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Preface

Norway is a country rich on natural resources. Wind, rain and snow provide us with
a huge resource for clean energy production, while oil and gas have contributed
significantly, since the early 1970s, to the country’s economic wealth. Nowadays
the income from oil and gas exploitation is invested in the world’s financial markets
to ensure the welfare of future generations. With the rising global concerns about
climate, using renewable resources for power generation has become more and
more important. Bad management of these resources will be a waste that is a
negligence to avoid given the right tools.

This formed the background and motivation for the research group Stochastics
for Environmental and Financial Economics (SEFE) at the Centre of Advanced
Studies (CAS) in Oslo, Norway. During the academic year 2014–2015, SEFE
hosted a number of distinguished professors from universities in Belgium, France,
Germany, Italy, Spain, UK and Norway. The scientific purpose of the SEFE centre
was to focus on the analysis and management of risk in the environmental and
financial economics. New mathematical models for describing the uncertain
dynamics in time and space of weather factors like wind and temperature were
studied, along with sophisticated theories for risk management in energy, com-
modity and more conventional financial markets.

In September 2014 the research group organized a major international confer-
ence on the topics of SEFE, with more than 60 participants and a programme
running over five days. The present volume reflects some of the scientific devel-
opments achieved by CAS fellows and invited speakers at this conference. All the
14 chapters are stand-alone, peer-reviewed research papers. The volume is divided
into two parts; the first part consists of papers devoted to fundamental aspects of
stochastic analysis, whereas in the second part the focus is on particular applications
to environmental and financial economics.
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We thank CAS for its generous support and hospitality during the academic year
we organized our SEFE research group. We enjoyed the excellent infrastructure
CAS offered for doing research.

Oslo, Norway Fred Espen Benth
June 2015 Giulia Di Nunno
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Part I
Foundations



Some Recent Developments in Ambit
Stochastics

Ole E. Barndorff-Nielsen, Emil Hedevang, Jürgen Schmiegel
and Benedykt Szozda

Abstract Some of the recent developments in the rapidly expanding field of Ambit
Stochastics are here reviewed. After a brief recall of the framework of Ambit Sto-
chastics, two topics are considered: (i) Methods of modelling and inference for
volatility/intermittency processes and fields; (ii) Universal laws in turbulence and
finance in relation to temporal processes. This review complements two other recent
expositions.

Keywords Ambit stochastics · Stochastic volatility/intermittency · Universality ·
Finance · Turbulence · Extended subordination · Metatimes · Time-change

1 Introduction

Ambit Stochastics is a general framework for the modelling and study of dynamic
processes in space-time. The present paper outlines some of the recent developments
in the area, with particular reference to finance and the statistical theory of turbu-
lence. Two recent papers [8, 36] provide surveys that focus on other sides of Ambit
Stochastics.
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4 O.E. Barndorff-Nielsen et al.

A key characteristic of the Ambit Stochastics framework, which distinguishes this
from other approaches, is that beyond the most basic kind of random input it also
specifically incorporates additional, often drastically changing, inputs referred to as
volatility or intermittency.

Such “additional” random fluctuations generally vary, in time and/or in space, in
regard to intensity (activity rate and duration) and amplitude. Typically the volatil-
ity/intermittency may be further classified into continuous and discrete (i.e. jumps)
elements, and long and short term effects. In turbulence the key concept of energy
dissipation is subsumed under that of volatility/intermittency.

The concept of (stochastic) volatility/intermittency is ofmajor importance inmany
fields of science. Thus volatility/intermittency has a central role in mathematical
finance and financial econometrics, in turbulence, in rain and cloud studies and
other aspects of environmental science, in relation to nanoscale emitters, magne-
tohydrodynamics, and to liquid mixtures of chemicals, and last but not least in the
physics of fusion plasmas.

As described here, volatility/intermittency is a relative concept, and its mean-
ing depends on the particular setting under investigation. Once that meaning is
clarified the question is how to assess the volatility/intermittency empirically and
then to describe it in stochastic terms, for incorporation in a suitable probabilistic
model. Important issues concern the modelling of propagating stochastic volatil-
ity/intermittency fields and the question of predictability of volatility/intermittency.

Section2 briefly recalls some main aspects of Ambit Stochastics that are of rel-
evance for the dicussions in the subsequent sections, and Sect. 3 illustrates some of
the concepts involved by two examples. The modelling of volatility/intermittency
and energy dissipation is a main theme in Ambit Stochastics and several approaches
to this are discussed in Sect. 4. A leading principle in the development of Ambit
Stochastics has been to take the cue from recognised stylised features—or universal-
ity traits—in various scientific areas, particularly turbulence, as the basis for model
building; and in turn to seek new such traits using the models as tools. We discuss
certain universal features observed in finance and turbulence and indicate ways to
reproduce them in Sect. 5. Section6 concludes and provides an outlook.

2 Ambit Stochastics

2.1 General Framework

In terms of mathematical formulae, in its original form [17] (cf. also [16]) an ambit
field is specified by

Y (x, t) = μ +
∫

A(x,t)
g(x, ξ, t, s)σ (ξ, s) L(dξ ds) + Q(x, t) (1)
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space

time

A(x, t)

X(x, t)

Fig. 1 A spatio-temporal ambit field. The value Y (x, t) of the field at the point marked by the black
dot is defined through an integral over the corresponding ambit set A(x, t) marked by the shaded
region. The circles of varying sizes indicate the stochastic volatility/intermittency. By considering
the field along the dotted path in space-time an ambit process is obtained

where

Q(x, t) =
∫

D(x,t)
q(x, ξ, t, s)χ(ξ, s) dξ ds. (2)

Here t denotes time while x gives the position in d-dimensional Euclidean space.
Further, A(x, t) and D(x, t) are subsets ofRd ×R and are termed ambit sets, g and q
are deterministic weight functions, and L denotes a Lévy basis (i.e. an independently
scattered and infinitely divisible random measure). Further, σ and χ are stochastic
fields representing aspects of the volatility/intermittency. In Ambit Stochastics the
models of the volatility/intermittency fields σ and χ are usually themselves specified
as ambit fields. We shall refer to σ as the amplitude volatility component. Figure1
shows a sketch of the concepts.

The development of Y along a curve in space-time is termed an ambit process.
As will be exemplified below, ambit processes are not in general semimartingales,
even in the purely temporal case, i.e. where there is no spatial component x .
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In a recent extension the structure (1) is generalised to

Y (x, t) = μ +
∫

A(x,t)
g(x, ξ, t, s)σ (ξ, s) LT (dξ ds) + Q(x, t) (3)

where Q is like (2) or the exponential thereof, and where T is a metatime expressing
a further volatility/intermittency trait. The relatively new concept of metatime is
instrumental in generalising subordination of stochastic processes by time change
(as discussed for instance in [22]) to subordination of random measures by random
measures. We return to this concept and its applications in the next section and refer
also to the discussion given in [8].

Note however that in addition to modelling volatility/intermittency through the
components σ , χ and T , in some cases this may be supplemented by probability
mixing or Lévy mixing as discussed in [12].

It might be thought that ambit sets have no role in purely temporal modelling.
However, examples of their use in such contexts will be discussed in Sect. 3.

In many cases it is possible to choose specifications of the volatility/intermittency
elements σ ,χ and T such that these are infinitely divisible or even selfdecomposable,
making the models especially tractable analytically. We recall that the importance
of the concept of selfdecomposability rests primarily on the possibility to represent
selfdecomposable variates as stochastic integrals with respect to Lévy processes,
see [32].

So far, the main applications of ambit stochastics has been to turbulence and, to
a lesser degree, to financial econometrics and to bioimaging. An important potential
area of applications is to particle transport in fluids.

2.2 Existence of Ambit Fields

The paper [25] develops a general theory for integrals

X (x, t) =
∫
Rd×R

h(x, y, t, s) M(dx dx)

where h is a predictable stochastic function and M is a dispersive signed random
measure. Central to this is that the authors establish a notion of characteristic triplet
of M , extending that known in the purely temporal case. A major problem solved in
that regard has been to merge the time and space aspects in a general and tractable
fashion. Armed with that notion they determine the conditions for existence of the
integral, analogous to those in [37] but considerably more complicated to derive and
apply. An important property here is that now predictable integrands are allowed
(in the purely temporal case this was done in [23]). Applications of the theory to
Ambit Stochastics generally, and in particular to superposition of stochastic volatility
models, is discussed.
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Below we briefly discuss how the metatime change is incorporated in the frame-
work of [25]. Suppose that L = {L(A) | A ∈ Bb(R

d+1} is a real-valued, homo-
geneous Lévy basis with associated infinitely divisible law μ ∈ ID(Rd+1), that is
L([0, 1]d+1) is equal in law to μ. Let (γ,Σ, ν) be the characteristic triplet of μ.
Thus γ ∈ R, Σ ≥ 0 and ν is a Lévy measure on R.

Suppose that T = {T(A) | A ∈ B(Rd+1} is a random meta-time associated
with a homogeneous, real-valued, non-negative Lévy basis T = {T (A) | A ∈
B(Rd+1)}. That is the sets T(A) and T(B) are disjoint whenever A, B ∈ B(Rd+1)

are disjoint, T(∪∞
n=0An) = ∪∞

n=0T(An) whenever An,∪∞
n=0An ∈ B(Rd+1) and

T (A) = Lebd+1(T(A)) for all A ∈ B(Rd+1). Here and in what follows, Lebk

denotes the Lebesgue measure on R
k . For the details on construction of random

meta-times cf. [11]. Suppose also that λ ∈ I D(R) is the law associated to T and that
λ ∼ I D(β, 0, ρ). Thus β ≥ 0 and ρ is a Lévy measure such that ρ(R−) = 0 and∫
R
(1 ∧ x) ρ(dx) < ∞.
Now, by [11, Theorem 5.1] we have that LT = {L(T(A)) | A ∈ B(Rd+1)}

is a homogeneous Lévy basis associated to μ# with μ# ∼ I D(γ #,Σ#, ν#) and
characteristics given by

γ # = βγ +
∫ ∞

0

∫
|x |≤1

xμs(dx)ρ(ds)

Σ# = βΣ

ν#(B) = βν(B) +
∫ ∞

0
μs(B)ρ(ds), B ∈ B(Rd+1 \ {0}),

where μs is given by μ̂s = μ̂s for any s ≥ 0.
Finally, suppose that σ(x, t) is predictable and that LT has no fixed times of

discontinuity (see [25]). By rewriting the stochastic integral in the right-hand side of
(3) as

X (x, t) =
∫
Rd+1

H(x, ξ, t, s) LT (dξds),

with H(x, ξ, t, s) = 1A(x,t)(ξ, s)g(x, ξ, t, s)σ (ξ, s) we can use [25, Theorem 4.1].
Observe that the assumption that σ is predictable is enough as both A(x, t) and
g(x, ξ, t, s) are deterministic. This gives us that X is well defined for all (x, t) if the
following hold almost surely for all (x, t) ∈ R

d+1:

∫
Rd+1

∣∣∣∣H(x, ξ, t, s)γ # +
∫
R

[τ(H(x, ξ, t, s)y) − H(x, ξ, t, s)τ (y)]ν#(dy)

∣∣∣∣ dξds < ∞
(4)∫

Rd+1
H2(x, ξ, t, s)Σ# dξds < ∞ (5)

∫
Rd+1

∫
R

(1 ∧ (H(x, ξ, t, s)y)2 ν#(dy)dξds < ∞. (6)
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3 Illustrative Examples

We can briefly indicate the character of some of the points on Ambit Stochastics
made above by considering the following simple model classes.

3.1 BSS and LSS Processes

Stationary processes of the form

Y (t) =
∫ t

−∞
g(t − s)σ (s)BT (ds) +

∫ t

−∞
q(t − s)σ (s)2 ds. (7)

are termed Brownian semistationary processes—or BSS for short. Here the setting
is purely temporal and BT is the time change of Brownian motion B by a chronome-
ter T (that is, an increasing, càdlàg and stochastically continuous process ranging
from −∞ to ∞), and the volatility/intermittency process σ is assumed stationary.
The components σ and T represent respectively the amplitude and the intensity of
the volatility/intermittency. If T has stationary increments then the process Y is sta-
tionary. The process (7) can be seen as a stationary analogue of the BNS model
introduced by Barndorff-Nielsen and Shephard [14].

Note that in case T increases by jumps only, the infinitesimal of the process BT

cannot be reexpressed in the form χ(s)B(ds), as would be the case if T was of type
Tt = ∫ t

0 ψ(u) du with χ = √
ψ .

Further, for the exemplification we take g to be of the gamma type

g(s) = λν

Γ (ν)
sν−1e−λs1(0,∞)(s). (8)

Subject to a weak (analogous to (4)) condition on σ , the stochastic integral in (7)
will exist if and only if ν > 1/2 and then Y constitutes a stationary process in time.
Moreover, Y is a semimartingale if and only if ν does not lie in one of the intervals
(1/2, 1) and (1, 3/2]. Note also that the sample path behaviour is drastically different
between the two intervals, since, as t → 0, g(t) tends to∞when ν ∈ (1/2, 1) and to 0
when ν ∈ (1, 3/2]. Further, the sample paths are purely discontinuous if ν ∈ (1/2, 1)
but purely continuous (of Hölder index H = ν − 1/2) when ν ∈ (1, 3/2).

The caseswhereν ∈ (1/2, 1)have aparticular bearing in the context of turbulence,
the value ν = 5/6 having a special role in relation to the Kolmogorov-Obukhov
theory of statistical turbulence, cf. [3, 33].

The class of processes obtained by substituting the Brownian motion in (7) by a
Lévy process is referred to as the class of Lévy semistationary processes—or LSS
processes for short. Such processes are discussed in [8, 24, Sect. 3.7] and references
therein.
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3.2 Trawl Processes

The simplest non-trivial kind of ambit field is perhaps the trawl process, introduced
in [2]. In a trawl process, the kernel function and the volatility field are constant
and equal to 1, and so the process is given entirely by the ambit set and the Lévy
basis. Specifically, suppose that L is a homogeneous Lévy basis on Rd ×R and that
A ⊆ R

d ×R is a Borel subset with finite Lebesgue measure, then we obtain a trawl
process Y by letting A(t) = A + (0, t) and

Y (t) =
∫

A(t)
L(dξ ds) =

∫
1A(ξ, t − s) L(dξ ds) = L(A(t)) (9)

The process is by construction stationary.Depending on the purpose of themodelling,
the time component of the ambit set A may or may not be supported on the negative
real axis. When the time component of A is supported on the negative real axis,
we obtain a causal model. Despite their apparent simplicity, trawl processes possess
enough flexibility to be of use. If L ′ denotes the seed1 of L , then the cumulant
function (i.e. the distinguished logarithm of the characteristic function) of Y is given
by

C{ζ ‡ Y (t)} = |A|C{ζ ‡ L ′}. (10)

Here and later, |A| denotes the Lebesguemeasure of the set A. For themean, variance,
autocovariance and autocorrelation it follows that

E[Y (t)] = |A|E[L ′],
var(Y (t)) = |A| var(L ′),

r(t) := cov(Y (t), Y (0)) = |A ∩ A(t)| var(L ′), (11)

ρ(t) := cov(Y (t), Y (0))

var(Y (0))
= |A ∩ A(t)|

|A| .

From this we conclude the following. The one-dimensional marginal distribution
is determined entirely in terms of the size (not shape) of the ambit set and the
distribution of the Lévy seed; given any infinitely divisible distribution there exists
trawl processes having this distribution as the one-dimensional marginal; and the
autocorrelation is determined entirely by the size of the overlap of the ambit sets,
that is, by the shape of the ambit set A. Thus we can specify the autocorrelation
and marginal distribution independently of each other. It is, for example, easy to
construct a trawl process with the same autocorrelation as the OU process, see [2,
8] for more results and details. By using integer-valued Lévy bases, integer-valued

1The Lévy seed L ′(x) at x of a Lévy basis L with control measure ν is a random variable with the
property thatC{ζ ‡L(A)} = ∫

A C{ζ ‡L ′(x)} ν(dx). For a homogeneous Lévy basis, the distribution
of the seed is independent of x .
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trawl processes are obtained. These processes are studied in detail in [5] and applied
to high frequency stock market data.

We remark, that Y (x, t) = L(A + (x, t)) is an immediate generalisation of trawl
processes to trawl fields. It has the same simple properties as the trawl process.

Trawl processes can be used to directly model an object of interest, for example,
the exponential of the trawl process has been used to model the energy dissipation,
see the next section, or they can be used as a component in a composite model, for
example to model the volatility/intermittency in a Brownian semistationary process.

4 Modelling of Volatility/Intermittency/Energy
Dissipation

A very general approach to specifying volatility/intermittency fields for inclusion in
an ambit field, as in (1), is to take τ = σ 2 as being given by a Lévy-driven Volterra
field, either directly as

τ(x, t) =
∫
R2×R

f (x, ξ, t, s) L(dξ, ds) (12)

with f positive and L a Lévy basis (different from L in (1), or in exponentiated form

τ(x, t) = exp

(∫
Rd×R

f (x, ξ, t, s) L(dξ, ds)

)
. (13)

When the goal is to have stationary volatility/intermittency fields, such as in mod-
elling homogeneous turbulence, that can be achieved by choosing L to be homo-
geneous and f of translation type. However, the potential in the specifications (12)
and (13) is much wider, giving ample scope for modelling inhomogeneous fields,
which are by far themost common, particularly in turbulence studies. Inhomogeneity
can be expressed both by not having f of translation type and by taking the Lévy
basis L inhomogeneous.

In the following we discuss two aspects of the volatility/intermittency mod-
elling issue. Trawl processes have proved to be a useful tool for the modelling of
volatility/intermittency and in particular for the modelling of the energy dissipation,
as outlined in Sect. 4.1. Section4.2 reports on a recent paper on relative volatil-
ity/intermittency. In Sect. 4.3 we discuss the applicability of selfdecomposability to
the construction of volatility/intermittency fields.
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4.1 The Energy Dissipation

In [31] it has been shown that exponentials of trawl processes are able to repro-
duce the main stylized features of the (surrogate) energy dissipation observed for a
wide range of datasets. Those stylized features include the one-dimensional marginal
distributions and the scaling and self-scaling of the correlators.

The correlator of order (p, q) is defined by

cp,q(s) = E[ε(t)pε(t + s)q ]
E[ε(t)p]E[ε(t + s)q ] . (14)

The correlator is a natural analogue to the autocorrelation when one considers a
purely positive process. In turbulence it is known (see the reference cited in [31])
that the correlator of the surrogate energy dissipation displays a scaling behaviour
for a certain range of lags,

cp,q(s) ∝ s−τ(p,q), Tsmall � s � Tlarge, (15)

where τ(p, q) is the scaling exponent. The exponent τ(1, 1) is the so-called intermit-
tency exponent. Typical values are in the range 0.1 to 0.2. The intermittency exponent
quantifies the deviation from Kolmogorov’s 1941 theory and emphasizes the role of
intermittency (i.e. volatility) in turbulence. In some cases, however, the scaling range
of the correlators can be quite small and therefore it can be difficult to determine the
value of the scaling exponents, especially when p and q are large. Therefore one also
considers the correlator of one order as a function of a correlator of another order. In
this case, self-scaling is observed, i.e., the one correlator is proportional to a power
of the other correlator,

cp,q(s) ∝ cp′,q ′(s)τ(p,q;p′,q ′), (16)

where τ(p, q; p′, q ′) is the self-scaling exponent. The self-scaling exponents have
turned out to be much easier to determine from data than the scaling exponents,
and like the scaling exponents, the self-scaling exponents have proved to be key
fingerprints of turbulence. They are essentially universal in that they vary very little
fromonedataset to another, covering a large range of the so-calledReynolds numbers,
a dimensionless quantity describing the character of the flow.

In [31] the surrogate energy dissipation ε is, more specifically, modelled as

ε(t) = exp(L(A(t))), (17)

where L is a homogeneous Lévy basis onR×R and A(t) = A+(0, t) for a bounded
set A ⊂ R × R. The ambit set A is given as

A = {(x, t) ∈ R × R | 0 ≤ t ≤ Tlarge,− f (t) ≤ x ≤ f (t)}, (18)
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Fig. 2 The shaded region marks the ambit set A from (18) defined by (19) where the parameters
are chosen to be Tlarge = 1, Tsmall = 0.1 and θ = 5

where Tlarge > 0. For Tlarge > Tsmall > 0 and θ > 0, the function f is defined as

f (t) =
(
1 − (t/Tlarge)

θ

1 + (t/Tsmall)
θ

)1/θ

, 0 ≤ t ≤ Tlarge. (19)

The shape of the ambit set is chosen so that the scaling behaviour (15) of the corre-
lators is reproduced. The exact values of the scaling exponents are determined from
the distribution of the Lévy seed of the Lévy basis. The two parameters Tsmall and
Tlarge determine the size of the small and large scales of turbulence: in between we
have the inertial range. The final parameter θ is a tuning parameter which accounts
for the lack of perfect scaling and essentially just allows for a better fit. (Perfect
scaling is obtained in the limit θ → ∞). See Fig. 2 for an example. Furthermore,
self-scaling exponents are predicted from the shape, not location and scale, of the
one-point distribution of the energy dissipation alone.

To determine a proper distribution of the Lévy seed of L , it is in [31] shown
that the one-dimensional marginal of the logarithm of the energy dissipation is well
described by a normal inverse Gaussian distribution, i.e. log ε(t) ∼ NIG(α, β, μ, δ),
where the shape parameters α and β are the same for all datasets (independent of
the Reynolds number). Thus the shape of the distribution of the energy dissipation
is a newly discovered universal feature of turbulence. Thus we see that L should be
a normal inverse Gaussian Lévy basis whose parameters are given by the observed
distribution of log ε(t). This completely specifies the parameters of (17).
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4.2 Realised Relative Volatility/Intermittency/Energy
Dissipation

By its very nature, volatility/intermittency is a relative concept, delineating varia-
tion that is relative to a conceived, simpler model. But also in a model for volatil-
ity/intermittency in itself it is relevant to have the relative character in mind, as
will be further discussed below. We refer to this latter aspect as relative volatil-
ity/intermittency and will consider assessment of that by realised relative volatil-
ity/intermittency which is defined in terms of quadratic variation. The ultimate
purpose of the concept of relative volatility/intermittency is to assess the volatil-
ity/intermittency or energy dissipation in arbitrary subregions of a region C of space-
time relative to the total volatility/intermittency/energy dissipation inC . In the purely
temporal setting the realised relative volatility/intermittency is defined by

[Yδ]t/[Yδ]T (20)

where [Yδ]t denotes the realised quadratic variation of the process Y observed with
lag δ over a time interval [0, t]. We refer to this quantity as RRQV (for realised
relative quadratic volatility).

As mentioned in Example 1, in case g is the gamma kernel (8) with ν ∈ (1/2, 1)∪
(1, 3/2] then the BSS process (7) is not a semimartingale. In particular, if ν ∈
(1/2, 1)—the case ofmost interest for the study of turbulence—the realised quadratic
variation [Yδ]t does not converge as it would if Y was a semimartingale; in fact it
diverges to infinity whereas in the semimartingale case it will generally converge to
the accumulated volatility/intermittency

σ 2+
t =

∫ t

0
σ 2

s ds, (21)

which is an object of key interest (in turbulence it represents the coarse-grained
energy dissipation). However the situation can be remedied by adjusting [Yδ]t by a
factor depending on ν; in wide generality it holds that

cδ2(1−ν)[Yδ]t
p−→ σ 2+

t (22)

as δ −→ 0, with x = λ−122(ν−1/2)(Γ (ν)+Γ (ν + 1/2))/Γ (2ν − 1)Γ (3/2− 1). To
apply this requires knowledgeof the value of ν and in general νmust be estimatedwith
sufficient precision to ensure that substituting the estimate for the theoretical value of
ν in (22) will still yield convergence in probability. Under relatively mild conditions
that is possible, as discussed in [26] and the references therein. An important aspect
of formula (20) is that its use does not involve knowledge of ν as the adjustment
factor cancels out (Fig. 3).

Convergence in probability and a central limit theorem for the RRQV is estab-
lished in [10]. Figure2 illustrates its use, for two sections of the “Brookhaven”dataset,
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Fig. 3 Brookhaven turbulence data periods 18 and 25—RRQV and 95% confidence intervals

one where the volatility effect was deemed by eye to be very small and one where
it appeared strong. (The “Brookhaven” dataset consist of 20 million one-point mea-
surements of the longitudinal component of the wind velocity in the atmospheric
boundary layer, 35m above ground. The measurements were performed using a
hot-wire anemometer and sampled at 5 kHz. The time series can be assumed to be
stationary. We refer to [27] for further details on the dataset; the dataset is called
no. 3 therein).

4.3 Role of Selfdecomposability

If τ is given by (12) it is automatically infinitely divisible, and selfdecomposable
provided L has that property; whereas if τ is defined by (13) it will only in exceptional
cases be infinitely divisible.

A non-trivial example of such an exceptional case is the following. The Gumbel
distribution with density

f (x) = 1

b
exp

(
x − a

b
− exp

(
x − a

b

))
, (23)

where a ∈ R and b > 0 is infinitely divisible [39]. In [31] it was demonstrated that
the one-dimensional marginal distribution of the logarithm of the energy dissipation
is accurately described by a normal inverse Gaussian distribution. One may also
show (not done here) that the Gumbel distribution with b = 2 provides another fit
that is nearly as accurate as the normal inverse Gaussian. Furthermore, if X is a
Gumbel random variable with b = 2, then exp(X) is distributed as the square of
an exponential random variable, hence also infinitely divisible by [39]. Therefore, if
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the Lévy basis L in (17) is chosen so that L(A) follows a Gumbel distribution with
b = 2, then exp(L(A(t))) will be infinitely divisible.

For a general discussion of selfdecomposable fields we refer to [13]. See also [32]
which provides a survey of when a selfdecomposable random variable can be rep-
resented as a stochastic integral, like in (12). Representations of that kind allow, in
particular, the construction of field-valued processes of OU or supOU type that may
be viewed as propagating, in time, an initial volatility/intermittency field defined on
the spatial component of space-time for a fixed time, say t = 0. Similarly, suppose
that a model has been formulated for the time-wise development of a stochastic field
at a single point in space. One may then seek to define a field on space-time such that
at every other point of space the time-wise development of the field is stochastically
the same as at the original space point and such that the field as a whole is stationary
and selfdecomposable.

Example 1 (One dimensional turbulence) Let Y denote an ambit field in the tempo-
spatial casewhere the spatial dimension is 1, and assume that for a preliminary purely
temporal model X of the same turbulent phenomenon a model has been formulated
for the squared amplitude volatility component, say ω. It may then be desirable
to devise Y such that the volatility/intermittency field τ = σ 2 is stationary and
infinitely divisible, and such that for every spatial position x the law of τ(x, · ) is
identical to that formulated for the temporal setting, i.e. ω. If the temporal process
is selfdecomposable then, subject to a further weak condition (see [13]), such a field
can be constructed.

To sketch how this may proceed, recall first that the classical definition of self-
decomposability of a process X says that all the finite-dimensional marginal distri-
butions of X should be selfdecomposable. Accordingly, due to a result by [38], for
any finite set of time points û = (u1, . . . , un) the selfdecomposable vector variable
X (û) = (X (u1), . . . , X (un)) has a representation

X (û) =
∫ ∞

0
e−ξ L(dξ, û)

for some n-dimensional Lévy process L( · , û), provided only that the Lévy measure
of X (û) has finite log-moment. We now assume this to be the case and that X is
stationary

Next, for fixed û, let {L̃(x, û) | x ∈ R}, be the n-dimensional Lévy process having
the property that the law of L̃(1, û) is equal to the law of X (û). Then the integral

X (x, û) =
∫ x

−∞
e−ξ L̃(dξ, û)

exists and the process {X (x, û) | x ∈ R} will be stationary—of Ornstein-Uhlenbeck
type—while for each x the law of X (x, û) will be the same as that of X (û).
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However, off hand the Lévy processes L̃( · , û) corresponding to different sets û
of time points may have no dynamic relationship to each other, while the aim is to
obtain a stationary selfdecomposable field X (x, t) such that X (x, · ) has the same
law as X for all x ∈ R. But, arguing along the lines of theorem 3.4 in [9], it is possible
to choose the representative processes L̃( · , û) so that they are all defined on a single
probability space and are consistent among themselves (in analogy to Kolmogorov’s
consistency result); and that establishes the existence of the desired field X (x, t).
Moreover, X ( · , · ) is selfdecomposable, as is simple to verify.

The same result can be shown more directly using master Lévy measures and the
associated Lévy-Ito representations, cf. [13].

Example 2 Assume that X has the form

X (u) =
∫ u

−∞
g(u − ξ) L(dξ) (24)

where L is a Lévy process.
It has been shown in [13] that, in this case, provided g is integrable with respect

to the Lebesgue measure, as well as to L , and if the Fourier transform of g is non-
vanishing, then X , as a process, is selfdecomposable if and only if L is selfdecompos-
able. When that holds we may, as above, construct a selfdecomposable field X (x, t)
with X (x, · ) ∼ X ( · ) for every x ∈ R and X ( · , t) of OU type for every t ∈ R.

As an illustration, suppose that g is the gamma kernel (8) with ν ∈ (1/2, 1). Then
the Fourier transform of g is

ĝ(ζ ) = (1 − iζ/λ)−ν .

and hence, provided that L is such that the integral (24) exists, the field X (x, u) is
stationary and selfdecomposable, and has the OU type character described above.

5 Time Change and Universality in Turbulence
and Finance

5.1 Distributional Collapse

In [4], Barndorff-Nielsen et al. demonstrate two properties of the distributions of
increments Δ� X (t) = X (t)− X (t − �) of turbulent velocities. Firstly, the increment
distributions are parsimonious, i.e., they are described well by a distribution with
few parameters, even across distinct experiments. Specifically it is shown that the
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four-parameter family of normal inverse Gaussian distributions (NIG(α, β, μ, δ))
provides excellent fits across a wide range of lags �,

Δ� X ∼ NIG(α(�), β(�), μ(�), δ(�)). (25)

Secondly, the increment distributions are universal, i.e., the distributions are the same
for distinct experiments, if just the scale parameters agree,

Δ�1 X1 ∼ Δ�2 X2 if and only if δ1(�1) = δ2(�2), (26)

provided the original velocities (not increments) have been non-dimensionalized
by standardizing to zero mean and unit variance. Motivated by this, the notion of
stochastic equivalence class is introduced.

The line of study initiated in [4] is continued in [16], where the analysis is extended
to many more data sets, and it is observed that

Δ�1 X1 ∼ Δ�2 X2 if and only if var(Δ�1 X1) ∼ var(Δ�2 X2), (27)

which is a simpler statement than (26), since it does not involve any specific distri-
bution. In [21], Barndorff-Nielsen et al. extend the analysis from fluid velocities in
turbulence to currency and metal returns in finance and demonstrate that (27) holds
when Xi denotes the log-price, so increments are log-returns. Further corrobora-
tion of the existence of this phenomenon in finance is presented in the following
subsection.

