and all process μ Λ valued such that μ is P × B(IRn)

measurable, μ belongs to BMO(Qa
r,ω) and ||μ||BMO(Qa

r,ω) ≤ C

Proof Let r, ω and a stopping time τ ≥ r. It follows from [22] and from uniqueness
of the solution to the martingale problem forL a,0 starting from ω′ at time τ(ω′) that
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for Qa
r,ω almost all ω′,

EQa
r,ω

(

∫ ∞

τ

ϕ(u, ω)2du|Bτ )(ω
′) = EQa

τ (ω′),ω′ (
∫ ∞

τ(ω′)
ϕ(u, ω)2du) ≤ C �

Let h ∈ Ct . The function R(h) is lower semi continuous in viscosity sense but it is not
necessarily upper semi continuous. Therefore we need to introduce the upper semi
continuous envelope of R(h) in the viscosity sense according to Sect. 2.3. Denote it
R(h)∗.

R(h)∗(s, ω) = lim sup
η→0

{R(h)(s′, ω′), (s′, ω′) ∈ Dη(s, ω)}

Theorem 6 Let (t0, ω0) be given. Assume that the mutivalued set Λ is uniformly
BMO with respect to a. Assume that the function g is a Caratheodory function sat-
isfying the growth condition (GC1) or (GC2) and that the Fenchel transform f of g
is progressively continuous.
Let h ∈ Ct . The map R(h)∗ is progressive, R(h)∗ is upper semicontinuous in viscosity
sense. R(h)∗ is a viscosity subsolution of the path-dependent second order partial
differential equation (43).

Proof Let x0 = ω0(t0). The progressivity of R(h)∗ follows from the equality
Dη(s, ω) = Dη(s, ω ∗s ω(s)). The upper semicontinuity property follows from
the definition of R(h)∗. We prove first that R(h) is bounded on some Dε(t0, ω0).
R(h)(u, ω) = supμ(EQa,aμ

u,ω
(h) − αu,t(Q

a,aμ
u,ω )). For given k ≥ 2, EQa

u,ω
(sups≤u≤t(1 +

||Xt ||)k)) is uniformly bounded for (u, ω) ∈ Dε. The result follows then from either
the (GC1) condition or the (GC2), and from the uniform BMO hypothesis with
similar arguments as in the proof of Proposition 3.
Let φ progressive, φ ∈ C 1,0,2

b (IR+ × Ω × IRn) such that φ(t0, ω0) = R(h)∗(t0, ω0)

and such that (t0, ω0) is a maximizer of R(h)∗ − φ on Dη(t0, ω0).

• Step 1: Making use of the progressive continuity property of a, f and of the
regularity of φ, for all n ∈ IN∗, there is ηn > 0, t0 + ηn < t such that for
t0 ≤ u ≤ t0 + ηn, d(ωo, ω) < ηn and ||x0 − ω(u)|| < ηn,

f (u, ω, (aDxφ)(u, ω, ω(u))) ≤ f (t0, ω0, (aDxφ)(t0, ω0, x0)) + 1

n
(53)

|∂uφ(u, ω, ω(u)) + 1

2
Trace(D2

xφa)(u, ω, ω(u)))−

∂uφ(t0, ω0, x0) + 1

2
Trace(D2

xφa)(t0, ω0, x0))| ≤ 1

n
(54)

Without loss of generality one can assume ηn < η.
The matrix valued process a being bounded, it follows from [22] that there is hn

such that for all t0 ≤ s ≤ t0 + η and ω ∈ Dη(t0, ω0),
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Qa
s,ω({ω′, sup

s≤u≤s+hn

||ω′(u) − ω(s)|| >
ηn

2
}) < ε (55)

Without loss of generality one can assume that hn <
ηn
2 .

For all n > 0 choose (tn, ωn) ∈ D ηn
2
(t0, ω0) such that limn→∞ R(h)(tn, ωn) =

R(h)∗(t0, ω0) and

φ(tn, ωn) ≤ R(h)(tn, ωn) + hn

n
(56)

Let Cn = {ω′, suptn≤u≤tn+hn
||ω′(u) − ωn(tn)|| ≤ ηn

2 , ω′(v) = ωn(v), ∀v ≤ tn}.
It follows from Eq. (55) that Qa

tn,ωn
(Cn) > 1−ε for all n. From Lemma 2 there is a

constant C′ > 0 such that ||aμ||BMO(Qa
tn,ωn ) ≤ C′ for all μ ∈ L̃(Λ) and all n. From

[15] it follows that there is p0 such that the reverseHölder inequality (19) is satisfied

for all E (aμ) and thus that for all μ ∈ L̃(Λ), and all n, Qa,aμ
tn,ωn

(Cc
n) ≤ KC(ε)

1
q0

where q0 is the conjugate exponent of p0. The constants q0 and Kc depend neither
on μ nor on n. Thus ε can be chosen such that Qa,aμ

tn,ωn
(Cn) > 1

2 for all n and all
μ ∈ L̃(Λ).
Let δn be the stopping time taking only two values hn and 0 defined by δn = hn1Cn .