A conclusion from the cited works is that within the context of turbulence or
finance there exists a family of distributions such that for many distinct experiments
and a wide range of lags, the corresponding increments are distributed according
to a member of this family. Moreover, this member is uniquely determined by the
variance of the increments.

Up till recently these stylised features had not been given any theoretical back-
ground. However, in [20], a class of stochastic processes is introduced that exactly
has the rescaling property in question.

5.2 A First Look at Financial Data from SP500

Motivated by the developments discussed in the previous subsection, in the following
we complement the analyses in [4, 16, 21] with 29 assets from Standard & Poor’s
500 stock market index. The following assets were selected for study: AA, AIG,
AXP, BA, BAC, C, CAT, CVX, DD, DIS, GE, GM, HD, IBM, INTC, JNJ, JPM, KO,
MCD, MMM, MRK, MSFT, PG, SPY, T, UTX, VZ, WMT, XOM. For each asset,
between 7 and 12years of data is available. A sample time series of the log-price of
asset C is displayed in Fig. 4, where the thin vertical line marks the day 2008-01-01.



18 O.E. Barndorff-Nielsen et al.

2000 2005 2010

0

1

2

3

4

year

lo
g
pr
ic
e

asset C

Fig. 4 Time series of the log-price of asset C on an arbitrary scale. The thin vertical line marks the
day 2008-01-01 and divides the dataset into the two subsets “pre” (blue) and “post” (yellow)

Asset C is found to be representative of the feature of all the other datasets. Each
dataset is divided into two subsets: the “pre” subset consisting of data from before
2008-01-01 and the “post” subset consisting of data from after 2008-01-01. This
subdivision was chosen since the volatility in the “post” dataset is visibly higher
than in the “pre” dataset, presumably due to the financial crisis. The data has been
provided by Lunde (Aarhus University), see also [29].

Figure5 shows that the distributions of log-returns across a wide range of lags
ranging from 1s to approximately 4.5h are quite accurately described by normal
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Fig. 5 Probability densities on a log-scale for the log-returns of asset C at various lags ranging from
1 to 16384s. The dots denote the data and the solid line denotes the fitted NIG distribution. Blue
and yellow denote the “pre” and “post” datasets, respectively. The log-returns have been multiplied
with 100 in order to un-clutter the labeling of the x-axes
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inverse Gaussian distributions, except at the smallest lags where the empirical dis-
tributions are irregular. We suspect this is due to market microstructure noise. The
accuracy of the fits is not surprising given that numerous publications have demon-
strated the applicability of the generalised hyperbolic distribution, in particular the
subfamily consisting of the normal inverse Gaussian distributions, to describe finan-
cial datasets. See for example [1, 14, 15, 28, 40]. We note the transition from a
highly peaked distribution towards the Gaussian as the lag increases.

Next, we see on Fig. 6 that the distributions at the same lag of the log-returns for
the 29 assets are quite different, that is, they do not collapse onto the same curve. This
holds for both the “pre” and the “post” datasets. However, the transition from a highly
peaked distribution at small lags towards a Gaussian at large lags hints that a suitable
change of time, though highly nonlinear, may cause such a collapse. Motivated by
the observations in [21] we therefore consider the variance of the log-returns as a
function of the lag. Figure7 shows how the variance depends on the lag. Except at the
smallest lags, a clear power law is observed. The behaviour at the smallest lags is due
to market microstructure noise [29]. Nine variances have been selected to represent
most of the variances observed in the 29 assets. For each selected variance and each
asset the corresponding lag is computed. We note that for the smallest lags/variances
this is not without difficulty since for some of the assets the slope approaches zero.

Finally, Fig. 8 displays the distributions of log-returns where the lag for each
asset has been chosen such that the variance is the one specified in each subplot. The
difference between Figs. 6 and 8 is pronounced. We see that for both the “pre” and
the “post” dataset, the distributions corresponding to the same variance tend to be
the same. Furthermore, when the “pre” and “post” datasets are displayed together,
essentially overlaying the top part of Fig. 8 with the bottom part, a decent overlap is
still observed. So while the distributions in Fig. 8 do not collapse perfectly onto the
same curve for all the chosen variances, in contrast to what is the case for velocity
increments in turbulence (see [4]), we are invariably led to the preliminary conclusion
that also in the case of the analysed assets from S&P500, a family of distributions
exists such that all distributions of log-returns are members of this family and such
that the variance of the log-returns uniquely determines this member. The lack of
collapse at the smaller variances may in part be explained by the difficulty in reading
off the corresponding lags.

The observed parsimony and in particular universality has implications for mod-
elling since any proper model should possess both features. Within the context of
turbulence, BSS-processes have been shown to be able to reproduce many key fea-
tures of turbulence, see [35] and the following subsection for a recent example.
The extent to which BSS-processes in general possess universality is still ongoing
research [20] but results indicate that BSS-processes and in general LSS-process are
good candidates for models where parsimony and universality are desired features.
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Fig. 6 Probability densities on a log-scale for the log-returns of all 29 assets at various lags ranging
from 1 to 16384s. The top and bottom halfs represent the “pre” and “post” datasets, respectively.
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Fig. 7 The variance of the log-returns for the 29 assets as a function of the lag displayed in
a double logarithmic representation. The top and bottom graphs represent the “pre” and “post”
datasets, respectively

5.3 Modelling Turbulent Velocity Time Series

A specific time-wise version of (1), called Brownian semistationary processes has
been proposed in [18, 19] as a model for turbulent velocity time series. It was shown
that BSS processes in combination with continuous cascade models (exponentials of
certain trawl processes) are able to qualitatively capture some main stylized features
of turbulent time series.
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Fig. 8 Probability densities on a log-scale of log-returns where the lag for each asset has been
chosen such that the variances of the assets in each subplot is the same. The chosen variances are
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Recently this analysis has been extended to a quantitative comparison with turbu-
lent data [31, 35]. More specifically, based on the results for the energy dissipation
oulined in Sect. 4.1, BSS processes have been analyzed and compared in detail to
turbulent velocity time series in [35] by directly estimating the model parameters
from data. Here we briefly summarize this analysis.

Time series of the main component vt of the turbulent velocity field are modelled
as a BSS process of the specific form

v(t) = v(t; g, σ, β) =
∫ t

−∞
g(t − s)σ (s)B(ds) + β

∫ t

−∞
g(t − s)σ (s)2 ds =: R(t) + βS(t)

(28)
where g is a non-negative L2(R+) function, σ is a stationary process independent
of B, β is a constant and B denotes standard Brownian motion. An argument based
on quadratic variation shows that when g(0+) �= 0, then σ 2 can be identified with
the surrogate energy dissipation, σ 2 = ε, where ε is the process given by (17). The
kernel g is specified as a slightly shifted convolution of gamma kernels [30],

g(t) = g0(t + t0),

g0(t) = atν1+ν2−1 exp(−λ2t)1F1(ν1, ν1 + ν2, (λ2 − λ1)t)1(0,∞)(t)

with a > 0, νi > 0 and λi > 0. Here 1F1 denotes the Kummer confluent hypergeo-
metric function. The shift is needed to ensure that g(0+) �= 0.

The data set analysed consists of one-point time records of the longitudinal (along
the mean flow) velocity component in a gaseous helium jet flow with a Taylor
Reynolds number Rλ = 985. The same data set is also analyzed in [31] and the
estimated parameters there are used to specify σ 2 = ε in (28). The remaining para-
meters for the kernel g and the constant β can then be estimated from the second
and third order structure function, that is, the second and third order moments of
velocity increments. In [35] it is shown that the second order structure function is
excellently reproduced and that the details of the third order structure function are
well captured. It is important to note that the model is completely specified from the
energy dissipation statistics and the second and third order structure functions.

The estimated model for the velocity is then succesfully compared with other
derived quantities, including higher order structure functions, the distributions of
velocity increments and their evolution as a function of lag, the so-calledKolmogorov
variable and the energy dissipation, as prediced by the model.

6 Conclusion and Outlook

The present paper highlights some of the most recent developments in the theory
and applications of Ambit Stochastics. In particular, we have discussed the existence
of the ambit fields driven by metatime changed Lévy bases, selfdecomposability of
random fields [13], applications of BSS processes in the modelling of turbulent time
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series [35] and new results on the distributional collapse in financial data. Some of
the topics not mentioned here but also under development are the integration theory
with respect to time-changed volatility modulated Lévy bases [7]; integration with
respect to volatility Gaussian processes in the White Noise Analysis setting in the
spirit of [34] and extending [6]; modelling of multidimensional turbulence based
on ambit fields; and in-depth study of parsimony and universality in BSS and LSS
processes motivated by some of the discussions in the present paper.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Functional and Banach Space Stochastic
Calculi: Path-Dependent Kolmogorov
Equations Associated with the Frame
of a Brownian Motion
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Abstract First, we revisit basic theory of functional Itô/path-dependent calculus,
using the formulation of calculus via regularization. Relationswith the corresponding
Banach space valued calculus are explored. The second part of the paper is devoted
to the study of the Kolmogorov type equation associated with the so called window
Brownian motion, called path-dependent heat equation, for which well-posedness at
the level of strict solutions is established. Then, a notion of strong approximating
solution, called strong-viscosity solution, is introduced which is supposed to be a
substitution tool to the viscosity solution. For that kind of solution, we also prove
existence and uniqueness.
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regularization
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1 Introduction

The present work collects several results obtained in the papers [9, 10], focusing
on the study of some specific examples and particular cases, for which an ad hoc
analysis is developed. This work is an improved version of [8], trying to explain more
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precisely some details. For example, in [8] a slightly more restrictive definition of
strong-viscosity solution was adopted, see Remark 12.

Recently, a new branch of stochastic calculus has appeared, known as functional
Itô calculus, which results to be an extension of classical Itô calculus to functionals
depending on the entire path of a stochastic process and not only on its current value,
see Dupire [17], Cont and Fournié [5–7]. Independently, Di Girolami and Russo, and
more recently Fabbri, Di Girolami, and Russo, have introduced a stochastic calculus
via regularizations for processes taking values in a separable Banach space B (see
[12–16]), including the case B = C([−T, 0]), which concerns the applications to
the path-dependent calculus.

In the first part of the present paper, we follow [9] and revisit functional Itô cal-
culus by means of stochastic calculus via regularization. We recall that Cont and
Fournié [5–7] developed functional Itô calculus and derived a functional Itô’s for-
mula using discretization techniques of Föllmer [23] type, instead of regularization
techniques, which in our opinion, better fit to the notion of derivative. Let us illus-
trate another difference with respect to [5]. One of the main issues of functional Itô
calculus is the definition of the functional (or pathwise) derivatives, i.e., the hori-
zontal derivative (calling in only the past values of the trajectory) and the vertical
derivative (calling in only the present value of the trajectory). In [5], it is essential
to consider functionals defined on the space of càdlàg trajectories, since the def-
inition of functional derivatives necessitates of discontinuous paths. Therefore, if
a functional is defined only on the space of continuous trajectories (because, e.g.,
it depends on the paths of a continuous process as Brownian motion), we have to
extend it anyway to the space of càdlàg trajectories, even though, in general, there is
no unique way to extend it. In contrast to this approach, we introduce a new space
larger than the space of continuous trajectories C([−T, 0]), denoted by C ([−T, 0]),
which allows us to define functional derivatives. C ([−T, 0]) is the space of bounded
trajectories on [−T, 0], continuous on [−T, 0[ and with possibly a jump at 0. We
endowC ([−T, 0])with a topology such thatC([−T, 0]) is dense inC ([−T, 0])with
respect to this topology. Therefore, any functional U : [0, T ] × C([−T, 0]) → R,
continuous with respect to the topology of C ([−T, 0]), admits a unique extension
to C ([−T, 0]), denoted u : [0, T ] × C ([−T, 0]) → R. We present some significant
functionals for which a continuous extension exists. Then, we develop the functional
Itô calculus for u : [0, T ] × C ([−T, 0]) → R.

Notice that we use a slightly different notation compared with [5]. In partic-
ular, in place of a map U : [0, T ] × C([−T, 0]) → R, in [5] a family of maps
F = (Ft )t∈[0,T ], with Ft : C([0, t]) → R, is considered. However, we can always
move from one formulation to the other. Indeed, given F = (Ft )t∈[0,T ], where each
Ft : C([0, t]) → R, we can define U : [0, T ] × C([−T, 0]) → R as follows:

U (t, η) := Ft (η(· + T )|[0,t]), (t, η) ∈ [0, T ] × C([−T, 0]).

Vice-versa, let U : [0, T ] × C([−T, 0]) → R and define F = (Ft )t∈[0,T ] as

Ft (η̃) := U (t, η), (t, η̃) ∈ [0, T ] × C([0, t]), (1)
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where η is the element of C([−T, 0]) obtained from η̃ firstly translating η̃ on the
interval [−t, 0], then extending it in a constant way up to −T , namely η(x) :=
η̃(x + t)1[−t,0](x) + η̃(−t)1[−T,−t)(x), for any x ∈ [−T, 0]. Observe that, in
principle, the mapU contains more information than F , since in (1) we do not take
into account the values of U at (t, η) ∈ [0, T ] × C([−T, 0]) with η not constant
on the interval [−T,−t]. Despite this, the equivalence between the two notations
is guaranteed; indeed, when we consider the composition of U with a stochastic
process, this extra information plays no role. Our formulation has two advantages.
Firstly, we can work with a single map instead of a family of maps. In addition,
the time variable and the path have two distinct roles in our setting, as for the time
variable and the space variable in the classical Itô calculus. This, in particular, allows
us to define the horizontal derivative independently of the time derivative, so that,
the horizontal derivative defined in [5] corresponds to the sum of our horizontal
derivative and of the time derivative. We mention that an alternative approach to
functional derivatives was introduced in [1].

We end the first part of the paper showing how our functional Itô’s formula is
strictly related to the Itô’s formula derived in the framework of Banach space valued
stochastic calculus via regularization, for the case of window processes. This new
branch of stochastic calculus has been recently conceived and developed in many
directions in [12, 14–16]; for more details see [13]. For the particular case of window
processes, we also refer to Theorem 6.3 and Sect. 7.2 in [12]. In the present paper, we
prove formulae which allow to express functional derivatives in terms of differential
operators arising in the Banach space valued stochastic calculus via regularization,
with the aim of identifying the building blocks of our functional Itô’s formula with
the terms appearing in the Itô’s formula for window processes.

Dupire [17] introduced also the concept of path-dependent partial differential
equation, to which the second part of the present paper is devoted. Di Girolami and
Russo, in Chap.9 of [13], considered existence of regular solutions associated with
a path dependent heat equation (which is indeed the Kolmogorov equation related to
windowBrownianmotion)with aFréchet smoothfinal condition.Thiswasperformed
in the framework of Banach space valued calculus, for which we refer also to [22].
A flavour of the notion of regular solution in the Banach space framework, appeared
in Chap. IV of [30] which introduced the notion of weak infinitesimal generator (in
some weak sense) of the window Brownian motion and more general solutions of
functional dependent stochastic differential equations. Indeed, the monograph [30]
by Mohammed constitutes an excellent early contribution to the theory of this kind
of equations.

We focus on semilinear parabolic path-dependent equations associated to the
window Brownian motion. For more general equations we refer to [9] (for strict
solutions) and to [10] (for strong-viscosity solutions). First, we consider regular
solution, which we call strict solutions, in the framework of functional Itô calculus.
We prove a uniqueness result for this kind of solution, showing that, if a strict solution
exists, then it can be expressed through the unique solution to a certain backward
stochastic differential equation (BSDE). Then, we prove an existence result for strict
solutions.
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However, this notion of solution turns out to be unsuitable to deal with all signif-
icant examples. As a matter of fact, if we consider the path-dependent PDE arising
in the hedging problem of lookback contingent claims, we can not expect too much
regularity of the solution (this example is studied in detail in Sect. 3.2). Therefore,
we are led to consider a weaker notion of solution. In particular, we are interested in a
viscosity-type solution, namely a solution which is not required to be differentiable.

The issue of providing a suitable definition of viscosity solutions for path-
dependent PDEs has attracted a great interest, see Peng [33] and Tang and Zhang
[42], Ekren et al. [18–20], Ren et al. [34]. In particular, the definition of viscos-
ity solution provided by [18–20, 34] is characterized by the fact that the classical
minimum/maximum property, which appears in the standard definition of viscosity
solution, is replaced with an optimal stopping problem under nonlinear expecta-
tion [21]. Then, probability plays an essential role in this latter definition, which can
not be considered as a purely analytic object as the classical definition of viscosity
solution is; it is, more properly, a probabilistic version of the classical definition of
viscosity solution. We also emphasize that a similar notion of solution, called sto-
chastic weak solution, has been introduced in the recent paper [29] in the context of
variational inequalities for the Snell envelope associated to a non-Markovian con-
tinuous process X . Those authors also revisit functional Itô calculus, making use of
stopping times. This approach seems very promising. Instead, our aim is to provide a
definition of viscosity type solution, which has the peculiarity to be a purely analytic
object; this will be called a strong-viscosity solution to distinguish it from the clas-
sical notion of viscosity solution. A strong-viscosity solution to a path-dependent
partial differential equation is defined, in a few words, as the pointwise limit of strict
solutions to perturbed equations. We notice that the definition of strong-viscosity
solution is similar in spirit to the vanishing viscosity method, which represents one
of the primitive ideas leading to the conception of the modern definition of viscosity
solution. Moreover, it has also some similarities with the definition of good solution,
which turned out to be equivalent to the definition of L p-viscosity solution for certain
fully nonlinear partial differential equations, see, e.g., [3, 11, 27, 28]. Finally, our
definition is likewise inspired by the notion of strong solution (which justifies the first
word in the name of our solution), as defined for example in [2, 24, 25], even though
strong solutions are required to be more regular (this regularity is usually required
to prove uniqueness of strong solutions, which for example in [24, 25] is based on
a Fukushima-Dirichlet decomposition). Instead, our definition of strong-viscosity
solution to the path-dependent semilinear Kolmogorov equation is not required to
be continuous, as in the spirit of viscosity solutions. The term viscosity in the name
of our solution is also justified by the fact that in the finite dimensional case we
have an equivalence result between the notion of strong-viscosity solution and that
of viscosity solution, see Theorem 3.7 in [8]. We prove a uniqueness theorem for
strong-viscosity solutions using the theory of backward stochastic differential equa-
tions and we provide an existence result. We refer to [10] for more general results
(when the path-dependent equation is not the path-dependent heat equation) and
also for the application of strong-viscosity solutions to standard semilinear parabolic
PDEs.



Functional and Banach Space Stochastic Calculi … 31

The paper is organized as follows. In Sect. 2 we develop functional Itô calculus via
regularization following [9]: after a brief introduction onfinite dimensional stochastic
calculus via regularization in Sect. 2.1, we introduce and study the spaceC ([−T, 0])
in Sect. 2.2; then, we define the pathwise derivatives and we prove the functional
Itô’s formula in Sect. 2.3; in Sect. 2.4, instead, we discuss the relation between func-
tional Itô calculus via regularization and Banach space valued stochastic calculus
for window processes. In Sect. 3, on the other hand, we study path-dependent PDEs
following [10]. More precisely, in Sect. 3.1 we discuss strict solutions; in Sect. 3.2
we present a significant hedging example to motivate the introduction of a weaker
notion of solution; finally, in Sect. 3.3 we provide the definition of strong-viscosity
solution.

2 Functional Itô Calculus: A Regularization Approach

2.1 Background: Finite Dimensional Calculus
via Regularization

The theory of stochastic calculus via regularization has been developed in several
papers, starting from [37, 38]. We recall below only the results used in the present
paper, and we refer to [40] for a survey on the subject. We emphasize that integrands
are allowed to be anticipating. Moreover, the integration theory and calculus appear
to be close to a pure pathwise approach even though there is still a probability space
behind.

Fix a probability space (Ω,F ,P) and T ∈]0,∞[. Let F = (Ft )t∈[0,T ] denote a
filtration satisfying the usual conditions. Let X = (Xt )t∈[0,T ] (resp. Y = (Yt )t∈[0,T ])
be a real continuous (resp. P-a.s. integrable) process. Every real continuous process
X = (Xt )t∈[0,T ] is naturally extended to all t ∈ R setting Xt = X0, t ≤ 0, and
Xt = XT , t ≥ T . We also define a C([−T, 0])-valued process X = (Xt )t∈R, called
the window process associated with X , defined by

Xt := {Xt+x , x ∈ [−T, 0]}, t ∈ R. (2)

This corresponds to the so-called segment process which appears for instance in [43].

Definition 1 Suppose that, for every t ∈ [0, T ], the limit

∫ t

0
Ysd− Xs := lim

ε→0+

∫ t

0
Ys

Xs+ε − Xs

ε
ds, (3)

exists in probability. If the obtained random function admits a continuous modifi-
cation, that process is denoted by

∫ ·
0 Y d− X and called forward integral of Y with

respect to X .
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Definition 2 A family of processes (H (ε)
t )t∈[0,T ] is said to converge to (Ht )t∈[0,T ]

in the ucp sense, if sup0≤t≤T |H (ε)
t − Ht | goes to 0 in probability, as ε → 0+.

Proposition 1 Suppose that the limit (3) exists in the ucp sense. Then, the forward
integral

∫ ·
0 Y d− X of Y with respect to X exists.

Let us introduce the concept of covariation, which is a crucial notion in stochastic
calculus via regularization. Let us suppose that X, Y are continuous processes.

Definition 3 The covariation of X and Y is defined by

[X, Y ]t = [Y, X ]t = lim
ε→0+

1

ε

∫ t

0
(Xs+ε − Xs)(Ys+ε − Ys)ds, t ∈ [0, T ],

if the limit exists in probability for every t ∈ [0, T ], provided that the limiting random
function admits a continuous version (this is the case if the limit holds in the ucp
sense). If X = Y, X is said to be a finite quadratic variation process and we set
[X ] := [X, X ].

The forward integral and the covariation generalize the classical Itô integral and
covariation for semimartingales. In particular, we have the following result, for a
proof we refer to, e.g., [40].

Proposition 2 The following properties hold.

(i) Let S1, S2 be continuous F-semimartingales. Then, [S1, S2] is the classical
bracket [S1, S2] = 〈M1, M2〉, where M1 (resp. M2) is the local martingale
part of S1 (resp. S2).

(ii) Let V be a continuous bounded variation process and Y be a càdlàg process
(or vice-versa); then [V ] = [Y, V ] = 0. Moreover

∫ ·
0 Y d−V = ∫ ·

0 Y dV , is the
Lebesgue-Stieltjes integral.

(iii) If W is a Brownian motion and Y is anF-progressively measurable process such
that

∫ T
0 Y 2

s ds < ∞, P-a.s., then
∫ ·
0 Y d−W exists and equals the Itô integral∫ ·

0 Y dW .

We could have defined the forward integral using limits of non-anticipating Riemann
sums. Another reason to use the regularization procedure is due to the fact that it
extends the Itô integral, as Proposition 2(iii) shows. If the integrand had uncountable
jumps (as Y being the indicator function of the rational number in [0, 1]) then,
the Itô integral

∫ ·
0 Y dW would be zero Y = 0 a.e. The limit of Riemann sums∑

i Yti (Wti+1 − Wti ) would heavily depend on the discretization grid.
We end this crash introduction to finite dimensional stochastic calculus via regu-

larization presenting one of its cornerstones: Itô’s formula. It is awell-known result in
the theory of semimartingales, but it also extends to the framework of finite quadratic
variation processes. For a proof we refer to Theorem 2.1 of [39].
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Theorem 1 Let F : [0, T ] × R −→ R be of class C1,2 ([0, T ] × R) and X =
(Xt )t∈[0,T ] be a real continuous finite quadratic variation process. Then, the follow-
ing Itô’s formula holds, P-a.s.,

F(t, Xt ) = F(0, X0) +
∫ t

0
∂t F(s, Xs)ds +

∫ t

0
∂x F(s, Xs)d

− Xs

+ 1

2

∫ t

0
∂2x x F(s, Xs)d[X ]s, 0 ≤ t ≤ T . (4)

2.1.1 The Deterministic Calculus via Regularization

A useful particular case of finite dimensional stochastic calculus via regularization
arises when Ω is a singleton, i.e., when the calculus becomes deterministic. In addi-
tion, in this deterministic framework we will make use of the definite integral on
an interval [a, b], where a < b are two real numbers. Typically, we will consider
a = −T or a = −t and b = 0.

We start with two conventions. By default, every bounded variation function
f : [a, b] → Rwill be considered as càdlàg.Moreover, given a function f : [a, b] →
R, we will consider the following two extensions of f to the entire real line:

f J (x) :=

⎧⎪⎨
⎪⎩
0, x > b,

f (x), x ∈ [a, b],
f (a), x < a,

f J (x) :=

⎧⎪⎨
⎪⎩

f (b), x > b,

f (x), x ∈ [a, b],
0, x < a,

where J := ]a, b] and J = [a, b[.
Definition 4 Let f, g : [a, b] → R be càdlàg functions.
(i) Suppose that the following limit

∫
[a,b]

g(s)d− f (s) := lim
ε→0+

∫
R

gJ (s)
f J (s + ε) − f J (s)

ε
ds, (5)

exists and it is finite. Then, the obtained quantity is denoted by
∫
[a,b] gd− f and called

(deterministic, definite) forward integral of g with respect to f (on [a, b]).
(ii) Suppose that the following limit

∫
[a,b]

g(s)d+ f (s) := lim
ε→0+

∫
R

gJ (s)
f J (s) − f J (s − ε)

ε
ds, (6)

exists and it is finite. Then, the obtained quantity is denoted by
∫
[a,b] gd+ f and called

(deterministic, definite) backward integral of g with respect to f (on [a, b]).



34 A. Cosso and F. Russo

The notation concerning this integral is justified since when the integrator f has
bounded variation the previous integrals are Lebesgue-Stieltjes integrals on [a, b].
Proposition 3 Suppose f : [a, b] → R with bounded variation and g : [a, b] → R

càdlàg. Then, we have

∫
[a,b]

g(s)d− f (s) =
∫

[a,b]
g(s−)d f (s) := g(a) f (a) +

∫
]a,b]

g(s−)d f (s), (7)

∫
[a,b]

g(s)d+ f (s) =
∫

[a,b]
g(s)d f (s) := g(a) f (a) +

∫
]a,b]

g(s)d f (s). (8)

Proof Identity (7). We have

∫
R

gJ (s)
f J (s + ε) − f J (s)

ε
ds = 1

ε
g(a)

∫ a

a−ε

f (s + ε)ds

+
∫ b

a
g(s)

f ((s + ε) ∧ b) − f (s)

ε
ds. (9)

The second integral on the right-hand side of (9) gives, by Fubini’s theorem,

∫ b

a
g(s)

(
1

ε

∫
]s,(s+ε)∧b]

d f (y)

)
ds =

∫
]a,b]

(
1

ε

∫
[a∨(y−ε),y]

g(s)ds

)
d f (y)

ε→0+−→
∫

]a,b]
g(y−)d f (y).

The first integral on the right-hand side of (9) goes to g(a) f (a) as ε → 0+, so the
result follows.

Identity (8). We have

∫
R

gJ (s)
f J (s) − f J (s − ε)

ε
ds =

∫ b

a+ε

g(s)
f (s) − f (s − ε)

ε
ds

+ 1

ε

∫ a+ε

a
g(s) f (s)ds. (10)

The second integral on the right-hand side of (10) goes to g(a) f (a) as ε → 0+. The
first one equals

∫ b

a+ε
g(s)

(
1

ε

∫
]s−ε,s]

d f (y)

)
ds =

∫
]a,b]

(
1

ε

∫
]y,(y+ε)∧b]

g(s)ds

)
d f (y)

ε→0+−→
∫
]a,b]

g(y)d f (y),

from which the claim follows. �
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Let us now introduce the deterministic covariation.

Definition 5 Let f, g : [a, b] → R be continuous functions and suppose that 0 ∈
[a, b]. The (deterministic) covariation of f and g (on [a, b]) is defined by

[ f, g] (x) = [g, f ] (x) = lim
ε→0+

1

ε

∫ x

0
( f (s + ε) − f (s))(g(s + ε) − g(s))ds, x ∈ [a, b],

if the limit exists and it is finite for every x ∈ [a, b]. If f = g, we set [ f ] := [ f, f ]
and it is called quadratic variation of f (on [a, b]).

We notice that in Definition 5 the quadratic variation [ f ] is continuous on [a, b],
since f is a continuous function.

Remark 1 Notice that if f is a fixed Brownian path and g(s) = ϕ(s, f (s)), with
ϕ ∈ C1([a, b] × R). Then

∫
[a,b] g(s)d− f (s) exists for almost all (with respect to

the Wiener measure on C([a, b])) Brownian paths f . This latter result can be shown
using Theorem 2.1 in [26] (which implies that the deterministic bracket exists, for
almost all Brownian paths f , and [ f ](s) = s) and then applying Itô’s formula in
Theorem 1 above, with P given by the Dirac delta at a Brownian path f . �

We conclude this subsection with an integration by parts formula for the deter-
ministic forward and backward integrals.

Proposition 4 Let f : [a, b] → R be a càdlàg function and g : [a, b] → R be a
bounded variation function. Then, the following integration by parts formulae hold:

∫
[a,b]

g(s)d− f (s) = g(b) f (b) −
∫

]a,b]
f (s)dg(s), (11)

∫
[a,b]

g(s)d+ f (s) = g(b) f (b−) −
∫

]a,b]
f (s−)dg(s). (12)

Proof Identity (11). The left-hand side of (11) is the limit, when ε → 0+, of

1

ε

∫ b−ε

a
g(s) f (s + ε)ds − 1

ε

∫ b

a
g(s) f (s)ds + 1

ε

∫ b

b−ε
g(s) f (b)ds + 1

ε

∫ a

a−ε
g(a) f (s + ε)ds.

This gives

1

ε

∫ b

a+ε

g(s − ε) f (s)ds − 1

ε

∫ b

a
g(s) f (s)ds + 1

ε

∫ b

b−ε

g(s) f (b)ds + 1

ε

∫ a

a−ε

g(a) f (s + ε)ds

= −
∫ b

a+ε

g(s) − g(s − ε)

ε
f (s)ds − 1

ε

∫ a+ε

a
g(s) f (s)ds + 1

ε

∫ b

b−ε

g(s) f (b)ds

+ 1

ε

∫ a

a−ε

g(a) f (s + ε)ds.
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We see that

1

ε

∫ b

b−ε

g(s) f (b)ds
ε→0+−→ g(b−) f (b),

1

ε

∫ a

a−ε

g(a) f (s + ε)ds − 1

ε

∫ a+ε

a
g(s) f (s)ds

ε→0+−→ 0.

Moreover, we have

−
∫ b

a+ε

g(s) − g(s − ε)

ε
f (s)ds = −

∫ b

a+ε
ds f (s)

1

ε

∫
]s−ε,s]

dg(y)

= −
∫
]a,b]

dg(y)
1

ε

∫ b∧(y+ε)

y∨(a+ε)
f (s)ds

ε→0+−→ −
∫
]a,b[

dg(y) f (y).

In conclusion, we find

∫
[a,b]

g(s)d− f (s) = −
∫

]a,b]
dg(y) f (y) + (g(b) − g(b−)) f (b) + g(b−) f (b)

= −
∫

]a,b]
dg(y) f (y) + g(b) f (b).

Identity (12). The left-hand side of (12) is given by the limit, as ε → 0+, of

1

ε

∫ b

a
g(s) f (s)ds − 1

ε

∫ b

a+ε

g(s) f (s − ε)ds = 1

ε

∫ b

a
g(s) f (s)ds − 1

ε

∫ b−ε

a
g(s + ε) f (s)ds

= −
∫ b−ε

a
f (s)

g(s + ε) − g(s)

ε
ds + 1

ε

∫ b

b−ε

g(s) f (s)ds

The second integral on the right-hand side goes to g(b−) f (b−) as ε → 0+. The first
integral expression equals

−
∫
R

f J (s)
gJ (s + ε) − gJ (s)

ε
ds + 1

ε
f (a)

∫ a

a−ε

g(s + ε)ds +
∫ b

b−ε

f (s)
g(b) − g(s)

ε
ds

ε→0+−→ −
∫

]a,b]
f (s−)dg(s) − f (a)g(a) + f (a)g(a) + (g(b) − g(b−)) f (b−),

taking into account identity (7). This gives us the result. �

2.2 The Spaces C ([−T, 0]) and C ([−T, 0[)

LetC([−T, 0]) denote the set of real continuous functions on [−T, 0], endowedwith
supremum norm ‖η‖∞ = supx∈[−T,0] |η(x)|, for any η ∈ C([−T, 0]).
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Remark 2 We shall develop functional Itô calculus via regularization firstly for time-
independent functionals U : C([−T, 0]) → R, since we aim at emphasizing that in
our framework the time variable and the path play two distinct roles, as emphasized
in the introduction. This, also, allows us to focus only on the definition of horizontal
and vertical derivatives. Clearly, everything can be extended in an obvious way to
the time-dependent case U : [0, T ] × C([−T, 0]) → R, as we shall illustrate later.

�

Consider a mapU : C([−T, 0]) → R. Our aim is to derive a functional Itô’s for-
mula forU . To do this,we are led to define the functional (i.e., horizontal and vertical)
derivatives forU in the spirit of [5, 17]. Since the definition of functional derivatives
necessitates of discontinuous paths, in [5] the idea is to consider functionals defined
on the space of càdlàg trajectories D([−T, 0]). However, we can not, in general,
extend in a unique way a functional U defined on C([−T, 0]) to D([−T, 0]). Our
idea, instead, is to consider a larger space than C([−T, 0]), denoted by C ([−T, 0]),
which is the space of bounded trajectories on [−T, 0], continuous on [−T, 0[ and
with possibly a jump at 0. We endow C ([−T, 0]) with a (inductive) topology such
that C([−T, 0]) is dense in C ([−T, 0]) with respect to this topology. Therefore, if
U is continuous with respect to the topology of C ([−T, 0]), then it admits a unique
continuous extension u : C ([−T, 0]) → R.

Definition 6 We denote by C ([−T, 0]) the set of bounded functions η : [−T, 0]
→ R such that η is continuous on [−T, 0[, equipped with the topology we now
describe.
Convergence We endow C ([−T, 0]) with a topology inducing the following con-
vergence: (ηn)n converges to η in C ([−T, 0]) as n tends to infinity if the following
holds.

(i) ‖ηn‖∞ ≤ C , for any n ∈ N, for some positive constant C independent of n;
(ii) supx∈K |ηn(x) − η(x)| → 0 as n tends to infinity, for any compact set K ⊂

[−T, 0[;
(iii) ηn(0) → η(0) as n tends to infinity.

Topology For each compact K ⊂ [−T, 0[ define the seminorm pK onC ([−T, 0]) by

pK (η) = sup
x∈K

|η(x)| + |η(0)|, ∀ η ∈ C ([−T, 0]).

Let M > 0 and CM ([−T, 0]) be the set of functions in C ([−T, 0]) which are
bounded by M . Still denote pK the restriction of pK to CM ([−T, 0]) and consider
the topology on CM ([−T, 0]) induced by the collection of seminorms (pK )K . Then,
we endow C ([−T, 0]) with the smallest topology (inductive topology) turning all
the inclusions iM : CM ([−T, 0]) → C ([−T, 0]) into continuous maps.



38 A. Cosso and F. Russo

Remark 3 (i) Notice that C([−T, 0]) is dense in C ([−T, 0]), when endowed with
the topology of C ([−T, 0]). As a matter of fact, let η ∈ C ([−T, 0]) and define, for
any n ∈ N\{0},

ϕn(x) =
{

η(x), −T ≤ x ≤ −1/n,

n(η(0) − η(−1/n))x + η(0), −1/n < x ≤ 0.

Then, we see that ϕn ∈ C([−T, 0]) and ϕn → η in C ([−T, 0]).
Now, for any a ∈ R define

Ca([−T, 0]) := {η ∈ C([−T, 0]) : η(0) = a},
Ca([−T, 0]) := {η ∈ C ([−T, 0]) : η(0) = a}.

Then, Ca([−T, 0]) is dense in Ca([−T, 0]) with respect to the topology of
C ([−T, 0]).
(ii) We provide two examples of functionalsU : C([−T, 0]) → R, continuous with
respect to the topology of C ([−T, 0]), and necessarily with respect to the topology
of C([−T, 0]) (the proof is straightforward and not reported):

(a) U (η) = g(η(t1), . . . , η(tn)), for all η ∈ C([−T, 0]), with −T ≤ t1 < · · · <

tn ≤ 0 and g : Rn → R continuous.
(b) U (η) = ∫

[−T,0] ϕ(x)d−η(x), for all η ∈ C([−T, 0]), with ϕ : [0, T ] → R a
càdlàg bounded variation function. Concerning this example, keep in mind that,
using the integration by parts formula, U (η) admits the representation (11).

(iii) Consider the functional U (η) = supx∈[−T,0] η(x), for all η ∈ C([−T, 0]). It
is obviously continuous, but it is not continuous with respect to the topology of
C ([−T, 0]). As a matter of fact, for any n ∈ N consider ηn ∈ C([−T, 0]) given by

ηn(x) =

⎧⎪⎨
⎪⎩
0, −T ≤ x ≤ − T

2n ,
2n+1

T x + 2, − T
2n < x ≤ − T

2n+1 ,

− 2n+1

T x, − T
2n+1 < x ≤ 0.

Then,U (ηn) = supx∈[−T,0] ηn(x) = 1, for any n. However, ηn converges to the zero
function in C ([−T, 0]), as n tends to infinity. This example will play an important
role in Sect. 3 to justify a weaker notion of solution to the path-dependent semilinear
Kolmogorov equation. �

To define the functional derivatives, we shall need to separate the “past” from the
“present” of η ∈ C ([−T, 0]). Indeed, roughly speaking, the horizontal derivative
calls in the past values of η, namely {η(x) : x ∈ [−T, 0[}, while the vertical derivative
calls in the present value of η, namely η(0). To this end, it is useful to introduce the
space C ([−T, 0[).
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Definition 7 We denote by C ([−T, 0[) the set of bounded continuous functions
γ : [−T, 0[ → R, equipped with the topology we now describe.
Convergence We endow C ([−T, 0[) with a topology inducing the following con-
vergence: (γn)n converges to γ in C ([−T, 0[) as n tends to infinity if:

(i) supx∈[−T,0[ |γn(x)| ≤ C , for any n ∈ N, for some positive constant C indepen-
dent of n;

(ii) supx∈K |γn(x) − γ (x)| → 0 as n tends to infinity, for any compact set K ⊂
[−T, 0[.

Topology For each compact K ⊂ [−T, 0[ define the seminorm qK onC ([−T, 0[) by

qK (γ ) = sup
x∈K

|γ (x)|, ∀ γ ∈ C ([−T, 0[).

Let M > 0 and CM ([−T, 0[) be the set of functions in C ([−T, 0[) which are
bounded by M . Still denote qK the restriction of qK to CM ([−T, 0[) and consider
the topology on CM ([−T, 0[) induced by the collection of seminorms (qK )K . Then,
we endow C ([−T, 0[) with the smallest topology (inductive topology) turning all
the inclusions iM : CM ([−T, 0[) → C ([−T, 0[) into continuous maps.

Remark 4 (i) Notice that C ([−T, 0]) is isomorphic to C ([−T, 0[)×R. As a matter
of fact, it is enough to consider the map

J : C ([−T, 0]) → C ([−T, 0[) × R

η �→ (η|[−T,0[, η(0)).

Observe that J−1 : C ([−T, 0[) × R → C ([−T, 0]) is given by J−1(γ, a) =
γ 1[−T,0[ + a1{0}.
(ii) C ([−T, 0]) is a space which contains C([−T, 0]) as a dense subset and it has the
property of separating “past” from“present”.Another space having the sameproperty
is L2([−T, 0]; dμ) where μ is the sum of the Dirac measure at zero and Lebesgue
measure. Similarly as for item (i), that space is isomorphic to L2([−T, 0]) × R,
which is a very popular space appearing in the analysis of functional dependent (as
delay) equations, starting from [4]. �

For every u : C ([−T, 0]) → R, we can now exploit the space C ([−T, 0[) to
define a map ũ : C ([−T, 0[) × R → R where “past” and “present” are separated.

Definition 8 Let u : C ([−T, 0]) → R and define ũ : C ([−T, 0[) × R → R as

ũ(γ, a) := u(γ 1[−T,0[ + a1{0}), ∀ (γ, a) ∈ C ([−T, 0[) × R. (13)

In particular, we have u(η) = ũ(η|[−T,0[, η(0)), for all η ∈ C ([−T, 0]).
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We conclude this subsection with a characterization of the dual spaces of
C ([−T, 0]) and C ([−T, 0[), which has an independent interest. Firstly, we need
to introduce the setM ([−T, 0]) of finite signed Borel measures on [−T, 0]. We also
denote M0([−T, 0]) ⊂ M ([−T, 0]) the set of measures μ such that μ({0}) = 0.

Proposition 5 Let Λ ∈ C ([−T, 0])∗, the dual space of C ([−T, 0]). Then, there
exists a unique μ ∈ M ([−T, 0]) such that

Λη =
∫

[−T,0]
η(x)μ(dx), ∀ η ∈ C ([−T, 0]).

Proof Let Λ ∈ C ([−T, 0])∗ and define

Λ̃ϕ := Λϕ, ∀ϕ ∈ C([−T, 0]).

Notice that Λ̃ : C([−T, 0]) → R is a continuous functional on the Banach space
C([−T, 0]) endowed with the supremum norm ‖ · ‖∞. Therefore Λ̃ ∈ C([−T, 0])∗
and it follows from Riesz representation theorem (see, e.g., Theorem 6.19 in [36])
that there exists a unique μ ∈ M ([−T, 0]) such that

Λ̃ϕ =
∫

[−T,0]
ϕ(x)μ(dx), ∀ϕ ∈ C([−T, 0]).

Obviously Λ̃ is also continuous with respect to the topology of C ([−T, 0]). Since
C([−T, 0]) is dense in C ([−T, 0]) with respect to the topology of C ([−T, 0]), we
deduce that there exists a unique continuous extension of Λ̃ to C ([−T, 0]), which is
clearly given by

Λη =
∫

[−T,0]
η(x)μ(dx), ∀ η ∈ C ([−T, 0]).

�

Proposition 6 Let Λ ∈ C ([−T, 0[)∗, the dual space of C ([−T, 0[). Then, there
exists a unique μ ∈ M0([−T, 0]) such that

Λγ =
∫

[−T,0[
γ (x)μ(dx), ∀ γ ∈ C ([−T, 0[).

Proof Let Λ ∈ C ([−T, 0[)∗ and define

Λ̃η := Λ(η|[−T,0[), ∀ η ∈ C ([−T, 0]). (14)
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Notice that Λ̃ : C ([−T, 0]) → R is a continuous functional onC ([−T, 0]). It follows
from Proposition 5 that there exists a unique μ ∈ M ([−T, 0]) such that

Λ̃η =
∫
[−T,0]

η(x)μ(dx) =
∫
[−T,0[

η(x)μ(dx) + η(0)μ({0}), ∀ η ∈ C ([−T, 0]).
(15)

Let η1, η2 ∈ C ([−T, 0]) be such that η11[−T,0[ = η21[−T,0[. Then, we see from (14)
that Λ̃η1 = Λ̃η2, which in turn implies from (15) that μ({0}) = 0. In conclusion,
μ ∈ M0([−T, 0]) and Λ is given by

Λγ =
∫

[−T,0[
γ (x)μ(dx), ∀ γ ∈ C ([−T, 0[).

2.3 Functional Derivatives and Functional Itô’s Formula

In the present section we shall prove one of the main result of this section, namely
the functional Itô’s formula for U : C([−T, 0]) → R and, more generally, for
U : [0, T ] × C([−T, 0]) → R. We begin introducing the functional derivatives,
firstly for a functional u : C ([−T, 0]) → R, and then for U : C([−T, 0]) → R.

Definition 9 Consider u : C ([−T, 0]) → R and η ∈ C ([−T, 0]).
(i) We say that u admits the horizontal derivative at η if the following limit exists
and it is finite:

DH u(η) := lim
ε→0+

u(η(·)1[−T,0[ + η(0)1{0}) − u(η(· − ε)1[−T,0[ + η(0)1{0})
ε

.

(16)
(i)’ Let ũ be as in (13), then we say that ũ admits the horizontal derivative at
(γ, a) ∈ C ([−T, 0[) × R if the following limit exists and it is finite:

DH ũ(γ, a) := lim
ε→0+

ũ(γ (·), a) − ũ(γ (· − ε), a)

ε
. (17)

Notice that if DH u(η) exists then DH ũ(η|[−T,0[, η(0)) exists and they are equal;
viceversa, if DH ũ(γ, a) exists then DH u(γ 1[−T,0[+a1{0}) exists and they are equal.
(ii) We say that u admits the first-order vertical derivative at η if the first-order
partial derivative ∂aũ(η|[−T,0[, η(0)) at (η|[−T,0[, η(0)) of ũ with respect to its second
argument exists and we set

DV u(η) := ∂aũ(η|[−T,0[, η(0)).
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(iii) We say that u admits the second-order vertical derivative at η if the second-
order partial derivative at (η|[−T,0[, η(0)) of ũ with respect to its second argument,
denoted by ∂2aaũ(η|[−T,0[, η(0)), exists and we set

DV V u(η) := ∂2aaũ(η|[−T,0[, η(0)).

Definition 10 We say that u : C ([−T, 0]) → R is of class C 1,2(past × present) if

(i) u is continuous;
(ii) DH u exists everywhere on C ([−T, 0]) and for every γ ∈ C ([−T, 0[) the map

(ε, a) �−→ DH ũ(γ (· − ε), a), (ε, a) ∈ [0,∞[×R

is continuous on [0,∞[×R;
(iii) DV u and DV V u exist everywhere on C ([−T, 0]) and are continuous.

Remark 5 Notice that in Definition 10 we still obtain the same class of functions
C 1,2(past × present) if we substitute point (ii) with

(ii’) DH u exists everywhere on C ([−T, 0]) and for every γ ∈ C ([−T, 0[) there
exists δ(γ ) > 0 such that the map

(ε, a) �−→ DH ũ(γ (· − ε), a), (ε, a) ∈ [0,∞[×R (18)

is continuous on [0, δ(γ )[×R.

In particular, if (ii’) holds then we can always take δ(γ ) = ∞ for any γ ∈
C ([−T, 0[), which implies (ii). To prove this last statement, let us proceed by con-
tradiction assuming that

δ∗(γ ) = sup
{
δ(γ ) > 0 : the map (17) is continuous on [0, δ(γ )[×R

}
< ∞.

Notice that δ∗(γ ) is in fact a max, therefore the map (18) is continuous on
[0, δ∗(γ )[×R. Now, define γ̄ (·) := γ (· − δ∗(γ )). Then, by condition (ii’) there
exists δ(γ̄ ) > 0 such that the map

(ε, a) �−→ DH ũ(γ̄ (· − ε), a) = DH ũ(γ (· − ε − δ∗(γ )), a)

is continuous on [0, δ(γ̄ )[×R. This shows that the map (18) is continuous on
[0, δ∗(γ ) + δ(γ̄ )[×R, a contradiction with the definition of δ∗(γ ). �

Wecannowprovide the definition of functional derivatives for amapU : C([−T, 0])
→ R.

Definition 11 Let U : C([−T, 0]) → R and η ∈ C([−T, 0]). Suppose that there
exists a unique extension u : C ([−T, 0]) → R of U (e.g., if U is continuous with
respect to the topology of C ([−T, 0])). Then we define the following concepts.
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(i) The horizontal derivative of U at η as:

DHU (η) := DH u(η).

(ii) The first-order vertical derivative of U at η as:

DVU (η) := DV u(η).

(iii) The second-order vertical derivative of U at η as:

DV VU (η) := DV V u(η).

Definition 12 We say thatU : C([−T, 0]) → R isC1,2(past×present) ifU admits
a (necessarily unique) extension u : C ([−T, 0]) → R of class C 1,2(past× present).

Theorem 2 Let U : C([−T, 0]) → R be of class C1,2(past × present) and
X = (Xt )t∈[0,T ] be a real continuous finite quadratic variation process. Then, the
following functional Itô’s formula holds, P-a.s.,

U (Xt ) = U (X0) +
∫ t

0
DHU (Xs)ds +

∫ t

0
DVU (Xs)d

− Xs + 1

2

∫ t

0
DV VU (Xs)d[X ]s ,

(19)
for all 0 ≤ t ≤ T , where the window process X was defined in (2).

Proof Fix t ∈ [0, T ] and consider the quantity

I0(ε, t) =
∫ t

0

U (Xs+ε) − U (Xs)

ε
ds = 1

ε

∫ t+ε

t
U (Xs)ds − 1

ε

∫ ε

0
U (Xs)ds, ε > 0.

Since the process (U (Xs))s≥0 is continuous, I0(ε, t) converges ucp to U (Xt ) −
U (X0), namely sup0≤t≤T |I0(ε, t)− (U (Xt )−U (X0))| converges to zero in prob-
abilitywhen ε → 0+. On the other hand,we canwrite I0(ε, t) in terms of the function
ũ, defined in (13), as follows

I0(ε, t) =
∫ t

0

ũ(Xs+ε|[−T,0[, Xs+ε) − ũ(Xs|[−T,0[, Xs)

ε
ds.

Now we split I0(ε, t) into the sum of two terms

I1(ε, t) =
∫ t

0

ũ(Xs+ε|[−T,0[, Xs+ε) − ũ(Xs|[−T,0[, Xs+ε)

ε
ds, (20)

I2(ε, t) =
∫ t

0

ũ(Xs|[−T,0[, Xs+ε) − ũ(Xs|[−T,0[, Xs)

ε
ds. (21)
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We begin proving that

I1(ε, t)
ucp−→

ε→0+

∫ t

0
DHU (Xs)ds. (22)

Firstly, fix γ ∈ C ([−T, 0[) and define

φ(ε, a) := ũ(γ (· − ε), a), (ε, a) ∈ [0,∞[×R.

Then, denoting by ∂+
ε φ the right partial derivative of φ with respect to ε and using

formula (17), we find

∂+
ε φ(ε, a) = lim

r→0+
φ(ε + r, a) − φ(ε, a)

r

= − lim
r→0+

ũ(γ (· − ε), a) − ũ(γ (· − ε − r), a)

r

= −DH ũ(γ (· − ε), a), ∀ (ε, a) ∈ [0,∞[×R.

Since u ∈ C 1,2(past×present), we see fromDefinition 10(ii), that ∂+
ε φ is continuous

on [0,∞[×R. It follows from a standard differential calculus result (see for example
Corollary 1.2, Chap. 2, in [32]) that φ is continuously differentiable on [0,∞[×R

with respect to its first argument. Then, for every (ε, a) ∈ [0,∞[×R, from the
fundamental theorem of calculus, we have

φ(ε, a) − φ(0, a) =
∫ ε

0
∂εφ(r, a)dr,

which in terms of ũ reads

ũ(γ (·), a) − ũ(γ (· − ε), a) =
∫ ε

0
DH ũ(γ (· − r), a)dr. (23)

Now, we rewrite, by means of a shift in time, the term I1(ε, t) in (20) as follows:

I1(ε, t) =
∫ t

0

ũ(Xs|[−T,0[, Xs) − ũ(Xs−ε|[−T,0[, Xs)

ε
ds

+
∫ t+ε

t

ũ(Xs|[−T,0[, Xs) − ũ(Xs−ε|[−T,0[, Xs)

ε
ds

−
∫ ε

0

ũ(Xs|[−T,0[, Xs) − ũ(Xs−ε|[−T,0[, Xs)

ε
ds. (24)

Plugging (23) into (24), setting γ = Xs, a = Xs , we obtain
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I1(ε, t) =
∫ t

0

1

ε

( ∫ ε

0
DH ũ(Xs−r |[−T,0[, Xs)dr

)
ds

+
∫ t+ε

t

1

ε

(∫ ε

0
DH ũ(Xs−r |[−T,0[, Xs)dr

)
ds

−
∫ ε

0

1

ε

(∫ ε

0
DH ũ(Xs−r |[−T,0[, Xs)dr

)
ds. (25)

Observe that

∫ t

0

1

ε

(∫ ε

0
DH ũ(Xs−r |[−T,0[, Xs)dr

)
ds

ucp−→
ε→0+

∫ t

0
DH u(Xs)ds.

Similarly, we see that the other two terms in (25) converge ucp to zero. As a conse-
quence, we get (22).

Regarding I2(ε, t) in (21), it can be written, by means of the following standard
Taylor’s expansion for a function f ∈ C2(R):

f (b) = f (a) + f ′(a)(b − a) + 1

2
f ′′(a)(b − a)2

+
∫ 1

0
(1 − α)

(
f ′′(a + α(b − a)) − f ′′(a)

)
(b − a)2dα,

as the sum of the following three terms:

I21(ε, t) =
∫ t

0
∂aũ(Xs|[−T,0[, Xs)

Xs+ε − Xs

ε
ds

I22(ε, t) = 1

2

∫ t

0
∂2aaũ(Xs|[−T,0[, Xs)

(Xs+ε − Xs)
2

ε
ds

I23(ε, t) =
∫ t

0

( ∫ 1

0
(1 − α)

(
∂2aaũ(Xs|[−T,0[, Xs + α(Xs+ε − Xs))

− ∂2aaũ(Xs|[−T,0[, Xs)
) (Xs+ε − Xs)

2

ε
dα

)
ds.

By similar arguments as in Proposition 1.2 of [39], we have

I22(ε, t)
ucp−→

ε→0+
1

2

∫ t

0
∂2aaũ(Xs|[−T,0[, Xs)d[X ]s = 1

2

∫ t

0
DV V u(Xs)d[X ]s .

Regarding I23(ε, t), for every ω ∈ Ω , define ψω : [0, T ] × [0, 1] × [0, 1] → R as

ψω(s, α, ε) := (1 − α)∂2aaũ
(
Xs|[−T,0[(ω), Xs(ω) + α(Xs+ε(ω) − Xs(ω))

)
,
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for all (s, α, ε) ∈ [0, T ] × [0, 1] × [0, 1]. Notice that ψω is uniformly continuous.
Denote ρψω its continuity modulus, then

sup
t∈[0,T ]

|I23(ε, t)| ≤
∫ T

0
ρψω(ε)

(Xs+ε − Xs)
2

ε
ds.

Since X has finite quadratic variation, we deduce that I23(ε, t) → 0 ucp as ε → 0+.
Finally, because of I0(ε, t), I1(ε, t), I22(ε, t), and I23(ε, t) converge ucp, it follows
that the forward integral exists:

I21(ε, t)
ucp−→

ε→0+

∫ t

0
∂aũ(Xs|[−T,0[, Xs)d

− Xs =
∫ t

0
DV u(Xs)d

− Xs,

from which the claim follows.

Remark 6 Notice that, under the hypotheses of Theorem 2, the forward integral∫ t
0 DVU (Xs)d− Xs exists as a ucp limit, which is generally not required. �

Remark 7 The definition of horizontal derivative. Notice that our definition of hor-
izontal derivative differs from that introduced in [17], since it is based on a limit on
the left, while the definition proposed in [17] would conduct to the formula

DH,+u(η) := lim
ε→0+

ũ(η(· + ε)1[−T,0[, η(0)) − ũ(η(·)1[−T,0[, η(0))

ε
. (26)

To give an insight into the difference between (16) and (26), let us consider
a real continuous finite quadratic variation process X with associated window
process X. Then, in the definition (26) of DH,+u(Xt ) we consider the incre-
ment ũ(Xt |[−T,0[(· + ε), Xt ) − ũ(Xt |[−T,0[, Xt ), comparing the present value of
u(Xt ) = ũ(Xt |[−T,0[, Xt ) with an hypothetical future value ũ(Xt |[−T,0[(· + ε), Xt ),
obtained assuming a constant time evolution for X . On the other hand, in our defi-
nition (16) we consider the increment ũ(Xt |[−T,0[, Xt ) − ũ(Xt−ε|[−T,0[, Xt ), where
only the present and past values of X are taken into account, and where we also
extend in a constant way the trajectory of X before time 0. In particular, unlike (26),
since we do not call in the future in our formula (16), we do not have to specify
a future time evolution for X , but only a past evolution before time 0. This differ-
ence between (16) and (26) is crucial for the proof of the functional Itô’s formula.
In particular, the adoption of (26) as definition for the horizontal derivative would
require an additional regularity condition on u in order to prove an Itô formula for
the process t �→ u(Xt ). Indeed, as it can be seen from the proof of Theorem 2, to
prove Itô’s formula we are led to consider the term

I1(ε, t) =
∫ t

0

ũ(Xs+ε|[−T,0[, Xs+ε) − ũ(Xs|[−T,0[, Xs+ε)

ε
ds.
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When adopting definition (26) it is convenient to write I1(ε, t) as the sum of the two
integrals

I11(ε, t) =
∫ t

0

ũ(Xs+ε|[−T,0[, Xs+ε) − ũ(Xs|[−T,0[(· + ε), Xs+ε)

ε
ds,

I12(ε, t) =
∫ t

0

ũ(Xs|[−T,0[(· + ε), Xs+ε) − ũ(Xs|[−T,0[, Xs+ε)

ε
ds.

It can be shown quite easily that, under suitable regularity conditions on u (more
precisely, if u is continuous, DH,+u exists everywhere on C ([−T, 0]), and for every
γ ∈ C ([−T, 0[) the map (ε, a) �−→ DH,+ũ(γ (· + ε), a) is continuous on [0,∞)×
R[, we have

I12(ε, t)
ucp−→

ε→0+

∫ t

0
DH,+u(Xs)ds.

To conclude the proof of Itô’s formula along the same lines as in Theorem 2, we
should prove

I11(ε, t)
ucp−→

ε→0+ 0. (27)

In order to guarantee (27), we need to impose some additional regularity condition
on ũ, and hence on u. As an example, (27) is satisfied if we assume the following
condition on ũ: there exists a constant C > 0 such that, for every ε > 0,

|ũ(γ1, a) − ũ(γ2, a)| ≤ Cε sup
x∈[−ε,0[

|γ1(x) − γ2(x)|,

for all γ1, γ2 ∈ C ([−T, 0[) and a ∈ R, with γ1(x) = γ2(x) for any x ∈ [−T,−ε].
This last condition is verified if, for example, ũ is uniformly Lipschitz continuous
with respect to the L1([−T, 0])-norm onC ([−T, 0[), namely: there exists a constant
C > 0 such that

|ũ(γ1, a) − ũ(γ2, a)| ≤ C
∫

[−T,0[
|γ1(x) − γ2(x)|dx,

for all γ1, γ2 ∈ C ([−T, 0[) and a ∈ R. �

We conclude this subsection providing the functional Itô’s formula for a map
U : [0, T ]×C([−T, 0]) → R depending also on the time variable. Firstly, we notice
that for a map U : [0, T ] × C([−T, 0]) → R (resp. u : [0, T ] × C ([−T, 0]) → R)
the functional derivatives DHU , DVU , and DV VU (resp. DH u, DV u, and DV V u)
are defined in an obviousway as inDefinition 11 (resp.Definition 9).Moreover, given
u : [0, T ] × C ([−T, 0]) → R we can define, as in Definition 8, a map ũ : [0, T ] ×
C ([−T, 0[) × R → R. Then, we can give the following definitions.
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Definition 13 Let I be [0, T [ or [0, T ]. We say that u : I × C ([−T, 0]) → R is of
class C 1,2((I × past) × present) if the properties below hold.

(i) u is continuous;
(ii) ∂t u exists everywhere on I × C ([−T, 0]) and is continuous;
(iii) DH u exists everywhere on I × C ([−T, 0]) and for every γ ∈ C ([−T, 0[) the

map

(t, ε, a) �−→ DH ũ(t, γ (· − ε), a), (t, ε, a) ∈ I × [0,∞[×R

is continuous on I × [0,∞[×R;
(iv) DV u and DV V u exist everywhere on I × C ([−T, 0]) and are continuous.

Definition 14 Let I be [0, T [ or [0, T ]. We say that U : I × C([−T, 0]) → R is
C1,2((I × past) × present) if U admits a (necessarily unique) extension u : I ×
C ([−T, 0]) → R of class C 1,2((I × past) × present).

We can now state the functional Itô’s formula, whose proof is not reported, since
it can be done along the same lines as Theorem 2.

Theorem 3 Let U : [0, T ] × C([−T, 0]) → R be of class C1,2(([0, T ] × past) ×
present) and X = (Xt )t∈[0,T ] be a real continuous finite quadratic variation process.
Then, the following functional Itô’s formula holds, P-a.s.,

U (t,Xt ) = U (0,X0) +
∫ t

0

(
∂tU (s,Xs) + DHU (s,Xs)

)
ds +

∫ t

0
DV U (s,Xs)d

−Xs

+ 1

2

∫ t

0
DV V U (s,Xs)d[X ]s , (28)

for all 0 ≤ t ≤ T .

Remark 8 Notice that, as a particular case, choosing U (t, η) = F(t, η(0)), for any
(t, η) ∈ [0, T ]×C([−T, 0]), with F ∈ C1,2([0, T ]×R), we retrieve the classical Itô
formula for finite quadratic variation processes, i.e. (4). More precisely, in this case
U admits as unique continuous extension the map u : [0, T ] × C ([−T, 0]) → R

given by u(t, η) = F(t, η(0)), for all (t, η) ∈ [0, T ] × C ([−T, 0]). Moreover, we
see that DHU ≡ 0, while DVU = ∂x F and DV VU = ∂2xx F , where ∂x F (resp.
∂2xx F) denotes the first-order (resp. second-order) partial derivative of F with respect
to its second argument. �

2.4 Comparison with Banach Space Valued Calculus
via Regularization

In the present subsection our aim is to make a link between functional Itô calculus, as
derived in this paper, and Banach space valued stochastic calculus via regularization
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for window processes, which has been conceived in [13], see also [12, 14–16] for
more recent developments. More precisely, our purpose is to identify the building
blocks of our functional Itô’s formula (19) with the terms appearing in the Itô formula
derived in Theorem 6.3 and Sect. 7.2 in [12]. While it is expected that the vertical
derivative DVU can be identified with the term Dδ0

dxU of the Fréchet derivative, it is
more difficult to guess to which terms the horizontal derivative DHU corresponds.
To clarify this latter point, in this subsection we derive two formulae which express
DHU in terms of Fréchet derivatives of U .