• Step 2: Time consistency
Making use of the time consistency of the risk measure (ρ

tn,ωn
u,v ), and of the fol-

lowing equations deduced from Theorem 4,

R(h)(tn, ωn) = ρ
tn,ωn
tn,t (h)

ρ
tn,ωn
tn+δn,t

(h) = R(h)(tn + δn, .) Qa
tn,ωn

a.s.

it follows that
R(h)(tn, ωn) = ρ

tn,ωn
tn,tn+δn

(R(h)(tn + δn, .))

It follows from the definition of the risk measure (ρ
tn,ωn
tn,tn+δn

), that for all n there is

a process μn in L̃(Λ) such that

R(h)(tn, ωn) ≤ EQa,aμn
tn,ωn

(R(h)(tn + δn, .)) − αtn,tn+δn(Q
a,aμn
tn,ωn

) + hn

n
(57)

For all ω′ ∈ Cn, (tn + hn, ω
′ ∗tn+hn ω′(tn + hn)) ∈ Dη(t0, ω0). The functions R(h)

and φ are progressive and satisfy R(h) ≤ R(h)∗ ≤ φ on Dη(t0, ω0). It follows that

R(h)(tn + δn, ω
′) ≤ φ(tn + δn, ω

′) ∀ω′ ∈ Cn (58)

From Eqs. (56)–(58), it follows that

φ(tn, ωn) ≤ EQa,aμn
tn,ωn

[φ(tn + δn, .) −
∫ tn+δn

tn
g(u, ω′, μn(u, ω′))du] + 2

hn

n
(59)
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• Step 3: Martingale problem
Given (tn, ωn), the probability measure Qa,aμn

tn,ωn
is solution to the martingale prob-

lemL a,aμn starting fromωn at time tn. The strictly progressive function φ belongs
to C 1,0,2

b . It follows from [3] and from Eq. (59) that

0 ≤ EQa,aμn
tn ,ωn

[
∫ tn+δn

tn
(∂uφ(u, ω′, (ω′(u))) + 1

2
Trace(D2

xφa)(u, ω′, ω′(u)))du]

+ EQa,aμn
tn ,ωn

[
∫ tn+δn

tn
(Dxφ

t
(u, ω′, ω′(u))a(u, ω′)μn(u, ω′) − g(u, ω′, μn(u, ω′)))du] + 2

hn

n
(60)

By definition of f it follows that

0 ≤ EQa,aμn
tn,ωn

[
∫ tn+δn

tn
(∂uφ(u, ω′, ω′(u))) + 1

2
Trace((D2

xφa)(u, ω′, ω′(u)))du]

+ EQa,aμn
tn,ωn

[
∫ tn+δn

tn
f (u, ω′, (aDxφ)(u, ω′, ω′(u)))du] + 2

hn

n
(61)

• Step 4: Conclusion
Divide equation (61) by hn and let n tend to ∞. The result follows from step 1,
the inequality Qa,aμn

tn,ωn
(Cn) ≥ 1

2 for all n and δn = hn1Cn . �

8.3 Existence of Viscosity Solutions on the Set
of Continuous Paths

On the set of continuous pathsC (IR+ ×IRn)we consider the uniform norm topology.
In this section we assume that the function a is only defined on IR+ ×C (IR+ × IRn)

and that it is continuous. For every continuous function h on the space of continuous
paths C (IR+ × IRn) such that h(ω) = h(ω′) if ω(u) = ω′(u) for all u ≤ t, the
corresponding function R(h) is constructed as above. In this case the function R(h) is
defined only on the set of continuous paths (more precisely on [0, t]×C (IR+×IRn)).
We make use of the definition of viscosity solution on the set of continuous paths
introduced in Sect. 2.4 (Definition 4). To prove that R(h) is a viscosity supersolution,
to define R(h)∗ and prove that it is a viscosity subsolution, we do not need to extend
the functions a nor R(h). Indeed as the support of the probability measure Qa

r,ω is
contained in the set of continuous paths, we just need to use the restrictions of the
function φ and of its partial derivatives to the set IR+ × C (IR+ × IRn) × IRn. The
proofs given for Theorems 5 and 6 can be easily adapted to prove the analog result
in the setting of continuous paths.
Thus the setting of continuous paths can be considered as a “particular case” of the
setting of càdlàg paths.
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9 Conclusion and Perspectives

We have introduced new notions of regular solutions and viscosity solutions for path-
dependent second order PDEs, Eq. (1), in the setting of càdlàg paths. In line with the
recent literature on the topic, a solution of (1) must be searched among progressive
functions, that is path-dependent functions depending at time t on all the path up to
time t. However, the notions of solutions introduced in the present paper differ from
previous notions introduced in the literature on two major points:

• In contrast with other papers, we consider on the set Ω of càdlàg paths the Sko-
rokhod topology. Ω is thus a Polish space. This property is fundamental for the
construction of solutions for path-dependent PDE that we give in the present paper.