Let us introduce some useful notations. We denote by BV ([−T, 0]) the set of
càdlàg bounded variation functions on [−T, 0], which is a Banach space when
equipped with the norm

‖η‖BV ([−T,0]) := |η(0)| + ‖η‖Var([−T,0]), η ∈ BV ([−T, 0]),

where ‖η‖Var([−T,0]) = |dη|([−T, 0]) and |dη| is the total variation measure associ-
ated to the measure dη ∈ M ([−T, 0]) generated by η: dη(] − T,−t]) = η(−t) −
η(−T ), t ∈ [−T, 0]. We recall from Sect. 2.1 that we extend η ∈ BV ([−T, 0]) to
all x ∈ R setting η(x) = 0, x < −T , and η(x) = η(0), x ≥ 0. Let us now introduce
some useful facts about tensor products of Banach spaces.

Definition 15 Let (E, ‖ · ‖E ) and (F, ‖ · ‖F ) be two Banach spaces.
(i) We shall denote by E ⊗ F the algebraic tensor product of E and F , defined as
the set of elements of the form v = ∑n

i=1 ei ⊗ fi , for some positive integer n, where
e ∈ E and f ∈ F . The map ⊗: E × F → E ⊗ F is bilinear.
(ii) We endow E ⊗ F with the projective norm π :

π(v) := inf

{ n∑
i=1

‖ei‖E‖ fi‖F : v =
n∑

i=1

ei ⊗ fi

}
, ∀ v ∈ E ⊗ F.

(iii) We denote by E⊗̂π F the Banach space obtained as the completion of E ⊗ F for
the norm π . We shall refer to E⊗̂π F as the tensor product of the Banach spaces
E and F .
(iv) If E and F are Hilbert spaces, we denote E⊗̂h F the Hilbert tensor product,
which is still aHilbert space obtained as the completion of E⊗F for the scalar product
〈e′ ⊗ f ′, e′′ ⊗ f ′′〉 := 〈e′, e′′〉E 〈 f ′, f ′′〉F , for any e′, e′′ ∈ E and f ′, f ′′ ∈ F .

(v) The symbols E⊗̂2
π and e⊗2 denote, respectively, the Banach space E⊗̂π E and

the element e ⊗ e of the algebraic tensor product E ⊗ E .

Remark 9 (i) The projective norm π belongs to the class of the so-called reasonable
crossnorms α on E ⊗ F , verifying α(e ⊗ f ) = ‖e‖E‖ f ‖F .
(ii) We notice, proceeding for example as in [16] (see, in particular, formula (2.1) in
[16]; for more information on this subject we refer to [41]), that the dual (E⊗̂π F)∗ of
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E⊗̂π F is isomorphic to the space of continuous bilinear formsBi(E, F), equipped
with the norm ‖ · ‖E,F defined as

‖Φ‖E,F := sup
e∈E, f ∈F

‖e‖E ,‖ f ‖F ≤1

|Φ(e, f )|, ∀Φ ∈ Bi(E, F).

Moreover, there exists a canonical isomorphism between Bi(E, F) and L(E, F∗),
the space of bounded linear operators from E into F∗. Hence, we have the following
chain of canonical identifications: (E⊗̂π F)∗ ∼= Bi(E, F) ∼= L(E; F∗). �

Definition 16 Let E be a Banach space. We say thatU : E → R is of class C2(E)

if

(i) DU , the first Fréchet derivative of U , belongs to C(E; E∗) and
(ii) D2U , the second Fréchet derivative of U , belongs to C(E; L(E; E∗)).

Remark 10 Take E = C([−T, 0]) in Definition 16.
(i) First Fréchet derivative DU . We have

DU : C([−T, 0]) −→ (C([−T, 0]))∗ ∼= M ([−T, 0]).

For every η ∈ C([−T, 0]), we shall denote DdxU (η) the unique measure in
M ([−T, 0]) such that

DU (η)ϕ =
∫

[−T,0]
ϕ(x)DdxU (η), ∀ϕ ∈ C([−T, 0]).

Notice that M ([−T, 0]) can be represented as the direct sum: M ([−T, 0]) =
M0([−T, 0])⊕D0,wherewe recall thatM0([−T, 0]) is the subset ofM ([−T, 0]) of
measuresμ such thatμ({0}) = 0, insteadD0 (which is a shorthand forD0([−T, 0]))
denotes the one-dimensional space ofmeasureswhich aremultiples of theDiracmea-
sure δ0. For every η ∈ C([−T, 0]) we denote by (D⊥

dxU (η), Dδ0
dxU (η)) the unique

pair inM0([−T, 0]) ⊕ D0 such that

DdxU (η) = D⊥
dxU (η) + Dδ0

dxU (η).

(ii) Second Fréchet derivative D2U . We have

D2U : C([−T, 0]) −→ L(C([−T, 0]); (C([−T, 0]))∗) ∼= Bi(C([−T, 0]), C([−T, 0]))
∼= (C([−T, 0])⊗̂π C([−T, 0]))∗,

where we used the identifications of Remark 9(ii). Let η ∈ C([−T, 0]); a typical
situation arises when there exists Ddx dyU (η) ∈ M ([−T, 0]2) such that D2U (η) ∈
L(C([−T, 0]); (C([−T, 0]))∗) admits the representation
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D2U (η)(ϕ,ψ) =
∫

[−T,0]2
ϕ(x)ψ(y)Ddx dyU (η), ∀ϕ,ψ ∈ C([−T, 0]).

Moreover, Ddx dyU (η) is uniquely determined. �

The definition below was given in [13].

Definition 17 Let E be a Banach space. A Banach subspace (χ, ‖·‖χ ) continuously

injected into (E⊗̂2
π )∗, i.e., ‖ · ‖χ ≥ ‖ · ‖

(E⊗̂2
π )∗ , will be called a Chi-subspace (of

(E⊗̂2
π )∗).

Remark 11 Take E = C([−T, 0]) in Definition 17. As indicated in [13], a typi-

cal example of Chi-subspace of C([−T, 0])⊗̂2
π is M ([−T, 0]2) equipped with the

usual total variation norm, denoted by ‖ · ‖Var. Another important Chi-subspace of

C([−T, 0])⊗̂2
π is the following, which is also a Chi-subspace of M ([−T, 0]2):

χ0 := {
μ ∈ M ([−T, 0]2) : μ(dx, dy) = g1(x, y)dxdy + λ1δ0(dx) ⊗ δ0(dy)

+ g2(x)dx ⊗ λ2δ0(dy) + λ3δ0(dx) ⊗ g3(y)dy + g4(x)δy(dx) ⊗ dy,

g1 ∈ L2([−T, 0]2), g2, g3 ∈ L2([−T, 0]), g4 ∈ L∞([−T, 0]), λ1, λ2, λ3 ∈ R
}
.

Using the notations of Example 3.4 and Remark 3.5 in [16], to which we refer for
more details on this subject, we notice that χ0 is indeed given by the direct sum χ0 =
L2([−T, 0]2) ⊕ (

L2([−T, 0])⊗̂hD0
) ⊕ (

D0⊗̂h L2([−T, 0])) ⊕ D0,0([−T, 0]2) ⊕
Diag([−T, 0]2). In the sequel, we shall refer to the term g4(x)δy(dx) ⊗ dy as the
diagonal component and to g4(x) as the diagonal element of μ. �

We can now state our first representation result for DHU .

Proposition 7 Let U : C([−T, 0]) → R be continuously Fréchet differentiable.
Suppose the following.

(i) For any η ∈ C([−T, 0]) there exists Dac· U (η) ∈ BV ([−T, 0]) such that

D⊥
dxU (η) = Dac

x U (η)dx .

(ii) There exist continuous extensions (necessarily unique)

u : C ([−T, 0]) → R, Dac· u : C ([−T, 0]) → BV ([−T, 0])

of U and Dac· U , respectively.

Then, for any η ∈ C([−T, 0]),

DHU (η) =
∫

[−T,0]
Dac

x U (η)d+η(x), (29)
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where we recall that the previous deterministic integral has been defined in Sect.
2.1.1. In particular, the horizontal derivative DHU (η) and the backward integral
in (29) exist.

Proof Let η ∈ C([−T, 0]), then starting from the left-hand side of (29), using
the definition of DHU (η), we are led to consider the following increment for the
function u:

u(η) − u(η(· − ε)1[−T,0[ + η(0)1{0})
ε

. (30)

We shall expand (30) using a Taylor’s formula. Firstly, notice that, since U is C1

Fréchet on C([−T, 0]), for every η1 ∈ C([−T, 0]), with η1(0) = η(0), from the
fundamental theorem of calculus we have

U (η) − U (η1) =
∫ 1

0

(∫ 0

−T
Dac

x U (η + λ(η1 − η))(η(x) − η1(x))dx

)
dλ.

Recalling fromRemark3 the density ofCη(0)([−T, 0]) inCη(0)([−T, 0])with respect
to the topology of C ([−T, 0]), we deduce the following Taylor’s formula for u:

u(η) − u(η1) =
∫ 1

0

( ∫ 0

−T
Dac

x u(η + λ(η1 − η))(η(x) − η1(x))dx

)
dλ, (31)

for all η1 ∈ Cη(0)([−T, 0]). As a matter of fact, for any δ ∈]0, T/2] let (similarly to
Remark 3(i))

η1,δ(x) :=
{

η1(x), −T ≤ x ≤ −δ,
1
δ
(η1(0) − η1(−δ))x + η1(0), −δ < x ≤ 0

and η1,0 := η1. Then η1,δ ∈ C([−T, 0]), for any δ ∈]0, T/2], and η1,δ → η1 in
C ([−T, 0]), as δ → 0+. Now, define f : [−T, 0]×[0, 1]×[0, T/2] → R as follows

f (x, λ, δ) := Dac
x u(η + λ(η1,δ − η))(η(x) − η1,δ(x)),

for all (x, λ, δ) ∈ [−T, 0] × [0, 1] × [0, T/2]. Now (λ, δ) �→ η + λ(η1,δ − η), is
continuous. Taking into account that Dac· u : C ([−T, 0]) → BV ([−T, 0]) is contin-
uous, hence bounded on compact sets, it follows that f is bounded. Then, it follows
from Lebesgue dominated convergence theorem that
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∫ 1

0

(∫ 0

−T
Dac

x U (η + λ(η1,δ − η))(η(x) − η1,δ(x))dx

)
dλ

=
∫ 1

0

( ∫ 0

−T
f (x, λ, δ)dx

)
dλ

δ→0+−→
∫ 1

0

( ∫ 0

−T
f (x, λ, 0)dx

)
dλ

=
∫ 1

0

( ∫ 0

−T
Dac

x u(η + λ(η1 − η))(η(x) − η1(x))dx

)
dλ,

from which we deduce (31), since U (η1,δ) → u(η1) as δ → 0+. Taking η1(·) =
η(· − ε)1[−T,0[ + η(0)1{0}, we obtain

u(η) − u(η(· − ε)1[−T,0[ + η(0)1{0})
ε

=
∫ 1

0

( ∫ 0

−T
Dac

x u
(
η + λ

(
η(· − ε) − η(·))1[−T,0[

)η(x) − η(x − ε)

ε
dx

)
dλ

= I1(η, ε) + I2(η, ε) + I3(η, ε),

where

I1(η, ε) :=
∫ 1

0

( ∫ 0

−T
η(x)

1

ε

(
Dac

x u
(
η + λ

(
η(· − ε) − η(·))1[−T,0[

)

− Dac
x+εu

(
η + λ

(
η(· − ε) − η(·))1[−T,0[

))
dx

)
dλ,

I2(η, ε) := 1

ε

∫ 1

0

(∫ 0

−ε

η(x)Dac
x+εu

(
η + λ

(
η(· − ε) − η(·))1[−T,0[

)
dx

)
dλ,

I3(η, ε) := −1

ε

∫ 1

0

( ∫ −T

−T −ε

η(x)Dac
x+εu

(
η + λ

(
η(· − ε) − η(·))1[−T,0[

)
dx

)
dλ.

Notice that, since η(x) = 0 for x < −T , we see that I3(η, ε) = 0. Moreover
Dac

x u(·) = Dac
0 u(·), for x ≥ 0, and η+λ(η(·−ε)−η(·))1[−T,0[ → η inC ([−T, 0])

as ε → 0+. Since Dac
x u is continuous from C ([−T, 0]) into BV ([−T, 0]), we have

Dac
0 u(η + λ(η(· − ε) − η(·))1[−T,0[) → Dac

0 u(η) as ε → 0+. Then

1

ε

∫ 0

−ε

η(x)Dac
x+εu

(
η + λ

(
η(· − ε) − η(·))1[−T,0[

)
dx

= 1

ε

∫ 0

−ε

η(x)dx Dac
0 u

(
η + λ

(
η(· − ε) − η(·))1[−T,0[

) ε→0+−→ η(0)Dac
0 u(η).

So I2(η, ε) → η(0)Dac
0 u(η). Finally, concerning I1(η, ε), from Fubini’s theoremwe

obtain (denoting ηε,λ := η + λ(η(· − ε) − η(·))1[−T,0[)
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I1(η, ε) =
∫ 1

0

(∫ 0

−T
η(x)

1

ε

(
Dac

x u(ηε,λ) − Dac
x+εu(ηε,λ)

)
dx

)
dλ

= −
∫ 1

0

(∫ 0

−T
η(x)

1

ε

( ∫
]x,x+ε]

Dac
dyu(ηε,λ)

)
dx

)
dλ

= −
∫ 1

0

(∫
]−T,ε]

1

ε

( ∫ 0∧y

(−T )∨(y−ε)

η(x)dx

)
Dac

dyu(ηε,λ)

)
dλ

= I11(η, ε) + I12(η, ε),

where

I11(η, ε) := −
∫ 1

0

(∫
]−T,ε]

1

ε

( ∫ 0∧y

(−T )∨(y−ε)
η(x)dx

)(
Dac

dyu(ηε,λ) − Dac
dyu(η)

))
dλ,

I12(η, ε) := −
∫ 1

0

(∫
]−T,ε]

1

ε

( ∫ 0∧y

(−T )∨(y−ε)
η(x)dx

)
Dac

dyu(η)

)
dλ

= −
(∫

]−T,ε]
1

ε

(∫ 0∧y

(−T )∨(y−ε)
η(x)dx

)
Dac

dyu(η).

Recalling that Dac
x u(·) = Dac

0 u(·), for x ≥ 0, we see that in I11(η, ε) and I12(η, ε)
the integrals on ]−T, ε] are equal to the same integrals on ]−T, 0], i.e.,

I11(η, ε) = −
∫ 1

0

( ∫
]−T,0]

1

ε

( ∫ 0∧y

(−T )∨(y−ε)
η(x)dx

)(
Dac

dyu(ηε,λ) − Dac
dyu(η)

))
dλ

= −
∫ 1

0

( ∫
]−T,0]

1

ε

( ∫ y

y−ε
η(x)dx

)(
Dac

dyu(ηε,λ) − Dac
dyu(η)

))
dλ,

I12(η, ε) = −
∫
]−T,0]

1

ε

(∫ 0∧y

(−T )∨(y−ε)
η(x)dx

)
Dac

dyu(η)

= −
∫
]−T,0]

1

ε

(∫ y

y−ε
η(x)dx

)
Dac

dyu(η).

Now, observe that

|I11(η, ε)| ≤ ‖η‖∞‖Dac· u(ηε,λ) − Dac· u(η)‖Var([−T,0])
ε→0+−→ 0.

Moreover, since η is continuous at y ∈]−T, 0], we deduce that ∫ y
y−ε

η(x)dx/ε →
η(y) as ε → 0+. Therefore, by Lebesgue’s dominated convergence theorem, we get

I12(η, ε)
ε→0+−→ −

∫
]−T,0]

η(y)Dac
dyu(η).
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So I1(η, ε) → − ∫
]−T,0] η(y)Dac

dyu(η). In conclusion, we have

DHU (η) = η(0)Dac
0 u(η) −

∫
]−T,0]

η(y)Dac
dyu(η).

Notice that we can suppose, without loss of generality, Dac
0−U (η) = Dac

0 U (η).
Then, the above identity gives (29) using the integration by parts formula (12). �

For our second representation result of DHU we need the following generaliza-
tion of the deterministic backward integral when the integrand is a measure.

Definition 18 Let a < b be two reals. Let f : [a, b] → R be a càdlàg function (resp.
càdlàg function with f(a) = 0) and g ∈ M ([−T, 0]). Suppose that the following limit

∫
[a,b]

g(ds)d+ f (s) := lim
ε→0+

∫
[a,b]

g(ds)
f J (s) − f J (s − ε)

ε
(32)

(
resp.

∫
[a,b]

g(ds)d− f (s) := lim
ε→0+

∫
[a,b]

g(ds)
f J (s + ε) − f J (s)

ε

)
(33)

exists and it is finite. Then, the obtained quantity is denoted by
∫
[a,b] gd+ f

(
∫
[a,b] gd− f ) and called (deterministic, definite) backward (resp. forward) inte-

gral of g with respect to f (on [a, b]).
Proposition 8 If g is absolutely continuous with density being càdlàg (still denoted
with g) then Definition 18 is compatible with the one in Definition 4.

Proof Suppose that g(ds) = g(s)ds with g càdlàg.

Identity (32). The right-hand side of (6) gives

∫ b

a
g(s)

f (s) − f (s − ε)

ε
ds,

which is also the right-hand side of (32) in that case.

Identity (33). The right-hand side of (5) gives, since f (a) = 0,

1

ε
g(a)

∫ a

a−ε

f (s + ε)ds +
∫ b

a
g(s)

f J (s + ε) − f J (s)

ε
ds

The first integral goes to zero. The second one equals the right-hand side of
(33). �
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Proposition 9 Let η ∈ C([−T, 0]) be such that the quadratic variation on [−T, 0]
exists. Let U : C([−T, 0]) → R be twice continuously Fréchet differentiable such
that

D2U : C([−T, 0]) −→ χ0 ⊂ (C([−T, 0])⊗̂π C([−T, 0]))∗ continuously with respect to χ0.

Let us also suppose the following.

(i) D2,Diag
x U (η), the diagonal element of the second-order derivative at η, has a

set of discontinuity which has null measure with respect to [η] (in particular, if
it is countable).

(ii) There exist continuous extensions (necessarily unique):

u : C ([−T, 0]) → R, D2
dx dyu : C ([−T, 0]) → χ0

of U and D2
dx dyU , respectively.

(iii) The horizontal derivative DHU (η) exists at η ∈ C([−T, 0]).
Then

DHU (η) =
∫

[−T,0]
D⊥

dxU (η)d+η(x) − 1

2

∫
[−T,0]

D2,Diag
x U (η)d[η](x). (34)

In particular, the backward integral in (34) exists.

Proof Let η ∈ C([−T, 0]). Using the definition of DHU (η) we are led to consider
the following increment for the function u:

u(η) − u(η(· − ε)1[−T,0[ + η(0)1{0})
ε

, (35)

with ε > 0. Our aim is to expand (35) using a Taylor’s formula. To this end, since
U is C2 Fréchet, we begin noting that for every η1 ∈ C([−T, 0]) the following
standard Taylor’s expansion holds:

U (η1) = U (η) +
∫

[−T,0]
DdxU (η)

(
η1(x) − η(x)

)

+ 1

2

∫
[−T,0]2

D2
dx dyU (η)

(
η1(x) − η(x)

)(
η1(y) − η(y)

)

+
∫ 1

0
(1 − λ)

(∫
[−T,0]2

(
D2

dx dyU (η + λ(η1 − η))

− D2
dx dyU (η)

)(
η1(x) − η(x)

)(
η1(y) − η(y)

))
dλ.
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Now, using the density of Cη(0)([−T, 0]) into Cη(0)([−T, 0]) with respect to the
topology of C ([−T, 0]) and proceeding as in the proof of Proposition 7, we deduce
the following Taylor’s formula for u:

u(η) − u(η(· − ε)1[−T,0[ + η(0)1{0})
ε

(36)

=
∫
[−T,0]

D⊥
dxU (η)

η(x) − η(x − ε)

ε

− 1

2

∫
[−T,0]2

D2
dx dyU (η)

(η(x) − η(x − ε))(η(y) − η(y − ε))

ε
1[−T,0[×[−T,0[(x, y)

−
∫ 1

0
(1 − λ)

(∫
[−T,0]2

(
D2

dx dyu(η + λ(η(· − ε) − η(·))1[−T,0[)

− D2
dx dyU (η)

) (η(x) − η(x − ε))(η(y) − η(y − ε))

ε
1[−T,0[×[−T,0[(x, y)

)
dλ.

Recalling the definition of χ0 given in Remark 11, we notice that (due to the presence
of the indicator function 1[−T,0[×[−T,0[)

∫
[−T,0]2

D2
dx dyU (η)

(η(x) − η(x − ε))(η(y) − η(y − ε))

ε
1[−T,0[×[−T,0[(x, y)

=
∫

[−T,0]2
D2,L2

x y U (η)
(η(x) − η(x − ε))(η(y) − η(y − ε))

ε
dxdy

+
∫

[−T,0]
D2,Diag

x U (η)
(η(x) − η(x − ε))2

ε
dx,

where, by hypothesis, the maps η ∈ C ([−T, 0]) �→ D2,L2

x y u(η) ∈ L2([−T, 0]2) and
η ∈ C ([−T, 0]) �→ D2,Diag

x u(η) ∈ L∞([−T, 0]) are continuous. In particular, (36)
becomes

u(η) − u(η(· − ε)1[−T,0[ + η(0)1{0})
ε

= I1(ε) + I2(ε) + I3(ε) + I4(ε) + I5(ε),

(37)
where

I1(ε) :=
∫

[−T,0]
D⊥

dxU (η)
η(x) − η(x − ε)

ε
,

I2(ε) := −1

2

∫
[−T,0]2

D2,L2

x y U (η)
(η(x) − η(x − ε))(η(y) − η(y − ε))

ε
dxdy,

I3(ε) := −1

2

∫
[−T,0]

D2,Diag
x U (η)

(η(x) − η(x − ε))2

ε
dx,
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I4(ε) := −
∫ 1

0
(1 − λ)

(∫
[−T,0]2

(
D2,L2

x y u(η + λ(η(· − ε) − η(·))1[−T,0[)

− D2,L2

x y U (η)
) (η(x) − η(x − ε))(η(y) − η(y − ε))

ε
dx dy

)
dλ,

I5(ε) := −
∫ 1

0
(1 − λ)

(∫
[−T,0]

(
D2,Diag

x u(η + λ(η(· − ε) − η(·))1[−T,0[)

− D2,Diag
x U (η)

) (η(x) − η(x − ε))2

ε
dx

)
dλ.

Firstly, we shall prove that

I2(ε)
ε→0+−→ 0. (38)

To this end, for every ε > 0, we define the operator Tε : L2([−T, 0]2) → R as
follows:

Tε g =
∫

[−T,0]2
g(x, y)

(η(x) − η(x − ε))(η(y) − η(y − ε))

ε
dxdy, ∀ g ∈ L2([−T, 0]2).

Then Tε ∈ L2([−T, 0])∗. Indeed, from Cauchy-Schwarz inequality,

|Tε g| ≤ ‖g‖L2([−T,0]2)

√∫
[−T,0]2

(η(x) − η(x − ε))2(η(y) − η(y − ε))2

ε2
dxdy

= ‖g‖L2([−T,0]2)
∫

[−T,0]
(η(x) − η(x − ε))2

ε
dx

and the latter quantity is bounded with respect to ε since the quadratic variation of
η on [−T, 0] exists. In particular, we have proved that for every g ∈ L2([−T, 0]2)
there exists a constant Mg ≥ 0 such that

sup
0<ε<1

|Tε g| ≤ Mg.

It follows from Banach-Steinhaus theorem that there exists a constant M ≥ 0 such
that

sup
0<ε<1

‖Tε‖L2([−T,0])∗ ≤ M. (39)

Now, let us consider the set S := {g ∈ L2([−T, 0]2) : g(x, y) = e(x) f (y), with
e, f ∈ C1([−T, 0])}, which is dense in L2([−T, 0]2). Let us show that

Tε g
ε→0+−→ 0, ∀ g ∈ S . (40)
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Fix g ∈ S , with g(x, y) = e(x) f (y) for any (x, y) ∈ [−T, 0], then

Tε g = 1

ε

∫
[−T,0]

e(x)
(
η(x) − η(x−ε)

)
dx

∫
[−T,0]

f (y)
(
η(y) − η(y−ε)

)
dy. (41)

We have
∣∣∣∣
∫

[−T,0]
e(x)

(
η(x) − η(x − ε)

)
dx

∣∣∣∣ =
∣∣∣∣
∫

[−T,0]
(
e(x) − e(x + ε)

)
η(x)dx

−
∫

[−T −ε,−T ]
e(x + ε)η(x)dx +

∫
[−ε,0]

e(x + ε)η(x)dx

∣∣∣∣
≤ ε

( ∫
[−T,0]

|ė(x)|dx + 2‖e‖∞
)

‖η‖∞.

Similarly,

∣∣∣∣
∫

[−T,0]
f (y)

(
η(y) − η(y − ε)

)
dy

∣∣∣∣ ≤ ε

( ∫
[−T,0]

| ḟ (y)|dy + 2‖ f ‖∞
)

‖η‖∞.

Therefore, from (41) we find

|Tε g| ≤ ε

( ∫
[−T,0]

|ė(x)|dx + 2‖e‖∞
)( ∫

[−T,0]
| ḟ (y)|dy + 2‖ f ‖∞

)
‖η‖2∞,

which converges to zero as ε goes to zero and therefore (40) is established. This in
turn implies that

Tε g
ε→0+−→ 0, ∀ g ∈ L2([−T, 0]2). (42)

Indeed, fix g ∈ L2([−T, 0]2) and let (gn)n ⊂ S be such that gn → g in
L2([−T, 0]2). Then

|Tε g| ≤ |Tε(g − gn)| + |Tε gn| ≤ ‖Tε‖L2([−T,0]2)∗‖g − gn‖L2([−T,0]2) + |Tε gn|.

From (39) it follows that

|Tε g| ≤ M‖g − gn‖L2([−T,0]2) + |Tε gn|,

which implies lim supε→0+ |Tε g| ≤ M‖g −gn‖L2([−T,0]2). Sending n to infinity, we
deduce (42) and finally (38).

Let us now consider the term I3(ε) in (37). Since the quadratic variation [η] exists,
it follows from Portmanteau’s theorem and hypothesis (i) that
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I3(ε) =
∫

[−T,0]
D2,Diag

x U (η)
(η(x) − η(x − ε))2

ε
dx −→

ε→0+

∫
[−T,0]

D2,Diag
x U (η)d[η](x).

Regarding the term I4(ε) in (37), let φη : [0, 1]2 → L2([−T, 0]2) be given by

φη(ε, λ)(·, ·) = D2,L2

· · u
(
η + λ(η(· − ε) − η(·))1[−T,0[

)
.

By hypothesis, φη is a continuous map, and hence it is uniformly continuous, since
[0, 1]2 is a compact set. Let ρφη denote the continuity modulus of φη, then

∥∥D2,L2

· · u
(
η + λ(η(· − ε) − η(·))1[−T,0[

) − D2,L2

· · U (η)
∥∥

L2([−T,0]2)
= ‖φη(ε, λ) − φη(0, λ)‖L2([−T,0]2) ≤ ρφη(ε).

This implies, by Cauchy-Schwarz inequality,

∣∣∣∣
∫ 1

0
(1 − λ)

(∫
[−T,0]2

(
D2,L2

x y u(η + λ(η(· − ε) − η(·))1[−T,0[)

− D2,L2

x y U (η)
) (η(x) − η(x − ε))(η(y) − η(y − ε))

ε
dxdy

)
dλ

∣∣∣∣
≤

∫ 1

0
(1 − λ)

∥∥D2,L2

· · u(η + λ(η(· − ε) − η(·))1[−T,0])

− D2,L2

· · U (η)
∥∥

L2([−T,0]2)

√∫
[−T,0]2

(η(x) − η(x − ε))2(η(y) − η(y − ε))2

ε2
dxdydλ

≤
∫ 1

0
(1 − λ)ρφη

(ε)

(∫
[−T,0]

(η(x) − η(x − ε))2

ε
dx

)
dλ

= 1

2
ρφη

(ε)

∫
[−T,0]

(η(x) − η(x − ε))2

ε
dx

ε→0+−→ 0.

Finally, we consider the term I5(ε) in (37). Define ψη : [0, 1]2 → L∞([−T, 0]) as
follows:

ψη(ε, λ)(·) = D2,Diag· u
(
η + λ(η(· − ε) − η(·))1[−T,0[

)
.

We see that ψη is uniformly continuous. Let ρψη denote the continuity modulus of
ψη, then

∥∥D2,Diag· u
(
η + λ(η(· − ε) − η(·))1[−T,0[

) − D2,Diag· U (η)
∥∥

L∞([−T,0])
= ‖ψη(ε, λ) − ψη(0, λ)‖L∞([−T,0]) ≤ ρψη(ε).
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Therefore, we have

∣∣∣∣
∫ 1

0
(1 − λ)

(∫
[−T,0]

(
D2,Diag

x u(η + λ(η(· − ε) − η(·))1[−T,0[)

− D2,Diag
x U (η)

) (η(x) − η(x − ε))2

ε
dx

)
dλ

∣∣∣∣
≤

∫ 1

0
(1 − λ)

(∫
[−T,0]

ρψη(ε)
(η(x) − η(x − ε))2

ε
dx

)
dλ

= 1

2
ρψη(ε)

∫
[−T,0]

(η(x) − η(x − ε))2

ε
dx

ε→0+−→ 0.

In conclusion, we have proved that all the integral terms in the right-hand side of
(37), unless I1(ε), admit a limit when ε goes to zero. Since the left-hand side admits
a limit, namely DHU (η), we deduce that the backward integral

I1(ε) =
∫

[−T,0]
D⊥

dxU (η)
η(x) − η(x − ε)

ε

ε→0+−→
∫

[−T,0]
D⊥

dxU (η)d+η(x)

exists and it is finite, which concludes the proof. �

3 Strong-Viscosity Solutions to Path-Dependent PDEs

In the present section we study the semilinear parabolic path-dependent equation

{
∂tU + DHU + 1

2 DV V U + F(t, η,U , DV U ) = 0, ∀ (t, η) ∈ [0, T [×C([−T, 0]),
U (T, η) = H(η), ∀ η ∈ C([−T, 0]).

(43)
We refer to LU = ∂tU + DHU + 1

2 DV VU as the path-dependent heat oper-
ator. The results of this section are generalized in [9, 10], where more general
path-dependent equations will be considered. Here we shall impose the following
assumptions on H and F .

(A) H : C([−T, 0]) → R and F : [0, T ] × C([−T, 0]) × R × R → R are Borel
measurable functions and satisfy, for some positive constants C and m,

|F(t, η, y, z) − F(t, η, y′, z′)| ≤ C(|y − y′| + |z − z′|),
|H(η)| + |F(t, η, 0, 0)| ≤ C

(
1 + ‖η‖m∞

)
,

for all (t, η) ∈ [0, T ] × C([−T, 0]), y, y′ ∈ R, and z, z′ ∈ R.
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3.1 Strict Solutions

In the present subsection, we provide the definition of strict solution to Eq. (43) and
we state an existence and uniqueness result.

Definition 19 A function U : [0, T ] × C([−T, 0]) → R in C1,2(([0, T [×past) ×
present) ∩ C([0, T ]×C([−T, 0])), which solves Eq. (43), is called a strict solution
to (43).

We now introduce some additional notations. Let (Ω,F ,P) be a complete prob-
ability space on which a real Brownian motion W = (Wt )t≥0 is defined. Let
F = (Ft )t≥0 denote the completion of the natural filtration generated by W .

• S
p(t, T ), p ≥ 1, 0 ≤ t ≤ T , the set of real càdlàg F-adapted processes Y =

(Ys)t≤s≤T such that

‖Y‖p
Sp (t,T )

:= E

[
sup

t≤s≤T
|Ys |p

]
< ∞.

• H
p(t, T )d , p ≥ 1, 0 ≤ t ≤ T , the set of Rd -valued predictable processes Z =

(Zs)t≤s≤T such that

‖Z‖p
Hp (t,T )d

:= E

[( ∫ T

t
|Zs |2ds

) p
2
]

< ∞.

We simply write Hp(t, T ) when d = 1.
• A

+,2(t, T ), 0 ≤ t ≤ T , the set of real nondecreasing predictable processes K =
(Ks)t≤s≤T ∈ S

2(t, T ) with Kt = 0, so that

‖K‖2
S2(t,T )

:= E
[|KT |2].

• L
p(t, T ;Rm), p ≥ 1, 0 ≤ t ≤ T , the set of Rm-valued F-predictable processes

φ = (φs)t≤s≤T such that

‖φ‖p
Lp (t,T ;Rm )

:= E

[ ∫ T

t
|φs |pds

]
< ∞.

Definition 20 Let t ∈ [0, T ] and η ∈ C([−T, 0]). Then, we define the stochastic
flow

W
t,η
s (x) =

{
η(x + s − t), −T ≤ x ≤ t − s,

η(0) + Wx+s − Wt , t − s < x ≤ 0,

for any t ≤ s ≤ T .
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Theorem 4 Suppose that Assumption (A) holds. Let U : [0, T ]×C([−T, 0]) → R

be a strict solution to Eq. (43), satisfying the polynomial growth condition

|U (t, η)| ≤ C
(
1 + ‖η‖m∞

)
, ∀ (t, η) ∈ [0, T ] × C([−T, 0]). (44)

for some positive constants C and m. Then, we have

U (t, η) = Y t,η
t , ∀ (t, η) ∈ [0, T ] × C([−T, 0]),

where (Y t,η
s , Zt,η

s )s∈[t,T ] = (U (s,Wt,η
s ), DVU (s,Wt,η

s )1[t,T [(s))s∈[t,T ] ∈ S
2

(t, T ) × H
2(t, T ) is the solution to the backward stochastic differential equation:

P-a.s.,

Y t,η
s = H(W

t,η
T ) +

∫ T

s
F(r,Wt,η

r , Y t,η
r , Zt,η

r )dr −
∫ T

s
Z t,η

r dWr , t ≤ s ≤ T .

In particular, there exists at most one strict solution to Eq. (43).

Proof Fix (t, η) ∈ [0, T [×C([−T, 0]) and set, for all t ≤ s ≤ T ,

Y t,η
s = U (s,Wt,η

s ), Zt,η
s = DVU (s,Wt,η

s )1[t,T [(s).

Then, for any T0 ∈ [t, T [, applying Itô formula (28) to U (s,Wt,η
s ) and using the

fact that U solves Eq. (43), we find, P-a.s.,

Y t,η
s = Y t,η

T0
+

∫ T0

s
F(r,Wt,η

r , Y t,η
r , Zt,η

r )dr−
∫ T0

s
Z t,η

r dWr , t ≤ s ≤ T0. (45)

The claimwould follow if we could pass to the limit in (45) as T0 → T . To do this, we
notice that it follows from Proposition B.1 in [10] that there exists a positive constant
c, depending only on T and the constants C and m appearing in the statement of the
present Theorem 4, such that

E

∫ T0

t
|Zt,η

s |2ds ≤ c‖Y t,η‖2
S2(t,T )

+cE
∫ T

t
|F(r,Wt,η

r , 0, 0)|2dr, ∀ T0 ∈ [t, T [.

We recall that, for any q ≥ 1,

E

[
sup

t≤s≤T
‖Wt,η

s ‖q∞
]

< ∞. (46)

Notice that from (44) and (46) we have ‖Y t,η‖S2(t,T ) < ∞, so that Y ∈ S
2(t, T ).

Then, from the monotone convergence theorem we find
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E

∫ T

t
|Zt,η

s |2ds ≤ c‖Y t,η‖2
S2(t,T )

+ cE
∫ T

t
|F(r,Wt,η

r , 0, 0)|2dr.

Therefore, it follows from the polynomial growth condition of F and (46) that
Z ∈ H

2(t, T ). This implies, using the Lipschitz character of F in (y, z), that
E

∫ T
t |F(r,Wt,η

r , Y t,η
r , Zt,η

r )|2dr < ∞, so that we can pass to the limit in (45) and
we get the claim. �

We conclude this subsection with an existence result for the path-dependent heat
equation, namely for Eq. (43) with F ≡ 0, for which we provide an ad hoc proof.
For more general cases we refer to [9].

Theorem 5 Suppose that Assumption (A) holds. Let F ≡ 0 and H be given by, for
all η ∈ C([−T, 0]), (the deterministic integrals are defined according to Definition
4(i))

H(η) = h

(∫
[−T,0]

ϕ1(x + T )d−η(x), . . . ,

∫
[−T,0]

ϕN (x + T )d−η(x)

)
, (47)

where

• h belongs C2(RN ) and its second order partial derivatives satisfy a polynomial
growth condition,

• ϕ1, . . . , ϕN ∈ C2([0, T ]).
Then, there exists a unique strict solution U to the path-dependent heat Eq. (43),
which is given by

U (t, η) = E
[
H(W

t,η
T )

]
, ∀ (t, η) ∈ [0, T ] × C([−T, 0]).

Proof Let us consider the function U : [0, T ] × C([−T, 0]) → R given by, for all
(t, η) ∈ [0, T ] × C([−T, 0]),

U (t, η) = E
[
H(W

t,η
T )

]

= E

[
h

( ∫
[−t,0]

ϕ1(x + t)d−η(x) +
∫ T

t
ϕ1(s)dWs, . . .

)]

= Ψ

(
t,

∫
[−t,0]

ϕ1(x + t)d−η(x), . . . ,

∫
[−t,0]

ϕN (x + t)d−η(x)

)
,

where

Ψ (t, x1, . . . , xN ) = E

[
h

(
x1 +

∫ T

t
ϕ1(s)dWs, . . . , xN +

∫ T

t
ϕN (s)dWs

)]
,
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for any (t, x1, . . . , xN ) ∈ [0, T ] × R
N . Notice that, for any i, j = 1, . . . , N ,

Dxi Ψ (t, x1, . . . , xN ) = E

[
Dxi h

(
x1 +

∫ T

t
ϕ1(s)dWs , . . . , xN +

∫ T

t
ϕN (s)dWs

)]
,

D2
xi x j

Ψ (t, x1, . . . , xN ) = E

[
D2

xi x j
h

(
x1 +

∫ T

t
ϕ1(s)dWs , . . . , xN +

∫ T

t
ϕN (s)dWs

)]
,

so that Ψ and its first and second spatial derivatives are continuous on [0, T ] ×R
N .

Let us focus on the time derivative ∂tΨ of Ψ . We have, for any δ > 0 such that
t + δ ∈ [0, T ],

Ψ (t + δ, x1, . . . , xN ) − Ψ (t, x1, . . . , xN )

δ

= 1

δ
E

[
h

(
x1 +

∫ T

t+δ

ϕ1(s)dWs, . . .

)
− h

(
x1 +

∫ T

t
ϕ1(s)dWs, . . .

)]
.

Then, using a standard Taylor formula, we find

Ψ (t + δ, x1, . . . , xN ) − Ψ (t, x1, . . . , xN )

δ
(48)

= −1

δ
E

[ ∫ 1

0

N∑
i=1

Dxi h

(
x1 +

∫ T

t
ϕ1(s)dWs − α

∫ t+δ

t
ϕ1(s)dWs , . . .

) ∫ t+δ

t
ϕi (s)dWsdα

]
.

Now, it follows from the integration by parts formula of Malliavin calculus, see, e.g.,
formula (1.42) in [31] (taking into account that Itô integrals are Skorohod integrals),
that, for any i = 1, . . . , N ,

E

[
Dxi h

(
x1 +

∫ T

t
ϕ1(s)

(
1 − α1[t,t+δ](s)

)
dWs , . . .

)∫ t+δ

t
ϕi (s)dWs

]
(49)

= (1 − α)E

[ N∑
j=1

D2
xi x j

h

(
x1 +

∫ T

t
ϕ1(s)

(
1 − α1[t,t+δ](s)

)
dWs , . . .

)∫ t+δ

t
ϕi (s)ϕ j (s)ds

]
.

Then, plugging (49) into (48) and letting δ → 0+, we get (recalling that D2
xi x j

h has
polynomial growth, for any i, j)

∂+
t Ψ (t, x1, . . . , xN ) = −1

2
E

[ N∑
i, j=1

D2
xi x j

h

(
x1+

∫ T

t
ϕ1(s)dWs, . . .

)
ϕi (t)ϕ j (t)

]
,

(50)
for any (t, x1, . . . , xN ) ∈ [0, T [×R

N , where ∂+
t Ψ denotes the right-time derivative

ofΨ . SinceΨ and ∂+
t Ψ are continuous, we deduce that ∂tΨ exists and is continuous

on [0, T [ (see for example Corollary 1.2, Chap. 2, in [32]). Moreover, from the
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representation formula (50) we see that ∂tΨ exists and is continuous up to time T .
Furthermore, from the expression of D2

xi x j
Ψ , we see that

∂tΨ (t, x1, . . . , xN ) = −1

2

N∑
i, j=1

ϕi (t)ϕ j (t)D2
xi x j

Ψ (t, x1, . . . , xN ).

Therefore, Ψ ∈ C1,2([0, T ]×R
N ) and is a classical solution to the Cauchy problem

{
∂tΨ (t, x) + 1

2

∑N
i, j=1 ϕi (t)ϕ j (t)D2

xi x j
Ψ (t, x) = 0, ∀ (t, x) ∈ [0, T [×R

N ,

Ψ (T, x) = h(x), ∀ x ∈ R
N .

(51)
Now we express the derivatives of U in terms of Ψ . We begin noting that, taking
into account Proposition 4, we have

∫
[−t,0]

ϕi (x + t)d−η(x) = η(0)ϕi (t)−
∫ 0

−t
η(x)ϕ̇i (x + t)dx, ∀ η ∈ C([−T, 0]).

This in turn implies thatU is continuous with respect to the topology ofC ([−T, 0]).
Therefore, U admits a unique extension u : C ([−T, 0]) → R, which is given by

u(t, η) = Ψ

(
t,

∫
[−t,0]

ϕ1(x + t)d−η(x), . . . ,

∫
[−t,0]

ϕN (x + t)d−η(x)

)
,

for all (t, η) ∈ [0, T ]×C ([−T, 0]).We also define themap ũ : [0, T ]×C ([−T, 0[)×
R → R as in (13):

ũ(t, γ, a) = u(t, γ 1[−T,0[ + a1{0}) = Ψ

(
t, . . . , aϕi (t) −

∫ 0

−t
γ (x)ϕ̇i (x + t)dx, . . .

)
,

for all (t, γ, a) ∈ [0, T ] × C ([−T, 0[) × R. Let us evaluate the time derivative
∂tU (t, η), for a given (t, η) ∈ [0, T [×C([−T, 0]):

∂tU (t, η) = ∂tΨ

(
t,

∫
[−t,0]

ϕ1(x + t)d−η(x), . . . ,

∫
[−t,0]

ϕN (x + t)d−η(x)

)

+
N∑

i=1

Dxi Ψ

(
t, . . . ,

∫
[−t,0]

ϕi (x + t)d−η(x), . . .

)
∂t

( ∫
[−t,0]

ϕi (x + t)d−η(x)

)
.

Notice that

∂t

(∫
[−t,0]

ϕi (x + t)d−η(x)

)
= ∂t

(
η(0)ϕ(t) −

∫ 0

−t
η(x)ϕ̇i (x + t)dx

)

= η(0)ϕ̇(t) − η(−t)ϕ̇i (0
+) −

∫ 0

−t
η(x)ϕ̈i (x + t)dx .
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Let us proceed with the horizontal derivative. We have

DHU (t, η) = DH u(t, η) = DH ũ(t, η|[−T,0[, η(0))

= lim
ε→0+

ũ(t, η|[−T,0[(·), η(0)) − ũ(t, η|[−T,0[(· − ε), η(0))

ε

= lim
ε→0+

(
1

ε
Ψ

(
t, . . . , η(0)ϕi (t) −

∫ 0

−t
η(x)ϕ̇i (x + t)dx, . . .

)

− 1

ε
Ψ

(
t, . . . , η(0)ϕi (t) −

∫ 0

−t
η(x − ε)ϕ̇i (x + t)dx, . . .

))
.

From the fundamental theorem of calculus, we obtain

1

ε
Ψ

(
t, . . . , η(0)ϕi (t) −

∫ 0

−t
η(x)ϕ̇i (x + t)dx, . . .

)

− 1

ε
Ψ

(
t, . . . , η(0)ϕi (t) −

∫ 0

−t
η(x − ε)ϕ̇i (x + t)dx, . . .

)

= 1

ε

∫ ε

0

N∑
i=1

Dxi Ψ

(
t, . . . , η(0)ϕi (t) −

∫ 0

−t
η(x − y)ϕ̇i (x + t)dx, . . .

)
∂y

(
η(0)ϕi (t)

−
∫ 0

−t
η(x − y)ϕ̇i (x + t)dx

)
dy.

Notice that

∂y

(
η(0)ϕi (t) −

∫ 0

−t
η(x − y)ϕ̇i (x + t)dx

)
= −∂y

(∫ −y

−t−y
η(x)ϕ̇i (x + y + t)dx

)

= −
(

η(−y)ϕ̇i (t) − η(−t − y)ϕ̇i (0
+) +

∫ −y

−t−y
η(x)ϕ̈i (x + y + t)dx

)
.

Therefore

DHU (t, η)

= − lim
ε→0+

1

ε

∫ ε

0

N∑
i=1

Dxi Ψ

(
t, . . . , η(0)ϕi (t) −

∫ 0

−t
η(x − y)ϕ̇i (x + t)dx, . . .

)(
η(−y)ϕ̇i (t)

− η(−t − y)ϕ̇i (0
+) +

∫ −y

−t−y
η(x)ϕ̈i (x + y + t)dx

)
dy

= −
N∑

i=1

Dxi Ψ

(
t, . . . , η(0)ϕi (t) −

∫ 0

−t
η(x)ϕ̇i (x + t)dx, . . .

)(
η(0)ϕ̇(t) − η(−t)ϕ̇i (0

+)

−
∫ 0

−t
η(x)ϕ̈i (x + t)dx

)
.
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Finally, concerning the vertical derivative we have

DVU (t, η) = DV u(t, η) = ∂aũ(t, η1[−T,0[ + η(0)1{0})

=
N∑

i=1

Dxi Ψ

(
t,

∫
[−t,0]

ϕ1(x + t)d−η(x), . . .

)
ϕi (t)

and

DV VU (t, η) = DV V u(t, η) = ∂2aaũ(t, η1[−T,0[ + η(0)1{0})

=
N∑

i, j=1

D2
xi x j

Ψ

(
t,

∫
[−t,0]

ϕ1(x + t)d−η(x), . . .

)
ϕi (t)ϕ j (t).

From the regularity of Ψ it follows that U ∈ C1,2(([0, T ] × past) × present).
Moreover, since Ψ satisfies the Cauchy problem (51), we conclude that ∂tU (t, η)+
DHU (t, η) + 1

2 DV VU (t, η) = 0, for all (t, η) ∈ [0, T [×C([−T, 0]), thereforeU
is a classical solution to the path-dependent heat Eq. (43).

3.2 Towards a Weaker Notion of Solution: A Significant
Hedging Example

In the present subsection, we consider Eq. (43) in the case F ≡ 0. This situa-
tion is particularly interesting, since it arises, for example, in hedging problems of
path-dependent contingent claims. More precisely, consider a real continuous finite
quadratic variation process X on (Ω,F ,P) and denote X the window process asso-
ciated to X . Let us assume that [X ]t = t , for any t ∈ [0, T ]. The hedging problem
that we have in mind is the following: given a contingent claim’s payoff H(XT ), is
it possible to have

H(XT ) = H0 +
∫ T

0
Zt d− Xt , (52)

for some H0 ∈ R and some F-adapted process Z = (Zt )t∈[0,T ] such that Zt =
v(t,Xt ), with v : [0, T ] × C([−T, 0]) → R? When X is a Brownian motion W and∫ T
0 |Zt |2dt < ∞, P-a.s., the previous forward integral is an Itô integral. If H is
regular enough and it is cylindrical in the sense of (47), we know from Theorem 5
that there exists a unique classical solutionU : [0, T ]×C([−T, 0]) → R to Eq. (43).

Then, we see from Itô’s formula (28) that U satisfies, P-a.s.,

U (t,Xt ) = U (0,X0) +
∫ t

0
DVU (s,Xs) d− Xs, 0 ≤ t ≤ T . (53)

In particular, (52) holds with Zt = DVU (t,Xt ), for any t ∈ [0, T ], H0 = U (0,Xt ).
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However, a significant hedging example is the lookback-type payoff

H(η) = sup
x∈[−T,0]

η(x), ∀ η ∈ C([−T, 0]).

We look again for U : [0, T ] × C([−T, 0]) → R which verifies (53), at least for X
being a Brownian motion W . SinceU (t,Wt ) has to be a martingale, a candidate for
U is U (t, η) = E[H(W

t,η
T )], for all (t, η) ∈ [0, T ] × C([−T, 0]). However, this

latter U can be shown not to be regular enough in order to be a classical solution
to Eq. (43), even if it is “virtually” a solution to the path-dependent semilinear Kol-
mogorov equation (43). This will lead us to introduce a weaker notion of solution
to Eq. (43). To characterize the map U , we notice that it admits the probabilistic
representation formula, for all (t, η) ∈ [0, T ] × C([−T, 0]),

U (t, η) = E
[
H(W

t,η
T )

] = E

[
sup

−T ≤x≤0
W

t,η
T (x)

]

= E

[(
sup

−t≤x≤0
η(x)

)
∨

(
sup

t≤x≤T

(
Wx − Wt + η(0)

))]
= f

(
t, sup

−t≤x≤0
η(x), η(0)

)
,

where the function f : [0, T ] × R × R → R is given by

f (t, m, x) = E
[
m ∨ (ST −t + x)

]
, ∀ (t, m, x) ∈ [0, T ] × R × R, (54)

with St = sup0≤s≤t Ws , for all t ∈ [0, T ]. Recalling Remark 3, it follows from the
presence of sup−t≤x≤0 η(x) among the arguments of f , that U is not continuous
with respect to the topology ofC ([−T, 0]), therefore it can not be a classical solution
to Eq. (43). However, we notice that sup−t≤x≤0 η(x) is Lipschitz on (C([−T, 0]), ‖ ·
‖∞), therefore it will follow from Theorem 7 that U is a strong-viscosity solution
to Eq. (43) in the sense of Definition 21. Nevertheless, in this particular case, even
if U is not a classical solution, we shall prove that it is associated to the classical
solution of a certain finite dimensional PDE. To this end, we begin computing an
explicit form for f , for which it is useful to recall the following standard result.

Lemma 1 (Reflection principle) For every a > 0 and t > 0,

P(St ≥ a) = P(|Bt | ≥ a).

In particular, for each t, the random variables St and |Bt | have the same law, whose
density is given by:

ϕt (z) =
√

2

π t
e− z2

2t 1[0,∞[(z), ∀ z ∈ R.
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Proof See Proposition 3.7, Chapter III, in [35]. �

From Lemma 1 it follows that, for all (t, m, x) ∈ [0, T [×R × R,

f (t, m, x) =
∫ ∞

0
m ∨ (z + x) ϕT −t (z)dz =

∫ ∞

0
m ∨ (z + x)

2√
T − t

ϕ
( z√

T − t

)
dz,

where ϕ(z) = exp(z2/2)/
√
2π , z ∈ R, is the standard Gaussian density.

Lemma 2 The function f defined in (54) is given by, for all (t, m, x) ∈ [0, T [×R×
R,

f (t, m, x) = 2m
(
Φ

( m − x√
T − t

)
− 1

2

)
+ 2x

(
1 − Φ

( m − x√
T − t

))
+

√
2(T − t)

π
e− (m−x)2

2(T −t) ,

for x ≤ m, and

f (t, x, m) = x +
√
2(T − t)

π
,

for x > m, where Φ(y) = ∫ y
−∞ ϕ(z)dz, y ∈ R, is the standard Gaussian cumulative

distribution function.

Proof First case: x ≤ m. We have

f (t, m, x) =
∫ m−x

0
m

2√
T − t

ϕ
( z√

T − t

)
dz+

∫ ∞

m−x
(z+x)

2√
T − t

ϕ
( z√

T − t

)
dz. (55)

The first integral on the right-hand side of (55) becomes

∫ m−x

0
m

2√
T − t

ϕ
( z√

T − t

)
dz = 2m

∫ m−x√
T −t

0
ϕ(z)dz = 2m

(
Φ

( m − x√
T − t

)
−1

2

)
,

whereΦ(y) = ∫ y
−∞ ϕ(z)dz, y ∈ R, is the standard Gaussian cumulative distribution

function. Concerning the second integral in (55), we have

∫ ∞

m−x
(z + x)

2√
T − t

ϕ
( z√

T − t

)
dz = 2

√
T − t

∫ ∞
m−x√

T −t

zϕ(z)dz + 2x
∫ ∞

m−x√
T −t

ϕ(z)dz

=
√
2(T − t)

π
e− (m−x)2

2(T −t) + 2x
(
1 − Φ

( m − x√
T − t

))
.
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Second case: x > m. We have

f (t, m, x) =
∫ ∞

0
(z + x)

2√
T − t

ϕ
( z√

T − t

)
dz

= 2
√

T − t
∫ ∞

0
zϕ(z)dz + 2x

∫ ∞

0
ϕ(z)dz =

√
2(T − t)

π
+ x .

We also have the following regularity result regarding the function f .

Lemma 3 The function f defined in (54) is continuous on [0, T ]×R×R, moreover
it is once (resp. twice) continuously differentiable in (t, m) (resp. in x) on [0, T [×Q,
where Q is the closure of the set Q := {(m, x) ∈ R × R : m > x}. In addition, the
following Itô formula holds:

f (t, St , Bt ) = f (0, 0, 0) +
∫ t

0

(
∂t f (s, Ss , Bs) + 1

2
∂2xx f (s, Ss , Bs)

)
ds (56)

+
∫ t

0
∂m f (s, Ss , Bs)d Ss +

∫ t

0
∂x f (s, Ss , Bs)d Bs , 0 ≤ t ≤ T, P-a.s.

Proof The regularity properties of f are deduced from its explicit form derived in
Lemma2, after straightforward calculations. Concerning Itô’s formula (56), the proof
can be done along the same lines as the standard Itô formula. We simply notice that,
in the present case, only the restriction of f to Q is smooth. However, the process
((St , Bt ))t is Q-valued. It is well-known that if Q would be an open set, then Itô’s
formula would hold. In our case, Q is the closure of its interior Q. This latter property
is enough for the validity of Itô’s formula. In particular, the basic tools for the proof
of Itô’s formula are the following Taylor expansions for the function f :

f (t ′, m, x) = f (t, m, x) + ∂t f (t, m, x)(t ′ − t)

+
∫ 1

0
∂t f (t + λ(t ′ − t), m, x)(t ′ − t)dλ,

f (t, m′, x) = f (t, m, x) + ∂m f (t, m, x)(m′ − m)

+
∫ 1

0
∂m f (t, m + λ(m′ − m), x)(m′ − m)dλ,

f (t, m, x ′) = f (t, m, x) + ∂x f (t, m, x)(x ′ − x) + 1

2
∂2xx f (t, m, x)(x ′ − x)2

+
∫ 1

0
(1 − λ)

(
∂2xx f (t, m, x + λ(x ′ − x)) − ∂2xx f (t, m, x)

)
(x ′ − x)2dλ,

for all (t, m, x) ∈ [0, T ] × Q. To prove the above Taylor formulae, note that they
hold on the open set Q, using the regularity of f . Then, we can extend them to the
closure of Q, since f and its derivatives are continuous on Q. Consequently, Itô’s
formula can be proved in the usual way. �
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Even though, as already observed, U does not belong to C1,2(([0, T [×past) ×
present)∩C([0, T ]×C([−T, 0])), so that it can not be a classical solution to Eq. (43),
the function f is a solution to a certain Cauchy problem, as stated in the following
proposition.

Proposition 10 The function f defined in (54) solves the backward heat equation:

{
∂t f (t, m, x) + 1

2∂
2
xx f (t, m, x) = 0, ∀ (t, m, x) ∈ [0, T [×Q,

f (T, m, x) = m, ∀ (m, x) ∈ Q.

Proof We provide two distinct proofs.
Direct proof. Since we know the explicit expression of f , we can derive the form

of ∂t f and ∂2xx f by direct calculations:

∂t f (t, m, x) = − 1√
T − t

ϕ
( m − x√

T − t

)
, ∂2xx f (t, m, x) = 2√

T − t
ϕ
( m − x√

T − t

)
,

for all (t, m, x) ∈ [0, T [×Q, from which the claim follows.
Probabilistic proof. By definition, the process ( f (t, St , Bt ))t∈[0,T ] is given by:

f (t, St , Bt ) = E
[
ST

∣∣Ft
]
,

so that it is a uniformly integrable F-martingale. Then, it follows from Itô’s formula
(56) that

∫ t

0

(
∂t f (s, Ss, Bs) + 1

2
∂2xx f (s, Ss, Bs)

)
ds +

∫ t

0
∂m f (s, Ss, Bs)d Ss = 0,

for all 0 ≤ t ≤ T , P-almost surely. As a consequence, the claim follows if we prove
that ∫ t

0
∂m f (s, Ss, Bs)d Ss = 0. (57)

By direct calculation, we have

∂m f (t, m, x) = 2Φ
( m − x√

T − t

)
− 1, ∀(t, m, x) ∈ [0, T [×Q.

Therefore, (57) becomes

∫ t

0

(
2Φ

(
Ss − Bs√

T − s

)
− 1

)
d Ss = 0. (58)
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Nowweobserve that the local time of Ss−Bs is equal to 2Ss , seeExercise 2.14 in [35].
It follows that the measure d Ss is carried by {s : Ss − Bs = 0}. This in turn implies
the validity of (58), since the integrand in (58) is zero on the set {s : Ss − Bs = 0}.
�

3.3 Strong-Viscosity Solutions

Motivated by previous subsection and following [10], we now introduce a concept of
weak (viscosity type) solution for the path-dependent Eq. (43), which we call strong-
viscosity solution to distinguish it from the classical notion of viscosity solution.

Definition 21 A functionU : [0, T ] × C([−T, 0]) → R is called strong-viscosity
solution to Eq. (43) if there exists a sequence (Un, Hn, Fn)n of Borel measurable
functions Un : [0, T ] × C([−T, 0]) → R, Hn : C([−T, 0]) → R, Fn : [0, T ] ×
C([−T, 0]) × R × R → R, satisfying the following.

(i) For all t ∈ [0, T ], the functionsUn(t, ·), Hn(·), Fn(t, ·, ·, ·) are equicontinuous
on compact sets and, for some positive constants C and m,

|Fn(t, η, y, z) − Fn(t, η, y′, z′)| ≤ C(|y − y′| + |z − z′|),
|Un(t, η)| + |Hn(η)| + |Fn(t, η, 0, 0)| ≤ C

(
1 + ‖η‖m∞

)
,

for all (t, η) ∈ [0, T ] × C([−T, 0]), y, y′ ∈ R, and z, z′ ∈ R.
(ii) Un is a strict solution to

{
∂tUn + DHUn + 1

2 DV V Un + Fn(t, η,Un, DV Un) = 0, ∀ (t, η) ∈ [0, T [×C([−T, 0]),
Un(T, η) = Hn(η), ∀ η ∈ C([−T, 0]).

(iii) (Un, Hn, Fn) converges pointwise to (U , H, F) as n tends to infinity.

Remark 12 (i)Notice that in [8],Definition 3.4, instead of the equicontinuity on com-
pact sets we supposed the local equicontinuity, i.e., the equicontinuity on bounded
sets (see Definition 3.3 in [8]). This latter condition is stronger when U (as well as
the other coefficients) is defined on a non-locally compact topological space, as for
example [0, T ] × C([−T, 0]).
(ii) We observe that, for every t ∈ [0, T ], the equicontinuity on compact sets of
(Un(t, ·))n together with its pointwise convergence toU (t, ·) is equivalent to requir-
ing the uniform convergence on compact sets of (Un(t, ·))n to U (t, ·). The same
remark applies to (Hn(·))n and (Fn(t, ·, ·, ·))n , t ∈ [0, T ]. �

The following uniqueness result for strong-viscosity solution holds.
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Theorem 6 Suppose that Assumption (A) holds. Let U : [0, T ]×C([−T, 0]) → R

be a strong-viscosity solution to Eq. (43). Then, we have

U (t, η) = Y t,η
t , ∀ (t, η) ∈ [0, T ] × C([−T, 0]),

where (Y t,η
s , Zt,η

s )s∈[t,T ] ∈ S
2(t, T )×H

2(t, T ), with Y t,η
s = U (s,Wt,η

s ), solves the
backward stochastic differential equation, P-a.s.,

Y t,η
s = H(W

t,η
T ) +

∫ T

s
F(r,Wt,η

r , Y t,η
r , Zt,η

r )dr −
∫ T

s
Z t,η

r dWr , t ≤ s ≤ T .

In particular, there exists at most one strong-viscosity solution to Eq. (43).

Proof Consider a sequence (Un, Hn, Fn)n satisfying conditions (i)-(iii) of Definition
21. For every n ∈ N and any (t, η) ∈ [0, T ] × C([−T, 0]), we know from Theorem
4 that (Y n,t,η

s , Zn,t,η
s )s∈[t,T ] = (Un(s,Wt,η

s ), DVUn(s,W
t,η
s ))s∈[t,T ] ∈ S

2(t, T ) ×
H

2(t, T ) is the solution to the backward stochastic differential equation, P-a.s.,

Y n,t,η
s = Hn(W

t,η
T ) +

∫ T

s
Fn(r,Wt,η

r , Y n,t,η
r , Zn,t,η

r )dr −
∫ T

s
Zn,t,η

r dWr , t ≤ s ≤ T .