• The notions of partial derivative for progressive functions that we introduce are
defined in a very naturalway by considering a progressive function of two variables
as a function of three variables.

In addition we introduce also a notion of viscosity solution on the set of continuous
paths.
Making use of the martingale problem approach to path-dependent diffusion
processes, we then construct time consistent dynamic risk measures ρ

r,ω
st . The stable

set of probability measures used for the construction of ρ
r,ω
st is a set generated by

probability measures solution to the path-dependent martingale problem for L a,aμ

starting form ω at time r. The path-dependent progressively continuous bounded
function a is given and takes values in the set of invertible non negative matrices.
The path-dependent functions μ are progressively continuous and vary accordingly
to a multivalued mapping Λ. This construction is done in a very general setting. In
particular the coefficients μ are not uniformly bounded. We just assume that they
satisfy some uniform BMO condition. To construct the penalties, we make use of a
path-dependent function g satisfying some polynomial growth conditionwith respect
to the path and some L2 condition with respect to the process μ related to the BMO
condition. In contrast with the usual setting of BSDE, in all this construction no Lip-
schitz hypothesis are assumed. Notice however that the Lipschitz setting can also be
studied within our approach: instead of starting with progressively continuous maps
a and μ, one could start from a subfamily of maps which, for example, satisfy some
uniform continuity condition (as K Lipschitz maps).
We show that these risk measures provide explicit solutions for semi-linear path-
dependent PDEs (2). First, we prove that the risk measures ρ

r,ω
st satisfy the following

Feller property. For every function hBt measurable having some continuity property,
there is a progressively lower semi-continuous functionR(h) such that ρr,ω

rt (h(Xt)) =
R(h)(r, ω) and R(h)(t, ω) = h(t, ω). Next, the function R(h) is proved to be a
viscosity supersolution for a semi-linear path-dependent PDE (2), where the function
f itself is associated to g by duality on the multivalued mapping Λ. We prove also
that the upper semi continuous envelope of R(h) is a viscosity subsolution for the
path-dependent semi linear second order PDE (2).
Here we have proved the progressive lower semi continuity for R(h). To prove the
progressive continuity property, additional hypothesis should be added, e.g. Lipschitz
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conditions. Another way of proving the continuity is to apply a comparison Theorem.
The study of comparison theorems and of continuity properties in this setting, as well
as the study of solutions to fully non linear path-dependent PDE will be the subject
of future work.
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Appendix

An important way of constructing time consistent dynamic risk measures is to con-
struct a stable set of equivalent probabilitymeasures and to define on this set a penalty
which is local and satisfies the cocycle condition [5]. Recall the following definitions

Definition 18 A set Q of equivalent probability measures on a filtered probability
space (Ω,B, (Bt)) is stable if it satisfies the two following properties:

1. Stability by composition
For all s ≥ 0 for all Q and R in Q, there is a probability measure S in Q such
that for all X bounded B-measurable,

ES(X) = EQ(ER(X|Bs))

2. Stability by bifurcation
For all s ≥ 0, for all Q and R inQ, for all A ∈ Bs, there is a probability measure
S inQ such that for all X bounded B-measurable,

ES(X|Fs) = 1AEQ(X|Fs) + 1Ac ER(X|Fs)

Definition 19 Apenalty functionα defined on a stable setQ of probabilitymeasures
all equivalent is a family of maps (αs,t), s ≤ t, defined on Q with values in the set
of Bs-measurable maps such that

(i) α is local:
For all Q, R in Q, for all s, for all A in Bs, the assertion 1AEQ(X|Bs) =
1AER(X|Bs) for all X bounded Bt measurable implies that 1Aαs,t(Q) =
1Aαs,t(R).
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(ii) α satisfies the cocycle condition: For all r ≤ s ≤ t, for all Q inQ,

αr,t(Q) = αr,s(Q) + EQ(αs,t(Q)|Fr)

Recall the following result from [5].

Proposition 7 Given a stable set Q of probability measures and a penalty (αs,t)

defined on Q satisfying the local property and the cocycle condition,

ρst(X) = esssupQ∈Q(EQ(X|Fs) − αst(Q))

defines a time consistent dynamic risk measure on L∞(Ω,B, (Bt)) or on Lp(Ω,B,

(Bt)) if the corresponding integrability conditions are satisfied.
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