Our aim is to pass to the limit in the above equation as n → ∞, using Theorem C.1
in [10]. From the polynomial growth condition of (Un)n and estimate (46), we see
that

sup
n

‖Y n,t,η‖Sp(t,T ) < ∞, for any p ≥ 1.

This implies, using standard estimates for backward stochastic differential equations
(see, e.g., Proposition B.1 in [10]) and the polynomial growth condition of (Fn)n ,
that

sup
n

‖Zn,t,η‖H2(t,T ) < ∞.

Let Y t,η
s = U (s,Wt,η

s ), for any s ∈ [t, T ]. Then, we see that all the requirements of
Theorem C.1 in [10] follow by assumptions and estimate (46), so the claim follows.

�

We now prove an existence result for strong-viscosity solutions to the path-
dependent heat equation, namely to Eq. (43) in the case F ≡ 0. To this end, we
need the following stability result for strong-viscosity solutions.

Lemma 4 Let (Un,k, Hn,k, Fn,k)n,k , (Un, Hn, Fn)n, (U , H, F) be Borel measur-
able functions such that the properties below hold.

(i) For all t ∈ [0, T ], the functions Un,k(t, ·), Hn,k(·), and Fn,k(t, ·, ·, ·), n, k ∈ N,
are equicontinuous on compact sets and, for some positive constants C and m,
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|Fn,k(t, η, y, z) − Fn,k(t, η, y′, z′)| ≤ C(|y − y′| + |z − z′|),
|Un,k(t, η)| + |Hn,k(η)| + |Fn,k(t, η, 0, 0)| ≤ C

(
1 + ‖η‖m∞

)
,

for all (t, η) ∈ [0, T ] × C([−T, 0]), y, y′ ∈ R, and z, z′ ∈ R.
(ii) Un,k is a strict solution to

⎧⎪⎨
⎪⎩

∂tUn,k + DHUn,k + 1
2 DV VUn,k

+ Fn,k(t, η,Un,k, DVUn,k) = 0, ∀ (t, η) ∈ [0, T [×C([−T, 0]),
Un,k(T, η) = Hn,k(η), ∀ η ∈ C([−T, 0]).

(iii) (Un,k, Hn,k, Fn,k) converges pointwise to (Un, Hn, Fn) as k tends to infinity.
(iv) (Un, Hn, Fn) converges pointwise to (U , H, F) as n tends to infinity.

Then, there exists a subsequence (Un,kn , Hn,kn , Fn,kn )n which converges pointwise
to (U , H, F) as n tends to infinity. In particular, U is a strong-viscosity solution to
Eq. (43).

Proof See Lemma 3.4 in [8] or Lemma 3.1 in [10]. We remark that in [8] a slightly
different definition of strong-viscosity solutionwas used, see Remark 12(i); however,
proceeding along the same lines we can prove the present result.

Theorem 7 Suppose that Assumption (A) holds. Let F ≡ 0 and H be continuous.
Then, there exists a unique strong-viscosity solution U to the path-dependent heat
Eq. (43), which is given by

U (t, η) = E
[
H(W

t,η
T )

]
, ∀ (t, η) ∈ [0, T ] × C([−T, 0]).

Proof Let (ei )i≥0 be the orthonormal basis of L2([−T, 0]) composed by the func-
tions

e0 = 1√
T

, e2i−1(x) =
√

2

T
sin

(
2π

T
(x + T )i

)
, e2i (x) =

√
2

T
cos

(
2π

T
(x + T )i

)
,

for all i ∈ N\{0}. Let us define the linear operatorΛ : C([−T, 0]) → C([−T, 0]) by

(Λη)(x) = η(0) − η(−T )

T
x, x ∈ [−T, 0], η ∈ C([−T, 0]).

Notice that (η − Λη)(−T ) = (η − Λη)(0), therefore η − Λη can be extended to the
entire real line in a periodic way with period T , so that we can expand it in Fourier
series. In particular, for each n ∈ N and η ∈ C([−T, 0]), consider the Fourier partial
sum

sn(η − Λη) =
n∑

i=0

(ηi − (Λη)i )ei , ∀ η ∈ C([−T, 0]), (59)
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where (denoting ẽi (x) = ∫ x
−T ei (y)dy, for any x ∈ [−T, 0]), by Proposition 4,

ηi =
∫ 0

−T
η(x)ei (x)dx = η(0)ẽi (0) −

∫
[−T,0]

ẽi (x)d−η(x)

=
∫

[−T,0]
(ẽi (0) − ẽi (x))d−η(x), (60)

since η(0) = ∫
[−T,0] d−η(x). Moreover we have

(Λη)i =
∫ 0

−T
(Λη)(x)ei (x)dx = 1

T

∫ 0

−T
xei (x)dx

( ∫
[−T,0]

d−η(x) − η(−T )

)
.

(61)

Define

σn = s0 + s1 + · · · + sn

n + 1
.

Then, by (59),

σn(η − Λη) =
n∑

i=0

n + 1 − i

n + 1
(ηi − (Λη)i )ei , ∀ η ∈ C([−T, 0]).

We know from Fejér’s theorem on Fourier series (see, e.g., Theorem 3.4, Chapter
III, in [44]) that, for any η ∈ C([−T, 0]), σn(η − Λη) → η − Λη uniformly on
[−T, 0], as n tends to infinity, and ‖σn(η −Λη)‖∞ ≤ ‖η −Λη‖∞. Let us define the
linear operator Tn : C([−T, 0]) → C([−T, 0]) by (denoting e−1(x) = x , for any
x ∈ [−T, 0])

Tnη = σn(η − Λη) + Λη =
n∑

i=0

n + 1 − i

n + 1
(ηi − (Λη)i )ei + η(0) − η(−T )

T
e−1

=
n∑

i=0

n + 1 − i

n + 1
xi ei + x−1e−1, (62)

where, using (60) and (61),

x−1 =
∫

[−T,0]
1

T
d−η(x) − 1

T
η(−T ),

xi =
∫

[−T,0]

(
ẽi (0) − ẽi (x) − 1

T

∫ 0

−T
xei (x)dx

)
d−η(x) + 1

T

∫ 0

−T
xei (x)dx η(−T ),
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for i = 0, . . . , n. Then, for any η ∈ C([−T, 0]), Tnη → η uniformly on [−T, 0], as
n tends to infinity. Furthermore, there exists a positive constant M such that

‖Tnη‖∞ ≤ M‖η‖∞, ∀ n ∈ N, ∀ η ∈ C([−T, 0]). (63)

In particular, the family of linear operators (Tn)n is equicontinuous. Now, let us
define H̄n : C([−T, 0]) → R as follows

H̄n(η) = H(Tnη), ∀ η ∈ C([−T, 0]).

We see from (63) that the family (H̄n)n is equicontinuous on compact sets.Moreover,
from the polynomial growth condition of H and (63) we have

|H̄n(η)| ≤ C(1+‖Tnη‖m∞) ≤ C(1+ Mm‖η‖m∞), ∀ n ∈ N, ∀ η ∈ C([−T, 0]).
Now, we observe that since {e−1, e0, e1, . . . , en} are linearly independent, then
we see from (62) that Tnη is completely characterized by the coefficients of
e−1, e0, e1, . . . , en . Therefore, the function h̄n : Rn+2 → R given by

h̄n(x−1, . . . , xn) = H̄n(η) = H

( n∑
i=0

n + 1 − i

n + 1
xi ei + x−1e−1

)
, ∀ (x−1, . . . , xn) ∈ R

n+2,

completely characterizes H̄n . Moreover, fix η ∈ C([−T, 0]) and consider the cor-
responding coefficients x−1, . . . , xn with respect to {e−1, . . . , en} in the expression
(62) of Tnη. Set

ϕ−1(x) = 1

T
, ϕi (x) = ẽi (0) − ẽi (x − T ) − 1

T

∫ 0

−T
xei (x)dx, x ∈ [0, T ],

a−1 = − 1

T
, ai = 1

T

∫ 0

−T
xei (x)dx .

Notice that ϕ−1, . . . , ϕn ∈ C∞([0, T ]). Then, we have

H̄n(η) = h̄n

(∫
[−T,0]

ϕ−1(x + T )d−η(x)+a−1η(−T ), . . . ,

∫
[−T,0]

ϕn(x + T )d−η(x) + anη(−T )

)
.

Let φ(x) = c exp(1/(x2 − T 2))1[0,T [(x), x ≥ 0, with c > 0 such that
∫ ∞
0 φ(x)

dx = 1. Define, for any ε > 0, φε(x) = φ(x/ε)/ε, x ≥ 0. Notice that φε ∈
C∞([0,∞[) and (denoting φ̃ε(x) = ∫ x

0 φε(y)dy, for any x ≥ 0),

∫ 0

−T
η(x)φε(x + T )dx = η(0)φ̃ε(T ) −

∫
[−T,0]

φ̃ε(x + T )d−η(x)

=
∫

[−T,0]
(
φ̃ε(T ) − φ̃ε(x + T )

)
d−η(x).
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Therefore

lim
ε→0+

∫
[−T,0]

(
φ̃ε(T ) − φ̃ε(x + T )

)
d−η(x) = lim

ε→0+

∫ 0

−T
η(x)φε(x + T )dx = η(−T ).

For this reason, we introduce the function Hn : C([−T, 0]) → R given by

Hn(η) = h̄n

(
. . . ,

∫
[−T,0]

ϕi (x + T )d−η(x) + ai

∫
[−T,0]

(
φ̃n(T ) − φ̃n(x + T )

)
d−η(x), . . .

)
.

Now, for any n ∈ N, let (hn,k)k∈N be a locally equicontinuous sequence of
C2(Rn+2;R) functions, uniformly polynomially bounded, such that hn,k converges
pointwise to hn , as k tends to infinity. Define Hn,k : C([−T, 0]) → R as follows:

Hn,k(η) = hn,k

(
. . . ,

∫
[−T,0]

ϕi (x + T )d−η(x) + ai

∫
[−T,0]

(
φ̃n(T ) − φ̃n(x + T )

)
d−η(x), . . .

)
.

Then, we know from Theorem 5 that the function Un,k : [0, T ] × C([−T, 0]) → R

given by

Un,k(t, η) = E
[
Hn,k(W

t,η
T )

]
, ∀ (t, η) ∈ [0, T ] × C([−T, 0])

is a classical solution to the path-dependent heat Eq. (43). Moreover, the family
(Un,k)n,ε,k is equicontinuous on compact sets and uniformly polynomially bounded.
Then, using the stability result Lemma 4, it follows that U is a strong-viscosity
solution to the path-dependent heat Eq. (43). �
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Nonlinear Young Integrals via Fractional
Calculus

Yaozhong Hu and Khoa N. Lê

Abstract For Hölder continuous functions W (t, x) and ϕt , we define nonlinear
integral

∫ b
a W (dt, ϕt ) via fractional calculus. This nonlinear integral arises naturally

in the Feynman-Kac formula for stochastic heat equations with random coefficients
(Hu and Lê, Nonlinear Young integrals and differential systems in Hölder media.
Trans. Am. Math. Soc. (in press)). We also define iterated nonlinear integrals.

Keywords Nonlinear integration · Young integral · Iterated nonlinear Young
integrals

1 Introduction

Let {ϕt , t ≥ 0} be a Hölder continuous function and let {W (t, x), t ≥ 0 , x ∈ R
d}

be another jointly Hölder continuous function of several variables (see (10) for the
precise statement about the assumption on W ). The aim of this paper is to define the
nonlinear Young integral

∫ b
a W (dt, ϕt ) by using fractional calculus.

This paper can be considered as supplementary to authors’ recent paper [5], where
the nonlinear Young integral is introduced to establish the Feynman-Kac formula for
general stochastic partial differential equations with random coefficients, namely,

∂t u(t, x) + Lu(t, x) + u(t, x)∂t W (t, x) = 0 , (1)
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where W is a Hölder continuous function of several variables (which can be a sample
path of a Gaussian random field) and

Lu(t, x) = 1

2

d∑
i, j=1

ai j (t, x, W )∂2xi x j
u(t, x) +

d∑
i=1

bi (t, x, W )∂xi u(t, x)

with the coefficients ai j and bi depending on W . The terminal condition for the
Eq. (1) is u(T, x) = uT (x) for some given function uT (x).

To motivate our study of the nonlinear Young integral, let us recall a basic result
in [5] on the Feynman-Kac formula: Let σ(t, x) = (σi j (t, x, W ))1≤i, j≤d satisfy
a(t, x, W ) = σ(t, x, W )σ (t, x, W )T (we omit the explicit dependence of σ on W ).
Consider the following stochastic differential equation

d Xr,x
t = σ(t, Xr,x

t )δBt + b(t, Xr,x
t )dt, 0 ≤ r ≤ t ≤ T, Xr,x

r = x, (2)

where (Bt , 0 ≤ t ≤ T ) is a standard Brownian motion and δBt denotes the
Itô differential. Then it is proved in [5] that under some conditions b and σ and
W (which are verified for certain Gaussian random field W ), the nonlinear inte-
gral

∫ T
r W (ds, Xr,x

s ) is well-defined and exponentially integrable and u(r, x) =
E

B
{

uT (Xr,x
T ) exp

[∫ T
r W (ds, Xr,x

s )
]}

is a Feynman-Kac solution to (1)withu(T, x)

= uT (x). One of the main tasks in that paper is the study of the nonlinear Young
integral

∫ T
r W (ds, Xr,x

s ). To this end we used the Riemann sum approximation and
the sewing lemma of [2]. In this paper, we shall study the nonlinear Young inte-
gral

∫ b
a W (dt, ϕt ) by means of fractional calculus. This approach may provide more

detailed properties of the solutions to the equations (see [6, 7]).
Under certain conditions, we shall prove that the two nonlinear Young integrals,

defined by Riemann sums (through sewing lemma) or by fractional calculus, are the
same (see Proposition 2).

To expand the solution of a (nonlinear) differential equation with explicit remain-
der term we need to define (iterated) multiple integrals (see [3]). We shall also give a
definition of the iterated nonlinear Young integrals. Some elementary estimates are
also obtained.

The paper is organized as follows. Section2 briefly recalls some preliminary
material on fractional calculus that are needed later. Section3 dealswith the nonlinear
Young integrals and Sect. 4 is concerned with iterated nonlinear Young integrals.

2 Fractional Integrals and Derivatives

In this section we recall some results from fractional calculus.
Let −∞ < a < b < ∞, α > 0 and p ≥ 1 be real numbers. Denote by L p(a, b)

the space of all measurable functions on (a, b) such that
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‖ f ‖p :=
⎛
⎝

b∫

a

| f (t)|pdt

⎞
⎠

1/p

< ∞ .

Denote byC([a, b]) the space of continuous functions on [a, b]. Let f ∈ L1 ([a, b]).
The left-sided fractional Riemann-Liouville integral I α

a+ f is defined as

I α
a+ f (t) = 1

Γ (α)

t∫

a

(t − s)α−1 f (s) ds , t ∈ (a, b) (3)

and the right-sided fractional Riemann-Liouville integral I α
b− f is defined as

I α
b− f (t) = (−1)−α

Γ (α)

b∫

t

(s − t)α−1 f (s) ds , t ∈ (a, b) (4)

where (−1)−α = e−iπα and Γ (α) = ∫ ∞
0 rα−1e−r dr is the Euler gamma function.

Let I α
a+(L p) (resp. I α

b−(L p)) be the image of L p(a, b) by the operator I α
a+ (resp.

I α
b−). If f ∈ I α

a+ (L p) (resp. f ∈ I α
b− (L p)) and 0 < α < 1, then the (left-sided or

right-sided) Weyl derivatives are defined (respectively) as

Dα
a+ f (t) = 1

Γ (1 − α)

⎛
⎝ f (t)

(t − a)α
+ α

t∫

a

f (t) − f (s)

(t − s)α+1 ds

⎞
⎠ (5)

and

Dα
b− f (t) = (−1)α

Γ (1 − α)

⎛
⎝ f (t)

(b − t)α
+ α

b∫

t

f (t) − f (s)

(s − t)α+1 ds

⎞
⎠ , (6)

where a ≤ t ≤ b (the convergence of the integrals at the singularity s = t holds point-
wise for almost all t ∈ (a, b) if p = 1 and moreover in L p-sense if 1 < p < ∞).

It is clear that if f is Hölder continuous of order μ > α, then the two Weyl
derivatives exist.

For any β ∈ (0, 1), we denote by Cβ([a, b]) the space of β-Hölder continuous
functions on the interval [a, b]. We will make use of the notation

‖ f ‖β;a,b = sup
a<θ<r<b

| f (r) − f (θ)|
|r − θ |β

(which is a seminorm) and

‖ f ‖∞;a,b = sup
a≤r≤b

| f (r)|,
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where f : R → R is a given continuous function.
It is well-known that Cβ([a, b]) with the Hölder norm ‖ f ‖β;a,b + ‖ f ‖∞;a,b is a

Banach space. However, it is not separable.
Using the fractional calculus, we have (see [9] and also [3])

Proposition 1 Let 0 < α < 1. If f and g are continuously differentiable functions
on the interval [a, b], then

b∫

a

f dg = (−1)α
b∫

a

(
Dα

a+ f (t)
) (

D1−α
b− gb− (t)

)
dt, (7)

where gb− (t) = g (t) − g (b).

In what follows κ denotes a universal generic constant depending only on λ, τ, α

and independent of W , ϕ and a, b. The value of κ may vary from occurrence to
occurrence.

For two function f, g : [a, b] → R, we can define the Riemann-Stieltjes integral∫ b
a f (t)dg(t). Here we recall a result which is well-known (see for example [3, 9]
or [6, 7]).

Lemma 1 Let f and g be Hölder continuous functions of orders α and β respec-
tively. Suppose that α + β > 1. Then the Riemann-Stieltjes integral

∫ b
a f (t)dg(t)

exists and for any γ ∈ (1 − β, α), we have

b∫

a

f (t)dg(t) = (−1)γ
b∫

a

Dγ
a f (t)D1−γ

b− gb−(t)dt . (8)

Moreover, there is a constant κ such that

∣∣∣∣∣∣
b∫

a

f (t)dg(t)

∣∣∣∣∣∣ ≤ κ‖g‖β;a,b(‖ f ‖∞;a,b|b − a|β + ‖ f ‖α;a,b|b − a|α+β). (9)

Proof We refer to [9] or [3] for a proof of (8). We shall outline a proof of (9). Let γ
be such that α > γ > 1 − β. Applying fractional integration by parts formula (8),
we obtain ∣∣∣∣∣∣

b∫

a

f (t)dg(t)

∣∣∣∣∣∣ ≤
b∫

a

|Dγ
a+ f (t)D1−γ

b− gb−(t)|dt.

From (5) and (6) it is easy to see that

|D1−γ

b− gb−(t)| ≤ κ‖g‖β;a,b(b − r)β+γ−1
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and
|Dγ

a+ f (t)| ≤ κ[‖ f ‖∞;a,b(t − a)−γ + ‖ f ‖α;a,b(t − a)α−γ ].

Therefore

∣∣∣∣∣∣
b∫

a

f (t)dg(t)

∣∣∣∣∣∣ ≤ κ‖g‖β;a,b

⎛
⎝‖ f ‖∞;a,b

b∫

a

(t − a)−γ (b − t)β+γ−1dt

+‖ f ‖α;a,b

b∫

a

(t − a)α−γ (b − t)β+γ−1dt

⎞
⎠ .

The integrals on the right hand side can be computed by making the substitution
t = b − (b − a)s. Hence we derive (9).

We also need the following lemma in the proofs of our main results.

Lemma 2 Let f (s, t), a ≤ s < t ≤ b be a measurable function of s and t such that

b∫

a

t∫

a

| f (s, t)|
(t − s)1−α

dsdt < ∞.

Then
b∫

a

I α,t
a+ f (t, t ′)|t ′=t dt = (−1)α

b∫

a

I α,t ′
b− f (t, t ′)|t ′=t dt.

Proof An application of Fubini’s theorem yields

b∫

a

I α,t
a+ f (t, t ′)|t ′=t dt = 1

Γ (α)

b∫

a

t∫

a

f (s, t)

(t − s)1−α
dsdt

= 1

Γ (α)

b∫

a

b∫

s

f (s, t)

(t − s)1−α
dtds

= (−1)α
b∫

a

I α,t ′
b− f (t, t ′)|t ′=t dt

which is the lemma.
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3 Nonlinear Integral

In this section we shall use fractional calculus to define the (pathwise) nonlinear
integral

∫ b
a W (dt, ϕt ). This method only relies on regularity of the sample paths

of W and ϕ. More precisely, it is applicable to stochastic processes with Hölder
continuous sample paths.

Another advantage of this approach is that in the theory of stochastic processes
it is usually difficult to obtain almost sure type of results. If the sample paths of the
process is Hölder continuous, then one can apply this approach to each sample path
and almost surely results are then automatic.

In what follows, we shall use W to denote a deterministic function W : R×R
d →

R
d . We make the following assumption on the regularity of W :

(W) There are constants τ, λ ∈ (0, 1] such that for all finite a < b and for all
compact sets K of Rd , the seminorm

‖W‖τ,λ;a,b,K

: = sup
a≤s<t≤b

x,y∈K ;x 	=y

|W (s, x) − W (t, x) − W (s, y) + W (t, y)|
|t − s|τ |x − y|λ

+ sup
a≤s<t≤b

x∈K

|W (s, x) − W (t, x)|
|t − s|τ + sup

a≤t≤b
x,y∈K ;x 	=y

|W (t, y) − W (t, x)|
|x − y|λ , (10)

is finite.

About the function ϕ, we assume

(φ) ϕ is locally Hölder continuous of order γ ∈ (0, 1]. That is, the seminorm

‖ϕ‖γ ;a,b = sup
a≤s<t≤b

|ϕ(t) − ϕ(s)|
|t − s|γ ,

is finite for every a < b.

Among the three terms appearing in (W), we will pay special attention to the first
term. Thus, we denote

[W ]τ,λ;a,b,K = sup
a≤s<t≤b

x,y∈K ;x 	=y

|W (s, x) − W (t, x) − W (s, y) + W (t, y)|
|t − s|τ |x − y|λ .

If a, b is clear from the context, we frequently omit the dependence on a, b. In
addition, throughout the paper, the compact set K can be chosen to be any compact set
containing the image of ϕ on the interval of integration. Thuswe omit the dependence
on K as well. For instance, ‖W‖τ,λ is an abbreviation for ‖W‖τ,λ;a,b,K , ‖ϕ‖γ is an
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abbreviation for ‖ϕ‖γ ;a,b and so on. We shall assume that a and b are finite. Thus it
is easy to see that for any c ∈ [a, b]

sup
a≤t≤b

|ϕ(t)| = sup
a≤t≤b

|ϕ(c) + ϕ(t) − ϕ(c)| ≤ |ϕ(c)| + ‖ϕ‖γ |b − a|γ < ∞ .

Thus assumption (φ) also implies that

‖ϕ‖∞;a,b := sup
a≤t≤b

|ϕ(t)| < ∞ .

Remark 1 Given a stochastic process indexed by (t, x), it is possible to obtain
almost sure regularity of the type (10) by amultiparameterGarsia-Rodemich-Rumsey
inequality. Indeed, this has been explored in [4], see also the last section of [5].

One of ourmain results in this section is to define
∫ b

a W (dt, ϕt ) under the condition
λγ + τ > 1 through a fractional integration by parts technique. The following
definition is motivated from Lemma 1.

Definition 1 We define

b∫

a

W (dt, ϕt ) = (−1)α
b∫

a

Dα,t ′
a+ D1−α,t

b− Wb−(t, ϕt ′)|t ′=t dt (11)

whenever the right hand side makes sense.

Remark 2 Assume d = 1. Let W (t, x) = g(t)x be of the product form and let
ϕ(t) = f (t), where g is a Hölder continuous function of exponent τ and f is a
Hölder continuous function of exponent λ. If 1 − τ < α < λ, then

b∫

a

W (dt, ϕt ) = (−1)α
b∫

a

Dα,t ′
a+ D1−α,t

b− Wb−(t, t ′)|t ′=t dt

= (−1)α
b∫

a

D1−α,t
b− gb−(t)Dα,t

a+ f (t)dt .

Thus from (8),
∫ b

a W (dt, ϕt ) is an extensionof the classicalYoung integral
∫ b

a f (t)dg(t)

(see [3, 8, 9]). For general d, if W (t, x) = ∑d
i=1 gi (t)xi and ϕi (t) =

fi (t), then it is easy to see that
∫ b

a W (dt, ϕt ) =
d∑

i=1

b∫

a

fi (t)dgi (t).

The following result clarifies the context in which Definition 1 is justified.
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Theorem 1 Assume the conditions (W) and (φ) are satisfied. In addition, we sup-
pose that λγ + τ > 1. Let α ∈ (1− τ, λτ). Then the right hand side of (11) is finite
and is independent of α ∈ (1 − τ, λ). As a consequence, we have

b∫

a

W (dt, ϕt )

= (−1)α
b∫

a

Dα,t ′
a+ D1−α,t

b− Wb−(t, ϕt ′)|t ′=t dt

= − 1

Γ (α)Γ (1 − α)

⎧⎨
⎩

b∫

a

Wb−(t, ϕt )

(b − t)1−α(t − a)α
dt

+α

b∫

a

t∫

a

Wb−(t, ϕt ) − Wb−(t, ϕr )

(b − t)1−α(t − r)α+1 drdt

+ (1 − α)

b∫

a

b∫

t

W (t, ϕt ) − W (s, ϕt )

(s − t)2−α(t − a)α
dsdt

+ α(1 − α)

b∫

a

t∫

a

b∫

t

W (t, ϕt ) − W (s, ϕt ) − W (t, ϕr ) + W (s, ϕr )

(s − t)2−α(t − r)α+1 dsdrdt

⎫⎬
⎭ ,

(12)

where Wb− (t, x) = W (t, x) − W (b, x). Moreover, there is a universal constant κ

depending only on τ, λ and α, but independent W , ϕ and a, b such that

∣∣∣∣∣∣
b∫

a

W (dt, ϕt )

∣∣∣∣∣∣ ≤ κ‖W‖τ,λ ;a,b(b−a)τ +κ‖W‖τ,λ ;a,b‖ϕ‖λ
γ ;a,b(b−a)τ+λγ , (13)

where ‖W‖τ,λ ;a,b = ‖W‖τ,λ ;a,b,K and K is the closure of the image of (ϕt , a ≤
t ≤ b).

Proof Wedenote ‖W‖ = ‖W‖τ,λ;a,b. First by the definitions of fractional derivatives
(5) and (6), we have

D1−α,t
b− Wb−(t, ϕt ′) = (−1)1−α

Γ (α)

⎛
⎜⎝ Wb−(t, ϕt ′)

(b − t)1−α
+ (1 − α)

b∫

t

W (t, ϕt ′) − W (s, ϕt ′)
(s − t)2−α

ds

⎞
⎟⎠ .
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and

Dα,t ′
a+ D1−α,t

b− Wb−(t, ϕt ′)

= (−1)1−α

Γ (α)Γ (1 − α)

⎛
⎜⎝ 1

(t ′ − a)α

Wb−(t, ϕt ′)

(b − t)1−α
+ α

t ′∫

a

Wb−(t, ϕt ′) − Wb−(t, ϕr )

(t ′ − r)α+1(b − t)1−α
dr

+ 1 − α

(t ′ − a)α

b∫

t

W (t, ϕt ′) − W (s, ϕt ′)

(s − t)2−α
ds

+(1 − α)

t ′∫

a

α

(t ′ − r)α+1

b∫

t

W (t, ϕt ′) − W (s, ϕt ′) − W (t, ϕr ) + W (s, ϕr )

(s − t)2−α
dsdr

⎞
⎟⎠ .

Thus the right hand side of (11) is

− 1

Γ (α)Γ (1 − α)

⎧⎨
⎩

b∫

a

Wb−(t, ϕt )

(b − t)1−α(t − a)α
dt + α

b∫

a

t∫

a

Wb−(t, ϕt ) − Wb−(t, ϕr )

(b − t)1−α(t − r)α+1 drdt

+ (1 − α)

b∫

a

b∫

t

W (t, ϕt ) − W (s, ϕt )

(s − t)2−α(t − a)α
dsdt

+ α(1 − α)

b∫

a

t∫

a

b∫

t

W (t, ϕt ) − W (s, ϕt ) − W (t, ϕr ) + W (s, ϕr )

(s − t)2−α(t − r)α+1 dsdrdt

⎫⎬
⎭

=: I1 + I2 + I3 + I4 . (14)

The condition (W) implies

I1 ≤ κ‖W‖
b∫

a

(b − t)τ+α−1(t − a)−αdt

= κ‖W‖(b − a)τ . (15)

Similarly, we also have

I3 ≤ κ‖W‖
b∫

a

b∫

t

(s − t)τ+α−2(t − a)−αdsdt

≤ κ‖W‖(b − a)τ . (16)
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The assumptions (W) and (φ) also imply

|Wb−(t, ϕt ) − Wb−(t, ϕr )| ≤ κ‖W‖|b − t |τ |ϕt − ϕr |λ
≤ κ‖W‖‖ϕ‖λ

γ |b − t |τ |t − r |λγ .

This implies

I2 ≤ κ‖W‖‖ϕ‖λ
γ

b∫

a

t∫

a

(b − t)τ+α−1(t − r)λγ−α−1drdt

≤ κ‖W‖‖ϕ‖λ
γ (b − a)τ+λγ . (17)

Using

|W (t, ϕt ) − W (s, ϕt ) − W (t, ϕr ) + W (s, ϕr )| ≤ κ‖W‖‖ϕ‖λ
γ |t − s|τ |t − r |λγ ,

we can estimate I4 as follows.

I4 ≤ κ‖W‖‖ϕ‖λ
γ

b∫

a

t∫

a

b∫

t

|t − s|τ |t − r |λγ

(s − t)2−α(t − r)α+1 dsdrdt

≤ κ‖W‖‖ϕ‖λ
γ (b − a)τ+λγ . (18)

The inequalities (15)–(18) imply that for any α ∈ (1− τ, γ λ), the right hand side of
(11) is well-defined. The inequalities (15)–(18) also yield (13).

To show (12) is independent of α we suppose α′, α ∈ (1−τ, λγ ), α′ > α. Denote
β = α′ − α. Using Lemma 2, it is straightforward to see that

(−1)α
b∫

a

Dα,t
a+D1−α,t ′

b− Wb−(t, ϕt ′)|t ′=t dt

= (−1)α
b∫

a

I β,t
a+ Dβ,t

a+ Dα,t
a+D1−α,t ′

b− Wb−(t, ϕt ′)|t ′=t dt

= (−1)α+β

b∫

a

I β,t ′
b− Dα+β,t

a+ D1−α,t ′
b− Wb−(t, ϕt ′)|t ′=t dt

= (−1)α
′

b∫

a

Dα′,t
a+ I β,t ′

b− D1−α,t ′
b− Wb−(t, ϕt ′)|t ′=t dt

= (−1)α
′

b∫

a

Dα′,t
a+ D1−α′,t ′

b− Wb−(t, ϕt ′)|t ′=t dt .
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This proves the theorem.

Now we can improve the equality (13) as in the following theorem

Theorem 2 Let the assumptions (W)and (φ)be satisfied. Let a, b, c be real numbers
such that a ≤ c ≤ b. Then there is a constant κ depending only on τ, λ and α, but
independent W , ϕ and a, b, c such that

∣∣∣∣∣∣
b∫

a

W (dt, ϕt ) − W (b, ϕc) + W (a, ϕc)

∣∣∣∣∣∣ ≤ κ‖W‖τ,λ ;a,b‖ϕ‖λ
γ ;a,b(b − a)τ+λγ .

(19)

Proof Let a ≤ c < d ≤ b and let ϕ̃(t) = ϕ(c)χ[c,d)(t), where χ[c,d) is the indicator
function on [c, d). Then

W (t, ϕ̃(t ′)) =

⎧⎪⎨
⎪⎩

W (t, ϕ(c)) c ≤ t ′ < d

W (t, 0) elsewhere .

This means W (t, ϕ̃(t ′)) = W (t, ϕ(c))χ[c,d)(t ′). Hence, from (8) we have

b∫

a

W (dt, ϕ̃(t)) = (−1)α
b∫

a

D1−α,t
b− Wb−(t, ϕ(c))Dα,t ′

a+ χ[c,d)(t
′)|t ′=t dt

= (−1)α
b∫

a

D1−α,t
b− Wb−(t, ϕ(c))Dα,t

a+χ[c,d)(t)dt

= W (d, ϕ(c)) − W (c, ϕ(c)) .

Let c be any point in [a, b]. Denote W̃ (t, x) = W (t, x) − W (t, ϕc). Then W̃
satisfies (W). As in the Eq. (14), we have

b∫

a

W (dt, ϕt ) − W (b, ϕc) + W (a, ϕc) =
b∫

a

W̃ (dt, ϕt )

= Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4 .

where Ĩ2 = I2 and Ĩ4 = I4 are the same as I2 and I4 in the proof of Theorem 1. But
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Ĩ1 = − 1

Γ (α)Γ (1 − α)

b∫

a

W (t, ϕt ) − W (b, ϕt ) − W (t, ϕc) + W (b, ϕc)

(b − t)1−α(t − a)α
dt

Ĩ3 = − (1 − α)

Γ (α)Γ (1 − α)

b∫

a

b∫

t

W (t, ϕt ) − W (s, ϕt ) − W (t, ϕc) + W (s, ϕc)

(s − t)2−α(t − a)α
dsdt .

From the assumptions (W) and (φ) we see that

|W (t, ϕt ) − W (b, ϕt ) − W (t, ϕc) + W (b, ϕc)|
≤ κ‖W‖τ,λ ;a,b‖ϕ‖λ

γ ;a,b|b − t |τ |t − c|λγ

≤ κ‖W‖τ,λ ;a,b‖ϕ‖λ
γ ;a,b|b − t |τ |t − a|λγ .

This implies that
Ĩ1 ≤ κ‖W‖τ,λ ;a,b‖ϕ‖λ

γ ;a,b(b − a)τ+λγ . (20)

Similarly, we have

Ĩ3 ≤ κ‖W‖τ,λ ;a,b‖ϕ‖λ
γ ;a,b(b − a)τ+λγ . (21)

Combining these two inequalities (20) and (21) with the inequalities (17) and (18)
we have ∣∣∣∣∣∣

b∫

a

W̃ (dt, ϕt )

∣∣∣∣∣∣ ≤ κ‖W‖τ,λ ;a,b‖ϕ‖λ
γ ;a,b(b − a)τ+λγ ,

which yields (19).

Theorem 3 Let the assumption (W) be satisfied. Let ϕ : [a, b] → R
d satisfy

|ϕ(s) − ϕ(a)| ≤ L|s − a|� ∀s ∈ [a, b] and sup
a≤t<s≤b

|ϕ(s) − ϕ(t)|
(s − t)γ

≤ L

(22)
for some � ∈ (γ,∞) and for some constant L ∈ (0,∞). If τ +λγ > 1, then for any
β < 1 + λγ+τ−1

γ
� we have

∣∣∣∣∣∣
b∫

a

W (dt, ϕt ) − W (b, ϕa) + W (a, ϕa)

∣∣∣∣∣∣ ≤ C(b − a)β , (23)

here the constant C does not depend on b − a.

Proof As in the proof of Theorem 2we express
∫ b

a W (dt, ϕt )−W (b, ϕa)+W (a, ϕa)

as the sum of the terms Ĩ j , j = 1, 2, 3, 4 (we follow the notation there). First,
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we explain how to proceed with Ĩ4. We shall use C to denote a generic constant
independent of b − a. Denote

J := |W (t, ϕt ) − W (s, ϕt ) − W (t, ϕr ) + W (s, ϕr )|

First, we know that we have

J ≤ C |t − s|τ |t − r |λγ . (24)

On the other hand, we also have

J ≤ |W (t, ϕt ) − W (s, ϕt ) − W (t, ϕa) + W (s, ϕa)|
+|W (t, ϕr ) − W (s, ϕr ) − W (t, ϕa) + W (s, ϕa)|

≤ C |t − s|τ
[
|t − a|λ� + |r − a|λ�

]

≤ C |t − s|τ |t − a|λ� (25)

when a ≤ r < t < s ≤ b. Therefore, from (24) and (25) it follows that for any
β1 ≥ 0 and β2 ≥ 0 with β1 + β2 = 1, we have

J ≤ C |t − s|τ |t − r |β1λγ |t − a|β2λ�

If we choose α and β1 such that

τ + α > 1 , β1λγ − α > 0 (26)

then
Ĩ4 ≤ C(b − a)β1λγ+β2λ�+τ .

For any β < 1 + λγ+τ−1
γ

� we can choose α, β1, and β2 such that (26) is satisfied
and

Ĩ4 ≤ C(b − a)β .

The term Ĩ2 can be handled in a similar but easier way and a similar bound can be
obtained.

Now, let us consider Ĩ3. We have

|W (t, ϕt ) − W (s, ϕt ) − W (t, ϕa) + W (s, ϕa)| ≤ C |t − s|τ |t − a|λ� .

This easily yields
Ĩ3 ≤ C(b − a)τ+λ� .

A similar estimate holds true for Ĩ1. However, it is easy to verify τ + λ� > 1 +
λγ+τ−1

γ
� if � > γ . The theorem is proved.
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Next, we show that the nonlinear integral defined in Definition 1 coincides with
the limit of Riemann sums. For this purpose, we need some preliminary set up. For
every s, t in [a, b], we put μ(s, t) = W (t, ϕs) − W (s, ϕs). Let π = {a = t0 < t1 <

· · · < tn = b} be a partition of [a, b] with mesh size |π | = max1≤i≤n |ti − ti−1|.
One can consider the limit of the Riemann sums

lim|π |↓0

n∑
i=1

μ(ti−1, ti )

whenever it exists. A sufficient condition for convergence of the Riemann sums is
provided by following two results of [2], see also [1] for a simple exposition.

Lemma 3 (The sewing map) Let μ be a continuous function on [0, T ]2 with values
in a Banach space B and ε > 0. Suppose that μ satisfies

|μ(a, b) − μ(a, c) − μ(c, b)| ≤ K |b − a|1+ε ∀ 0 ≤ a ≤ c ≤ b ≤ T .

Then there exists a function Jμ(t) unique up to an additive constant such that

|Jμ(b)−Jμ(a)−μ(a, b)| ≤ K (1−2−ε)−1|b−a|1+ε ∀ 0 ≤ a ≤ b ≤ T . (27)

We adopt the notation J b
a μ = Jμ(b) − Jμ(a)

Lemma 4 (Abstract Riemann sum) Let π = {a = t0 < t1 < · · · < tm = b} be an
arbitrary partition of [a, b] with |π | = supi=0,...,m−1 |ti+1 − ti |. Define the Riemann
sum

Jπ =
m−1∑
i=0

μ(ti , ti+1)

then Jπ converges to J b
a μ as |π | ↓ 0 .

Because τ + λγ is strictly greater than 1, the estimate (19) together with the
previous two Lemmas implies

Proposition 2 Assume that (W) and (φ) hold with λγ + τ > 1. As the mesh size
|π | shrinks to 0, the Riemann sums

n∑
i=1

[
W (ti , ϕti−1) − W (ti−1, ϕti−1)

]

converges to
∫ b

a W (dt, ϕt ).

Remark 3 In [5], the authors define the nonlinear integral
∫

W (dt, ϕt ) via the sewing
Lemma 3. The previous proposition shows that the approach using fractional calculus
employed here produces an equivalent definition. Let us note that this is possible
because of the key estimate (19) and the uniqueness part of the sewing Lemma 3.



Nonlinear Young Integrals via Fractional Calculus 95

It is easy to see from here that

b∫

a

W (dt, ϕt ) =
c∫

a

W (dt, ϕt ) +
b∫

c

W (dt, ϕt ) ∀ a < c < b .

This together with (13) imply easily the following.

Proposition 3 Assume that (W) and (φ) hold with λγ + τ > 1. As a function

of t , the indefinite integral
{∫ t

a W (ds, ϕs) , t ≤ a ≤ b
}

is Hölder continuous of
exponent τ .

Further properties can be developed. For instance, we study the dependence of
the nonlinear Young integration

∫
W (ds, ϕs) with respect to the medium W and the

integrand ϕ.We state the following two propositions whose proofs are left for readers
(see, however, [5] for details).

Proposition 4 Let W1 and W2 be functions on R×R
d satisfying the condition (W).

Let ϕ be a function in Cγ (R;Rd) and assume that τ + λγ > 1. Then

|
b∫

a

W1(ds, ϕs) −
b∫

a

W2(ds, ϕs)| ≤ |W1(b, ϕa) − W1(a, ϕa) − W2(b, ϕa) + W2(a, ϕa)|

+ c(‖ϕ‖∞)[W1 − W2]β,τ,λ‖ϕ‖γ |b − a|τ+λγ .

Proposition 5 Let W be a function on R×R
d satisfying the condition (W). Let ϕ1

and ϕ2 be two functions in Cγ (R;Rd) and assume that τ + λγ > 1. Let θ ∈ (0, 1)
such that τ + θλγ > 1. Then for any u < v

|
v∫

u

W (ds, ϕ1
s ) −

v∫

u

W (ds, ϕ2
s )|

≤ C1[W ]τ,λ‖ϕ1 − ϕ2‖λ∞|v − u|τ
+ C2[W ]τ,λ‖ϕ1 − ϕ2‖λ(1−θ)∞ |v − u|τ+θλγ ,

where C1 is an absolute constant and C2 = 21−θC1(‖ϕ1‖λ
γ + ‖ϕ1‖λ

γ )θ .

4 Iterated Nonlinear Integral

From Remark 2 we see that if W (t, x) = ∑d
i=1 gi (t)xi and ϕi (t) = fi (t), then

∫ b
a W (dt, ϕt ) =

d∑
i=1

b∫

a

fi (t)dgi (t). We know that the multiple (iterated) integrals of
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the form
∫

a≤s1≤s2≤···≤sn≤b

ϕ(s1, s2, . . . , sn)dg(s1)dg(s2) · · · dg(sn)

are well-defined and have applications in expanding the solutions of differential
equations (see [3]). What is the extension of the above iterated integrals to the non-
linear integral? To simplify the presentation, we consider the case d = 1. General
dimensions can be considered in a similar way with more complex notations.

We introduce the following notation. Let

Δn,a,b := {(s1, . . . , sn) ; a ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ b}

be a simplex in R
n .

Definition 2 Let ϕ : Δn,a,b → R be a continuous function. For a fixed sn ∈
[a, b], we can consider ϕ(·, sn) as a function of n − 1 variables. Assume we can
define

∫
Δn−1,a,sn

ϕ(s1, . . . , sn−1, sn)W (ds1, ·) · · · W (dsn−1, ·), which is a function
of sn , denoted by φn−1(sn), then we define

∫

a≤s1≤···≤sn≤b

ϕ(s1, . . . , sn)W (ds1, ·) · · · W (dsn, ·) =
b∫

a

W (dsn, ϕn−1(sn)) . (28)

In the case W (t, x) = f (t)x , such iterated integrals have been studied in [3], where
an important case is when ϕ(s1, . . . , sn) = ρ(s1) for some function ρ of one variable.
This means that ϕ(s1, . . . , sn) depends only on the first variable. This case appears
in the remainder term when one expands the solution of a differential equation and
can be dealt with in the following way.

Let F1, F2, . . . , Fn be jointly Hölder continuous functions on [a, b]2. More pre-
cisely, for each i = 1, . . . , n, Fi satisfies

|Fi (s1, t1) − Fi (s2, t1) − Fi (s1, t2) + Fi (s2, t2)| (29)

≤ ‖Fi‖τ,λ;a,b|s1 − s2|τ |t1 − t2|λ , for all s1, s2, t1, t2 in [a, b].

We assume that τ + λ > 1.
Suppose that F is a function satisfying (29) with τ + λ > 1. The nonlinear

integral
∫ b

a F(ds, s) can be defined analogously to Definition 1. Moreover, for a
Hölder continuous function ρ of order λ, we set G(s, t) = ρ(t)F(s, t), it is easy to
see that
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|G(s1, t1) − G(s2, t1) − G(s1, t2) + G(t1, t2)|
≤ |ρ(t1) − ρ(t2)||F(s1, t1) − F(s2, t1)|

+ |ρ(t2)||F(s1, t1) − F(s2, t1) − F(s1, t2) + Fi (t1, t2)|
≤ (‖ρ‖τ‖ + ‖ρ‖∞)‖F‖τ,λ|s1 − s2|τ |t1 − t2|λ.

Hence, the integration
∫

ρ(s)F(ds, s) is well defined. In addition, it follows from
Theorem 2 that the map t �→ ∫ t

a ρ(s)F(ds, s) is Hölder continuous of order τ .
We have then easily

Proposition 6 Let ρ be a Hölder continuous function of order λ. Under the condition
(29) and τ > 1/2, the iterated integral

Ia,b(F1, . . . , Fn) =
∫

a≤s1≤···≤sn≤b

ρ(s1)F1(ds1, s1)F2(ds2, s2) · · · Fn(dsn, sn)

(30)
is well defined.

In the simplest case when ρ(s) = 1 and Fi (s, t) = f (s) for all i = 1, . . . , n, the
above integral becomes

∫

a≤s1≤···≤sn≤b

d f (s1) · · · d f (sn) = ( f (b) − f (a))n

n! .

Therefore, one would expect that

|Ia,b(F1, . . . , Fn)| ≤ κ
|b − a|γn

n! . (31)

This estimate turns out to be true for (30).

Theorem 4 Let F1, . . . , Fn satisfy (29) and ρ be Hölder continuous with exponent λ.

We assume that ρ(a) = 0. Denote β = λ + τ − 1

λ
and �n = βn−1 − 1

β − 1
+ βn−1(τ +

λ). Then, for any γn < �n, there is a constant Cn, independent of a and b (but may
depend on γn) such that

|Ia,b(F1, . . . , Fn)| ≤ Cn|b − a|γn . (32)
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Proof Denote

I (k)
a,s (F1, . . . , Fk) =

∫

a≤s1≤···≤sk≤s

ρ(s1)F1(ds1, s1)F2(ds2, s2) · · · Fk(dsk, sk).

Thus, we see by definition that

I (k+1)
a,s (F1, . . . , Fk+1) =

s∫

a

Fk+1(dr, I (k)
a,r (F1, . . . , Fk)). (33)

We prove this theorem by induction on n. When n = 1, the theorem follows straight-
forwardly from (19) with the choice c = a. Indeed, we have |I (1)

a,t | ≤ C |t − a|λ+τ

and |I (1)
a,t − I (1)

a,s | ≤ C |t − s|τ .
The passage from n to n + 1 follows from the application of (23)–(33) and this

concludes the proof of the theorem.

Remark 4 The estimate of Theorem 4 also holds true for the iterated nonlin-
ear Young integral I (n)

a,b(F1, . . . , Fn) = ∫
a≤s1≤···≤sk≤s F1(ds1, ρ(s1))F2(ds2, s2) · · ·

Fn(dsn, sn), where I (k)
a,b(F1, . . . , Fk) = ∫ b

a Fk(ds, I (k−1)
a,s (F1, . . . , Fk−1)), and

I (1)
a,b(F1) = ∫ b

a F1(ds, ρ(s)).
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A Weak Limit Theorem for Numerical
Approximation of Brownian Semi-stationary
Processes

Mark Podolskij and Nopporn Thamrongrat

Abstract In this paper we present a weak limit theorem for a numerical approxima-
tion of Brownian semi-stationary processes studied in [14]. In the original work of
[14] the authors propose to use Fourier transformation to embed a given one dimen-
sional (Lévy)Brownian semi-stationary process into a two-parameter stochastic field.
For the latter they use a simple iteration procedure and study the strong approxima-
tion error of the resulting numerical scheme given that the volatility process is fully
observed. In this work we present the corresponding weak limit theorem for the
setting, where the volatility/drift process needs to be numerically simulated. In par-
ticular, weak approximation errors for smooth test functions can be obtained from
our asymptotic theory.

Keywords Ambit fields · Brownian semi-stationary processes · Numerical
schemes · Weak limit theorems
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1 Introduction

Recently, the mathematical theory of ambit fields has been intensively studied in
the literature. Ambit fields is a class of spatio-temporal stochastic processes that has
been originally introduced by Barndorff-Nielsen and Schmiegel in a series of papers
[9–11] in the context of turbulencemodelling, but which foundmanifold applications
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in mathematical finance and biology among other sciences; see e.g. [4, 8]. In full
generality they are described via the formula

Xt (x) = μ+
∫

At (x)

g(t, s, x, ξ)σs(ξ)L(ds, dξ)+
∫

Dt (x)

q(t, s, x, ξ)as(ξ)dsdξ (1)

where t typically denotes timewhile x gives the position in space. Furthermore, At (x)

and Dt (x) are ambit sets, g and q are deterministic weight functions, σ represents
the volatility or intermittency field, a is a drift field and L denotes a Lévy basis. We
recall that a Lévy basis L = {L(B) : B ∈ S }, where S is a δ-ring of an arbitrary
non-empty set S such that there exists an increasing sequence of sets (Sn) ⊂ S with
∪n∈NSn = S, is an independently scattered random measure.

An important purely temporal subclass of ambit fields are the so called Lévy
(Brownian) semi-stationary processes, which are defined as

Xt = μ +
∫ t

−∞
g(t − s)σs L(ds) +

∫ t

−∞
q(t − s)asds, (2)

where now L is a two-sided one dimensional Lévy (Brownian) motion and the ambit
sets are given via At = Dt = (−∞, t). The notion of a semi-stationary process refers
to the fact that the process (Xt )t∈R is stationarywhenever (at , σt )t∈R is stationary and
independent of (Lt )t∈R. In the past years stochastic analysis, probabilistic properties
and statistical inference for Lévy semi-stationary processes have been studied in
numerous papers.We refer to [2, 3, 6, 7, 11, 12, 15, 17, 20, 25] for the mathematical
theory as well as to [5, 26] for a recent survey on theory of ambit fields and their
applications.

For practical applications in sciences numerical approximation of Lévy (Brown-
ian) semi-stationary processes, or, more generally, of ambit fields, is an important
issue. We remark that due to a moving average structure of a Lévy semi-stationary
process (cf. (2)) there exists no simple iterative Euler type approximation scheme. For
this reason the authors of [13, 14] have proposed two different embedding strategies
to come up with a numerical simulation. The first idea is based on the embedding
of a Lévy semi-stationary process into a certain two-parameter stochastic partial
differential equation. The second one is based upon a Fourier method, which again
interprets a given Lévy semi-stationary process as a realization of a two-parameter
stochastic field. We refer to the PhD thesis of Eyjolfsson [18] for a detailed analysis
of both methods and their applications to modeling energy markets. We would also
like to mention a very recent work [16], which investigates numerical simulations of
spatio-temporal ambit fields.

The aim of this paper is to study the weak limit theory of the numerical scheme
associated with the Fourier method proposed in [14, 18]. In the original work [14]
the authors have discussed the strong approximation error (in the L2 sense) of the
numerical scheme for Lévy semi-stationary processes, where the volatility process
(σt )t∈R is assumed to be observed.We complement their study by analyzing theweak
limit of the error process in the framework of Brownian semi-stationary processes,
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where the drift and the volatility processes need to be numerically simulated. This
obviously gives a more precise assessment of the numerical error associated with the
Fourier method.

The paper is organised as follows. In Sect. 2wedescribe the Fourier approximation
scheme forBrownian semi-stationaryprocesses andpresent themain results on strong
approximation error derived in [14, 18]. Section3 is devoted to a weak limit theorem
associated with a slight modification of the Fourier method.

2 Basic Assumptions and Fourier Approximation Scheme

We start with a complete filtered probability space (Ω,F , (F )t∈R, P), on which all
processes are defined. We consider a Brownian semi-stationary process of the form

Xt = μ +
∫ t

−∞
g(t − s)σs W (ds) +

∫ t

−∞
q(t − s)asds, (3)

where g and q are deterministic kernels, (at )t∈R and (σt )t∈R are adapted càdlàg
processes, and W is a two sided Brownian motion. To guarantee the finiteness of the
first integral appearing in (3), we assume throughout the paper that

∫ t

−∞
g2(t − s)σ 2

s ds < ∞ almost surely (4)

for all t ∈ R. When (σt )t∈R is a square integrable stationary process, the above
condition holds if g ∈ L2(R≥0). The presence of the drift process (at )t∈R will be
essentially ignored in this section.

Now, we describe the Fourier approximation method introduced in [14, 18]
applied to the framework of Brownian semi-stationary processes. We start with the
following assumptions on kernels involved in the description (3):

Assumption (A):

(i) The kernel functions g and q have bounded support contained in [0, τ ] for some
τ > 0.

(ii) g, q ∈ C(R≥0).

In some cases these conditions are rather restrictive. We will give remarks on them
below. For any given λ > 0, we define

h(x) := g(|x |) and hλ(x) := h(x) exp(λ|x |). (5)
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Notice that g = h on [0, τ ]. We introduce the Fourier transform of hλ via

ĥλ(y) :=
∫
R

hλ(x) exp(−i xy)dx .

Furthermore, if we assume that ĥλ ∈ L1(R), the inverse Fourier transform exists and
we obtain the identity

h(x) = exp(−λ|x |)
2π

∫
R

ĥλ(y) exp(i xy)dy.

Since the Fourier transform maps L1(R) functions into the space of continuous
functions, we require that h ∈ C(R). This fact explains the Assumption (A)(ii) for
the kernel function g. Since h is an even function, for a given number N ∈ N, we
deduce an approximation of h via

h(x) ≈ hN (x) := exp(−λ|x |)
(

b0
2

+
N∑

k=1

bk cos(
kπx

τ
)

)
(6)

with

bk = ĥλ(kπ/τ)

τ
. (7)

Obviously, the above approximation is an L2-projection onto the linear subspace
generated by orthogonal functions {cos(kπx/τ), sin(kπx/τ)}N

k=0, hence we deal
with a classical Fourier expansion of the function h (recall that the function h is even
by definition, thus the sinus terms do not appear at (6)). Now, the basic idea of the
numerical approximation method proposed in [14, 18] is based upon the following
relationship:

∫ t

u
g(t − s)σs W (ds) ≈

∫ t

u
hN (t − s)σs W (ds)

=
∫ t

u
exp(−λ(t − s))

{
b0
2

+
N∑

k=1

bk cos(
kπ(t − s)

τ
)

}
σs W (ds)

= b0
2

X̂λ,u(t, 0) + Re
N∑

k=1

bk X̂λ,u(t,
kπ

τ
), (8)

where the complex valued stochastic field X̂λ,u(t, y) is defined via

X̂λ,u(t, y) :=
∫ t

u
exp{(−λ + iy)(t − s)}σs W (ds) (9)
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and u ∈ [t −τ, t]. In a second step, for a δ > 0 small, we observe the approximation

X̂λ,u(t + δ, y) = exp{(−λ + iy)δ}
(

X̂λ,u(t, y) +
∫ t+δ

t
exp{(−λ + iy)(t − s)}σs W (ds)

)

≈ exp{(−λ + iy)δ} (
X̂λ,u(t, y) + σt (Wt+δ − Wt )

)
. (10)

Hence, we obtain a simple iterative scheme for simulating the stochastic field
X̂λ,u(t, y) in the variable t . Assume for themoment that the drift process a is zero and
we wish to simulate the trajectory of Xt0 , . . . , XtM given the information available
at time t0. Then, the numerical simulation procedure is as follows:

(a) Simulate the independent increments Wti − Wti−1 ∼ N (0, ti − ti−1) for i =
1, . . . , M .

(b) For each i = 1, . . . , M and k = 0, . . . , N , simulate X̂λ,u(ti , kπ/τ) from
X̂λ,u(ti−1, kπ/τ), Wti − Wti−1 and σti−1 by using (10).

(c) Simulate Xti applying steps (a), (b) and (8) (with u = t0).

Let us explain some properties of the proposed numerical scheme. First of all, there
are two approximation errors, where the first one (N scale) is coming from the Fourier
transformation at (6) and the second one (M scale) is coming from the discretization
error obtained at (10).

It is important to understand the meaning of knowing the information about the
involved processes up to time t0. When the stochastic model for the process (σt )t∈R
is uncoupled with (Xt )t∈R, then we may use u = t − τ at (8). Indeed, in typical
applications such as turbulence andfinance this is the case: (σt )t∈R is usuallymodeled
via a jump diffusion process driven by aLévy process, whichmight be correlatedwith
the Brownian motion W . However, when the process (Xt )t∈R is itself of a diffusion
type, i.e.

Xt = μ +
∫ t

t−τ

g(t − s)σ (Xs)W (ds) +
∫ t

t−τ

q(t − s)a(Xs)ds

it is in general impossible to simulate a trajectory of (Xt )t∈R, since for each value t
the knowledge of the path (Xu)u∈(t−τ,t) is required to compute Xt . But, in case we
do know the historical path, say, (Xu)u∈[−τ,0], the simulation of values Xt , t ≥ 0,
becomes possible.

The main advantage of the numerical scheme described above is that it separates
the simulation of the stochastic ingredients (σ and W ) and the approximation of
the deterministic kernel g (or h). In other words, the stochastic field X̂λ,u(t, y) is
simulated via a simple recursive scheme without using the knowledge of g, while
the kernel g is approximated via the Fourier transform at (6). This is in contrast to a
straightforward discretization scheme

∫ t j

t0
g(t − s)σs W (ds) ≈

j−1∑
i=1

g(t j − ti )σti (Wti+1 − Wti ).
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This numerical property is useful when considering a whole family of kernel func-
tions (gθ )θ∈
, since for any resulting model Xt (θ) only one realization of the sto-
chastic field X̂λ,u(t, y) needs to be simulated. This can be obviously useful for the
simulation of parametric Brownian semi-stationary processes.

We may now assess the strong approximation error of the proposed numerical
scheme. We start with the analysis of the error associated with the approximation of
the deterministic kernel g by the function hN . We assume for the moment that the
volatility process (σt )t∈R is square integrable with bounded second moment. Then
a straightforward computation (see e.g. [14, Eq. (4.5)]) implies that

E

[( ∫ t

t0
{g(t − s) − hN (t − s)}σs W (ds)

)2] ≤ C
1 − exp{−2λ(t − t0)}

λ

⎛
⎝ ∞∑

k=N+1

|bk |
⎞
⎠
2

,

(11)

where C is a positive constant and the Fourier coefficients bk have been defined
at (7). We remark that (1 − exp{−2λ(t − t0)})/λ → 2(t − t0) as λ → 0, while
(1 − exp{−2λ(t − t0)})/λ ∼ λ−1 as λ → ∞. Thus, it is preferable to choose the
parameter λ > 0 large.

Remark 1 A standard model for the kernel function g in the context of turbulence
is given via

g(x) = xα exp(−λ̄x)

with λ̄ > 0 and α > −1/2. Obviously, this function has unbounded support and for
the values α ∈ (−1/2, 0) it is also discontinuous at 0, hence it violates the statement
of the Assumption (A). However, one can easily construct an approximating function
gT
ε , which coincides with g on the interval [ε, T ] and satisfies the Assumption (A).

Assuming again the boundedness of the second moment of the process (σt )t∈R, the
approximation error is controlled via

E

[( ∫ t

−∞
{g(t − s) − gT

ε (t − s)}σs W (ds)
)2] ≤ C‖g − gT

ε ‖2L2((0,ε)∪(T,∞))

Such error can be made arbitrary small by choosing ε small and T large. Clearly,
this is a rather general approach, which is not particularly related to a given class
of kernel functions g. In a second step one would apply the Fourier approxima-
tion method described above to the function gT

ε . At his stage it is important to note
that the parameter λ > 0 introduced at (5) is naturally restricted through the con-
dition λ < λ̄; otherwise the kernel hλ would have an explosive behaviour at ∞.
Thus, the approximation error discussed at (11) cannot be made arbitrarily small
in λ. �

Remark 2 The Fourier coefficients bk can be further approximated under stronger
conditions on the function h, which helps to obtain an explicit bound at (11). More
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specifically, when h ∈ C2n(R) and h(2 j−1)
λ (τ ) = 0 for all j = 1, . . . , n, then it holds

that
|bk | ≤ Ck−2n .

This follows by a repeated application of integration by parts formula (see [14,
Proposition 4.1] for a detailed exposition). In fact, the original work [14] defines
another type of smooth interpolation functions h, rather than themere identity h(x) =
g(|x |), to achieve that the relationship h(2 j−1)

λ (τ ) = 0 holds for all j = 1, . . . , n and
some n ∈ N. �

Now, let us turn our attention to the discretization error introduced at (10).We assume
that t0 < · · · < tM is an equidistant grid with ti − ti−1 = Δt . According to (10) the
random variable

η j (y) :=
j∑

i=1

exp{(−λ + iy)( j + 1 − i)Δt}σti−1(Wti − Wti−1) (12)

is an approximation of X̂λ,t0(t j , y) for any y ∈ R whenever the drift process a is
assumed to be absent. When (σt )t∈R is a weak sense stationary process, a straight-
forward computation proves that

E[|X̂λ,t0(t j , y) − η j (y)|2] ≤ C(t j − t0)
(
(λ2 + y2)(Δt)2 + E[|σt1 − σt0 |2]

)
. (13)

We refer to [14, Lemma 4.2] for a detailed proof.

Remark 3 Assume that the process (σt )t∈R is a continuous stationary Itô semimartin-
gale, i.e.

dσt = ãtdt + σ̃tdBt ,

where B is a Brownian motion and (̃at )t∈R, (̃σt )t∈R are stochastic processes with
bounded second moment. Then the Itô isometry implies that

E[|σt1 − σt0 |2] ≤ CΔt.

Hence, in this setting Δt becomes the dominating term in the approximation error
(13). �

Combining the estimates at (11) and (13), we obtain the strong approximation error
of the proposed Fourier method, which is the main result of [14] (see Propositions
4.1 and 4.3 therein).

Proposition 1 Let t0 < · · · < tM be an equidistant grid with ti −ti−1 = Δt . Assume
that condition (A) holds and (σt )t∈R is a weak sense stationary process. Then the L2

approximation error associated with the Fourier type numerical scheme is given via
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E

[∣∣∣
∫ t j

t0
g(t j − s)σs W (ds) −

(b0
2

η j (0) +
N∑

k=1

bkη j (
kπ

τ
)
)∣∣∣2

]
(14)

≤ C

(
1 − exp{−2λ(t − t0)}

λ

( ∞∑
k=N+1

|bk |
)2

+ (t j − t0)

{
λ2

( |b0|
2

+
N∑

k=1

|bk |
)2

(Δt)2 + (
π

τ
)2

( N∑
k=1

k|bk |
)2

(Δt)2

+
( |b0|

2
+

N∑
k=1

|bk |
)2

E[|σt1 − σt0 |2]
})

for a positive constant C.

3 A Weak Limit Theorem for the Fourier
Approximation Scheme

As we mentioned earlier, the Fourier approximation scheme investigated in [14, 18]
basically ignored the need of simulating the volatility process (σt )t∈R in practical
applications (the same holds for the drift process (at )t∈R). As in the previous section
we fix a time t0 and assume the knowledge of all processes involved up to that
time. Here we propose a numerical scheme for simulating the path (Xt )t∈[t0,T ] for
a given terminal time T > t0, which is a slightly modified version of the original
Fourier approach. We recall the imposed condition (A), in particular, the weight
functions g and q are assumed to have bounded support contained in [0, τ ]. First
of all, we assume that we have càdlàg estimators (aM

t , σ M
t )t∈[t0,T ] of the stochastic

process (at , σt )t∈[t0,T ] and the convergence rate νM → ∞ as M → ∞ such that the
following functional stable convergence holds:

νM

(
aM − a, σ M − σ

)
dst−→ U = (U 1, U 2) on D2([t0, T ]), (15)

where the convergence is on the space of bivariate càdlàg functions defined on [t0, T ]
equipped with the Skorohod topology D2([t0, T ]). Let us briefly recall the notion of
stable convergence, which is originally due to Rényi [27]. We say that a sequence of
random variables Y n with values in a Polish space (E,E ) converges stably in law
to Y , where Y is defined on an extension (Ω ′,F ′, P

′) of the original probability
(Ω,F , P) if and only if

lim
n→∞ E[ f (Y n)Z ] = E

′[ f (Y )Z ]
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for any bounded and continuous function f and any boundedF -measurable random

variable Z . In this case we write (Y n dst−→ Y ). In the following we will deal with the
space of càdlàg processes equipped with the Skorohod topology or with the space
of continuous processes equipped with the uniform topology. We refer to [1, 23] or
[27] for a detailed study of stable convergence. Note that stable convergence is a
stronger mode of convergence than weak convergence, but it is weaker than uniform
convergence in probability.

We remark that the estimators (aM
t )t∈[t0,T ] and (σ M

t )t∈[t0,T ] might have a different
effective convergence rate. In this case we will have either U1 ≡ 0 or U2 ≡ 0.

Now, we basically follow the Fourier type approach, which refers to (5) and the
definition of the function ĥλ, described in the previous section, but we replace the
Fourier transform approximation proposed at (6) by a Riemann sum approximation.
More specifically, we introduce the approximation

h(x) = exp(−λ|x |)
2π

∫
R

ĥλ(y) exp(i xy)dy

≈ h̃N (x) := exp(−λ|x |)
π N

cN∑
k=0

ĥλ

(
k

N

)
cos

(
kx

N

)
, (16)

where cN is a sequence of numbers in N satisfying cN /N → ∞ as N → ∞. In
the following we will also assume that the sequence cN additionally satisfies the
condition

N
∫ ∞

cN /N
|̂hλ(y)|dy → 0 as N → ∞. (17)

Clearly, such a sequence exists, since ĥλ ∈ L1(R).When introducing the approxima-
tion at (16), we obviously obtain two types of error: TheRiemann sum approximation
error and tail approximation error. Condition (17) guarantees that the Riemann sum
approximation error will dominate.

Remark 4 Under some stronger conditions the tail integral at (17) can be bounded
from above explicitly. Assume that h ∈ C2([−τ, τ ]) such that h′(τ ) = 0 (cf. Remark
2). Then a repeated application of integration by parts formula implies the identity

ĥλ(y) =
∫
R

hλ(x) cos(yx)dx = − 1

y2

∫ τ

−τ

h′′
λ(x) cos(yx)dx

for any y > 0. Thus, for any u > 0, we deduce the inequality

∫ ∞

u
|̂hλ(y)|dy ≤ C‖h′′‖L1

∫ ∞

u
y−2dy ≤ C‖h′′‖L1u−1.

Hence, condition (17) holds whenever N 2/cN → 0 as N → ∞. �
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Remark 5 We remark that the Fourier transform used at (6) comes from the L2

theory. Thus, in contrast to the L2-distance ‖h − hN ‖L2 , the limiting behaviour of a
standardized version of h(x)−hN (x) is difficult to study pointwise. This is precisely
the reason why we use the Riemann sum approximation instead, for which we will
show the convergence of N (h(x) − h̃N (x)).

If one can freely choose the simulation rates N and M , the Fourier transform of
(6) is numerically more preferable. According to the estimate (11) and the upper
bound for the Fourier coefficient of Remark 2 applied for n = 1, we readily deduce
the rate N−1 for the L2-error approximation connected to (6). On the other hand, the
effective sample size of the Riemann approximation at (16) is cN . In the setting of
the previous remark the overall Riemann approximation error is max(N−1, N/cN ).
Recalling that cN /N → ∞, the obtained rate is definitely slower than the one
associated with Fourier approximation proposed at (6).

Nevertheless, as our aim is to precisely determine the asymptotics associated with
the N scale, we will discuss the Riemann approximation approach in the sequel. A
statement about the Fourier transform (6) will be presented in Remark 8. �

Now, we essentially proceed as in the steps (8)–(10). First of all, it holds that

∫ t

u
g(t − s)σs W (ds) ≈

∫ t

u
h̃N (t − s)σs W (ds)

=
∫ t

u
exp(−λ(t − s))

{ cN∑
k=0

b̃k cos(
k(t − s)

N
)

}
σs W (ds)

= Re
cN∑

k=0

b̃k X̂λ,u(t,
k

N
), (18)

where the complex valued stochastic field X̂λ,u(t, y) is defined at (9) and b̃k =
ĥλ(k/N )/(π N ). In a second step, for δ > 0, we obtain the approximation

X̂λ,u(t + δ, y) = exp{(−λ + iy)δ}
(

X̂λ,u(t, y) +
∫ t+δ

t
exp{(−λ + iy)(t − s)}σs W (ds)

)

≈ exp{(−λ + iy)δ}
(

X̂λ,u(t, y) +
∫ t+δ

t
exp{(−λ + iy)(t − s)}σ M

s W (ds)

)
.

(19)

When the estimator σ M is assumed to be constant on intervals [si−1, si ), i =
1, . . . , M , the last integral at (19) can be easily simulated (cf. (10)). We remark
that this approximation procedure slightly differs from (10) as now we leave the
exponential term unchanged.
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In summary, given that the information up to time t0 is available, we arrive at the
simulated value

X N ,M
t :=

∫ t

t0
h̃N (t − s)σ M

s W (ds) +
∫ t

t0
q(t − s)aM

s ds (20)

of the random variable

X0
t =

∫ t

t0
g(t − s)σs W (ds) +

∫ t

t0
q(t − s)asds. (21)

Note that the drift part of the Brownian semi-stationary process X is estimated in a
direct manner, although other methods similar to the treatment of the Brownian part
are possible. Now, we wish to study the asymptotic theory for the approximation
error X N ,M

t − X0
t . Our first result analyzes the limiting behaviour of the function

N (h(x) − h̃N (x)).

Lemma 1 Define the function ψN (x) := N (h(x) − h̃N (x)). Let us assume that the
condition

ŷhλ(y) ∈ L1(R), ̂y2hλ(y) ∈ L1(R) (22)

holds. Then, under Assumption (A), (17) and (22), it holds that

ψN (x) → ψ(x) = − ĥλ(0)

2π
exp(−λ|x |) as N → ∞ (23)

for any x ∈ R. Furthermore, it holds that

sup
N∈N, x∈[0,T ]

|ψN (x)| ≤ C

for any T > 0.

Proof First, we recall a well known result from Fourier analysis (see e.g.
[19, Theorem 8.22]): The condition (22) implies that

ĥ′
λ ∈ L1(R), ĥ′′

λ ∈ L1(R). (24)

Now, observe the decomposition

ψN (x) = N exp(−λ|x |)
π

cN∑
k=0

∫ (k+1)/N

k/N

(
κx (y) − κx (

k

N
)

)
dy

+ N exp(−λ|x |)
π

∫ ∞

(cN +1)/N
κx (y)dy

= N exp(−λ|x |)
π

cN∑
k=0

∫ (k+1)/N

k/N

(
κx (y) − κx (

k

N
)

)
dy + o(1),
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where κx (y) = ĥλ(y) cos(yx) and the approximation follows by the inequality
|κx (y)| ≤ |̂hλ(y)| and condition (17). Let us denote by κ ′

x (y) the derivative of
κx (y) with respect to y. Since κ ′

x (·), κ ′′
x (·) ∈ L1(R≥0) because of (24), we deduce

that

ψN (x) = N exp(−λ|x |)
π

cN∑
k=0

∫ (k+1)/N

k/N
κ ′

x (
k

N
)

(
y − k

N

)
dy + o(1)

= exp(−λ|x |)
2π N

cN∑
k=0

κ ′
x (

k

N
) + o(1)

→ exp(−λ|x |)
2π

∫ ∞

0
κ ′

x (y)dy as N → ∞.

But, since ĥλ vanishes at infinity, we readily obtain that

∫ ∞

0
κ ′

x (y)dy = −ĥλ(0).

In order to prove the second assertion of the lemma, we observe the inequality

|ψN (x)| ≤ exp(−λ|x |)
π

cN∑
k=0

∫ (k+1)/N

k/N
|κ ′

x (ζk,N (y))|dy + N
∫ ∞

cN /N
|̂hλ(y)|dy,

where ζk,N (y) is a certain value with ζk,N (y) ∈ (k/N , y). Clearly, the second term
in the above approximation is bounded in N , since it converges to 0. On the other
hand, we have that |κ ′

x (y)| ≤ |x ||̂hλ(y)| + |̂h′
λ(y)|, and since ĥλ, ĥ′

λ ∈ L1(R≥0), we
readily deduce that

sup
N∈N, x∈[0,T ]

|ψN (x)| ≤ C.

This completes the proof of the lemma. �

At this stagewe need a further condition on the kernel function g to prove tightness
later.

Assumption (B):

(i) The kernel function g has the form

g(x) = xα f (x)

for some α ≥ 0 and function f satisfying f (0) �= 0.
(ii) f ∈ C1(R≥0) has bounded support contained in [0, τ ].
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Notice that the assumptionα ≥ 0 is in accordancewith the condition (A)(ii).Assump-
tion (B) implies the following approximation result:

∫ 1

0
|g(x + δ) − g(x)|4dx ≤

{
Cδ4 α = 0
Cδmin(4,4α+1) α > 0

(25)

for δ ∈ [0, T ]. The case α = 0 is trivial, while the other one follows along the lines
of the proof of [20, Lemma 4.1]. As a matter of fact, we also require a good estimate
of the left side of (25) when the kernel g is replaced by the function ψN defined in
Lemma 1. In the following we will assume that

sup
N∈N

∫ 1

0
|ψN (x + δ) − ψN (x)|4dx ≤ Cδ1+ε (26)

for some ε > 0 and δ ∈ [0, T ].
Remark 6 Unfortunately, we have not been able to show the statement of (26) under
the mere assumption of, say, condition (B). Obviously, as in the case of function g,
condition (26) would hold if

ψN (x) = xα fN (x),

where fN ∈ C1(R≥0) with uniformly bounded derivative in N ∈ N and x in a
compact interval. We can prove condition (26) explicitly when the function g is
differentiable. Assume that yĥλ(y), yĥ′

λ(y) ∈ L1(R≥0) and cN is chosen in such a
way that the condition

N
∫ ∞

cN /N
|yĥλ(y)|dy → 0 as N → ∞

is satisfied. As in Lemma 1 we conclude that (|∂x∂yκx (y)| ≤ (|̂hλ(y)|+|yxĥλ(y)|+
|yĥ′

λ(y)|) and, as in the proof of Lemma 1, we deduce that

sup
x∈[0,T ]

|ψ ′
N (x)| ≤ C

(
N

∫ ∞

cN /N
|yĥλ(y)|dy + N

∫ ∞

cN /N
|̂hλ(y)|dy

+
cN∑

k=0

∫ (k+1)/N

k/N
|∂yκx (ζk,N (y))|dy +

cN∑
k=0

∫ (k+1)/N

k/N
|∂x∂yκx (̃ζk,N (y))|dy

)

for certain values ζk,N (y), ζ̃k,N (y) in the interval (k/N , y). Then, due to our inte-
grability conditions, we obtain

sup
N∈N, x∈[0,T ]

|ψ ′
N (x)| < ∞.
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Moreover, condition (26) is trivially satisfied due to mean value theorem. However,
showing (26) under Assumption (B) seems to be a much harder problem for α ∈
(0, 1). �

The next result is the main theorem of our paper.

Theorem 1 Assume that conditions (A), (B), (17), (22) and (26) hold, and the
processes (σt )t∈[t0,T ] and (σ M

t )t∈[t0,T ] has finite fourth moment with supt∈[t0,T ] E[σ 4
t ]

< ∞ and supt∈[t0,T ] supM∈N E[(σ M
t )4] < ∞. We also assume that the process

U M
t = νM (σ M

t − σt ) satisfies

sup
t∈[t0,T ]

sup
M∈N

E[(U M
t )4] < ∞. (27)

Then we obtain the decomposition

X N ,M
t − X0

t = AN ,M
t + B M

t

such that

N AN ,M u.c.p.=⇒ A = ĥλ(0)

2π

∫ ·

t0
exp(−λ(· − s))σs W (ds) as N , M → ∞, (28)

where ucp convergence means that supt∈[t0,T ] |AN
t − At | P−→ 0, and

νM B M dst−→ B =
∫ ·

t0
g(· − s)U 2

s W (ds) +
∫ ·

t0
q(· − s)U 1

s ds as M → ∞, (29)

where the stable convergence holds on the space C([t0, T ]) equipped with the uniform
topology.

Proof We start with the decomposition X N ,M
t − X0

t = AN ,M + B M
t , where

AN ,M
t =

∫ t

t0
{̃hN (t − s) − g(t − s)}σ M

s W (ds),

B M
t =

∫ t

t0
g(t − s){σ M

s − σs}W (ds) +
∫ t

t0
q(t − s){aM

s − as}ds.

Webegin by proving the stable convergence in (29). Let us first recall a classical result
about weak convergence of semimartingales (see [23, Theorem VI.6.22] or [24]):

Let (Y n
s )s∈[t0,T ] be a sequence of càdlàg processes such that Y n dst−→ Y on D([t0, T ])

equipped with the Skorohod topology. Then we obtain the weak convergence

∫ ·

t0
Y n

s W (ds) =⇒
∫ ·

t0
Ys W (ds) on C([t0, T ])
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equipped with the uniform topology. This theorem is an easy version of the general
result, since the integratorW does not depend onn and hence automatically fulfills the
P-UTproperty. The stable nature of the aforementionedweak convergence follows by
joint convergence (

∫ ·
0 Y n

s W (ds), Y n, W ) =⇒ (
∫ ·
0 Ys W (ds), Y, W ) (cf. [24]). Hence,

we deduce that
∫ ·

0
Y n

s W (ds)
dst−→

∫ ·

0
Ys W (ds) on C([t0, T ]) (30)

equipped with the uniform topology. It is important to note that this result can not
be directly applied to the process B M

t , since this process is not a semimartingale
in general. Thus, we will prove the stable convergence (29) by showing the stable
convergence of finite dimensional distributions and tightness.

We fix u1, . . . , uk ∈ [t0, T ]. Due to the condition (15), the finite dimensional
version of (30) and continuousmapping theorem for stable convergence,we conclude
the joint stable convergence

({
νM

∫ u j

t0
g(u j − s){σ M

s − σs}W (ds)
}

j=1,...,k
, νM

∫ ·

t0
q(· − s){aM

s − as}ds

)

dst−→
({ ∫ u j

t0
g(u j − s)U 2

s W (ds)
}

j=1,...,k
,

∫ ·

t0
q(· − s)U 1

s ds

)
(31)

as M → ∞. Here we remark that the stable convergence for the second compo-
nent indeed holds, since the mapping F : C([t0, τ ]) × D([t0, T ]) → C([t0, T ]),
F(q, a) = ∫ ·

t0
q(· − s)asds is continuous. Hence, we are left with proving tightness

for the first component of the process B M
t . We fix u, t ∈ [t0, T ] with t > u and

observe the decomposition

νM

(∫ t

t0
g(t − s){σ M

s − σs}W (ds) −
∫ u

t0
g(u − s){σ M

s − σs}W (ds)

)

= νM

(∫ t

u
g(t − s){σ M

s − σs}W (ds)

+
∫ u

t0
{g(t − s) − g(u − s)}{σ M

s − σs}W (ds)

)
:= R(1)

M (t, u) + R(2)
M (t, u).

Using Burkholder and Cauchy-Schwarz inequalities and (27), we have

E[|R(1)
M (t, u)|4] ≤ C(t − u)

∫ t

u
|g(t − s)|4ds.

Thus, we conclude that

E[|R(1)
M (t, u)|4] ≤ C(t − u)2. (32)



116 M. Podolskij and N. Thamrongrat

Now, using the same methods we conclude that

E[|R(2)
M (t, u)|4] ≤ C

∫ u

t0
|g(t − s) − g(u − s)|4ds ≤ C(t − u)min(4,4α+1), (33)

where we used the inequality (25). Thus, applying (32), (33) and the Kolmogorov’s
tightness criteria, we deduce the tightness of the first component of the process B M

t .
This completes the proof of (29).

Now, we show the pointwise convergence at (28). Recalling the notation from
(23), we need to show that

∫ t

t0
{ψN (t − s) − ψ(t − s)}σ M

s W (ds)
P−→ 0 as N , M → ∞

for a fixed t . The Itô isometry immediately implies that

sup
M∈N

E

[∣∣∣
∫ t

t0
{ψN (t − s) − ψ(t − s)}σ M

s W (ds)
∣∣∣2

]
≤ C

∫ t

t0
{ψN (t − s) − ψ(t − s)}2ds

→ 0 as N → ∞,

which follows by Lemma 1 and the dominated convergence theorem. Hence, we
obtain pointwise convergence at (28). Since the limiting process A is continuous, we
now need to show that

sup
N ,M∈N

E[N 4(AN ,M
t − AN ,M

u )4] ≤ C(t − u)1+ε

for t0 < u < t , to conclude ucp convergence from pointwise convergence in proba-
bility. Applying the same methods as in (32), (33) we deduce the inequality

sup
N ,M∈N

E[N 4(AN ,M
t − AN ,M

u )4]

≤ C

(
(t − u)

∫ t

u
|ψN (t − s)|4ds +

∫ u

t0
|ψN (t − s) − ψN (u − s)|4ds

)

≤ C(t − u)1+ε,

which follows by Lemma 1 and condition (26). This completes the proof of
Theorem 1. �

Remark 7 We remark that the stronger conditions (B) and (26) are not required to
prove the finite dimensional version of convergence (28) and (29). �

Theorem1 immediately applies to theweak approximation error analysis.Assume for
simplicity that M = M(N ) is chosen such that νM/N → 1, so that the Riemann sum
approximation error and the simulation error from (15) are balanced. We consider a
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bounded test function ϕ ∈ C1(R) with bounded derivative. The mean value theorem
implies the identity

ϕ(X N ,M
t ) − ϕ(X0

t ) = ϕ′(ξN ,M )(X N ,M
t − X0

t ),

where ξN ,M is a randomvalue between X0
t and X N ,M

t with ξN ,M
P−→ X0

t as N → ∞.

By properties of stable convergence we deduce that (ξN ,M , N (X N ,M
t − X0

t ))
dst−→

(X0
t , At + Bt ). Hence, given the existence of the involved expectations, we conclude

that
E[ϕ(X N ,M

t )] − E[ϕ(X0
t )] = N−1e′[ϕ′(X0

t )(At + Bt )] + o(N−1). (34)

(Recall that the limit At + Bt is defined on the extended probability space
(Ω ′,F ′, P

′)).

Remark 8 The results of Theorem 1 may also apply to the original Fourier approxi-
mated method proposed in [14, 18]. Let us keep the notation of this section and still
denote the approximated value of X0

t by X N ,M
t . Recalling the result of (11) (see also

Remark 2) and assuming that M = M(N ) is chosen such that
∑∞

k=N+1 |bk | � νM ,
we readily deduce that

νM (X N ,M
t − X0

t )
dst−→ Bt . �

Remark 9 The results of Theorem 1 might transfer to the case of Lévy semi-
stationary processes

Xt = μ +
∫ t

−∞
g(t − s)σs L(ds) +

∫ t

−∞
q(t − s)asds

under suitable moment assumptions on the driving Lévy motion L (cf. [14]). How-
ever, when L is e.g. a β-stable process with β ∈ (0, 2), it seems to be much harder
to access the weak limit of the approximation error. �

In the followingwewill present some examples of convergence at (15) to highlight
the most prominent results. For simplicity we assume that a ≡ 0 in all cases.

Example 1 Let us consider a continuous diffusion model for the volatility process
σ , i.e.

dσt = ã(σt )dt + ṽ(σt )dBt , σt0 = x0,

where B is aBrownianmotionpossibly correlatedwithW .Weconsider an equidistant
partition t0 = s0 < s1 < · · · < sM = T of the interval [t0, T ] and define the
continuous Euler approximation of σt via

σ M
t = σ M

sk
+ ã(σ M

sk
)(t − sk) + ṽ(σ M

sk
)(Bt − Bsk ), t ∈ [sk, sk+1].
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When the functions ã and ṽ are assumed to be globally Lipschitz and continuously
differentiable, it holds that

√
M(σ M − σ)

dst−→ U 2 on C([t0, T ]),

where U 2 is the unique solution of the stochastic differential equation

dU 2
t = ã′(σt )U

2
t dt + ṽ′(σt )U

2
t dBt − 1√

2
ṽṽ′(σt )dW ′

t ,

where W ′ is a new Brownian motion independent of F . We refer to [22, Theorem
1.2] for a detailed treatment of this result. �

Example 2 Let us now consider a discontinuous diffusion model for the volatility
process σ , i.e.

dσt = ṽ(σt−)dLt , σt0 = x0,

where L is a purely discontinuous Lévy process. In this framework we study the
discretized Euler scheme given via

σ M
sk+1

= ṽ(σ M
sk

)(Lsk+1 − Lsk ), k = 0, . . . , M − 1.

We define the process U M
t = σ M[t M]/M − σ[t M]/M . In [21] several classes of Lévy

processes L has been studied. For the sake of exposition we demonstrate the case of a
symmetric β-stable Lévy process L with β ∈ (0, 2). Let us assume that ṽ ∈ C3(R).
Then, it holds that

(M/ log(M))1/βU M dst−→ U 2 on D([t0, T ]),

where U 2 is the unique solution of the linear equation

dU 2
t = ṽ′(σt−)U 2

t−dLt − ṽṽ′(σt−)dL ′
t

and L ′ is another symmetric β-stable Lévy process (with certain scaling para-
meter) independent of F . We note that this result does not directly correspond
to our condition (15) as the discretized process σ[t M]/M is used in the definition
of U M

t . �
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Non-elliptic SPDEs and Ambit Fields:
Existence of Densities

Marta Sanz-Solé and André Süß

Abstract Relying on the method developed in [11], we prove the existence of a
density for two different examples of random fields indexed by (t, x) ∈ (0, T ]×R

d .
The first example consists of SPDEs with Lipschitz continuous coefficients driven
by a Gaussian noise white in time and with a stationary spatial covariance, in the
setting of [9]. The density exists on the set where the nonlinearity σ of the noise does
not vanish. This complements the results in [20] where σ is assumed to be bounded
away from zero. The second example is an ambit field with a stochastic integral term
having as integrator a Lévy basis of pure-jump, stable-like type.

Keywords Stochastic partial differential equations · Stochastic wave equation ·
Ambit fields · Densities

1 Introduction

Malliavin calculus has proved to be a powerful tool for the study of questions con-
cerning the probability laws of random vectors, ranging from its very existence to the
study of their properties and applications.Malliavin’s probabilistic proof of Hörman-
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der’s hypoellipticity theorem for differential operators in quadratic form provided the
existence of an infinitely differentiable density with respect to the Lebesgue measure
on R

m for the law at a fixed time t > 0 of the solution to a stochastic differential
equation (SDE) on Rm driven by a multi-dimension Brownian motion. The classical
Malliavin’s criterion for existence and regularity of densities (see, e.g. [13]) requires
strong regularity of the random vector X under consideration. In fact, X should be
in the space D

∞, meaning that it belongs to Sobolev type spaces of any degree.
As a consequence, many interesting examples are out of the range of the theory, for
example, SDEwithHölder continuous coefficients, and others that will bementioned
throughout this introduction.

Recently, there have been several attempts to develop techniques to prove exis-
tence of density, under weaker regularity conditions than in the Malliavin’s theory,
but providing much less information on the properties of the density. The idea is to
avoid applying integration by parts, and use instead some approximation procedures.
A pioneer work in this direction is [12], where the random vector X is compared
with a good approximation Xε whose law is known. The proposal of the random
vector Xε is inspired by Euler numerical approximations and the comparison is done
through their respective Fourier transforms. The method is illustrated with several
one-dimensional examples of stochastic equations, all of them having in common
that the diffusion coefficient is Hölder continuous and the drift term is a measurable
function: SDEs, including cases of random coefficients, a stochastic heat equation
with Neumann boundary conditions, and a SDE driven by a Lévy process.

With a similar motivation, and relying also on the idea of approximation,
A. Debussche and M. Romito prove a useful criterion for the existence of den-
sity of random vectors, see [11]. In comparison with [12], the result is formulated in
an abstract form, it applies to multidimensional random vectors and provides addi-
tionally information on the space where the density lives. The precise statement is
given in Lemma 1. As an illustration of the method, [11] considers finite dimensional
functionals of the solutions of the stochastic Navier-Stokes equations in dimension 3,
and in [10] SDEs driven by stable-like Lévy processes with Hölder continuous coef-
ficients. A similar methodology has been applied in [1, 2, 4]. The more recent work
[3] applies interpolation arguments on Orlicz spaces to obtain absolute continuity
results of finite measures. Variants of the criteria provide different types of proper-
ties of the density. The results are illustrated by diffusion processes with log-Hölder
coefficients and piecewise deterministic Markov processes.

Some of the methods developed in the references mentioned so far are also well-
suited to the analysis of stochastic partial differential equations (SPDEs) defined by
non-smooth differential operators. Indeed, consider a class of SPDEs defined by

Lu(t, x) = b(u(t, x)) + σ(u(t, x))Ḟ(t, x), (t, x) ∈ (0, T ] × R
d , (1)

with constant initial conditions, where L denotes a linear differential operator,
σ, b:R → R, and F is a Gaussian noise, white in time with some spatial corre-
lation (see Sect. 2 for the description of F). Under some set of assumptions, [20,
Theorem 2.1] establishes the existence of density for the random field solution of (1)
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at any point (t, x) ∈ (0, T ] × R
d , and also that the density belongs to some Besov

space. The theorem applies for example to the stochastic wave equation in any spatial
dimensions d ≥ 1.

The purpose of this paper is to further illustrate the range of applications of
Lemma 1 with two more examples. The first one is presented in the next Sect. 2 and
complements the results of [20]. In comparison with this reference, here we are able
to remove the strong ellipticity property on the function σ , which is crucial in most of
the applications ofMalliavin calculus to SPDEs (see [19]), but the class of differential
operators L is more restrictive. Nevertheless, Theorem 1 below applies for example
to the stochastic heat equation in any spatial dimension and to the stochastic wave
equation with d ≤ 3. For the latter example, if σ , b are smooth functions and σ is
bounded away from zero, existence and regularity of the density of u(t, x) has been
established in [16, 17].

The second example, developed in Sect. 3, refers to ambit fields driven by a class
of Lévy bases (see 14). Originally introduced in [5] in the context of modeling
turbulence, ambit fields are stochastic processes indexed by time and space that are
becoming popular and useful for the applications in mathematical finance among
others. The expression (14) has some similarities with the mild formulation of (1)
(see 3) and can also be seen as an infinite dimensional extension of SDEs driven by
Lévy processes. We are not aware of previous results on densities of ambit fields.

We end this introduction by quoting the definition of the Besov spaces relevant
for this article as well as the existence of density criterion by [11].

The spaces Bs
1,∞, s > 0, can be defined as follows. Let f :Rd → R. For x, h ∈ R

d

set (Δ1
h f )(x) = f (x + h) − f (x). Then, for any n ∈ N, n ≥ 2, let

(Δn
h f )(x) = (

Δ1
h(Δn−1

h f )
)
(x) =

n∑
j=0

(−1)n− j
(

n

j

)
f (x + jh).

For any 0 < s < n, we define the norm

‖ f ‖Bs
1,∞ = ‖ f ‖L1 + sup

|h|≤1
|h|−s‖Δn

h f ‖L1 .

It can be proved that for two distinct n, n′ > s the norms obtained using n or n′ are
equivalent. Then we define Bs

1,∞ to be the set of L1-functions with ‖ f ‖Bs
1,∞ < ∞.

We refer the reader to [22] for more details.
In the following, we denote byC α

b the set of boundedHölder continuous functions
of degree α. The next Lemma establishes the criterion on existence of densities that
we will apply in our examples.
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Lemma 1 Let κ be a finite nonnegative measure. Assume that there exist 0 < α ≤
a < 1, n ∈ N and a constant Cn such that for all φ ∈ C α

b , and all h ∈ R with
|h| ≤ 1,

∣∣∣∣
∫
R

Δn
hφ(y)κ(dy)

∣∣∣∣ ≤ Cn‖φ‖C α
b
|h|a . (2)

Then κ has a density with respect to the Lebesgue measure, and this density belongs
to the Besov space Ba−α

1,∞ (R).

2 Nonelliptic Diffusion Coefficients

In this section we deal with SPDEs without the classical ellipticity assumption on the
coefficient σ , i.e. infx∈Rd |σ(x)| ≥ c > 0. In the different context of SDEs driven
by a Lévy process, this situation was considered in [10, Theorem 1.1], assuming in
addition that σ is bounded. Here, we will deal with SPDEs in the setting of [9] with
not necessarily bounded coefficients σ . Therefore, the results will apply in particular
to Anderson’s type SPDEs (σ(x) = λx , λ 	= 0).

We consider the class of SPDEs defined by (1), with constant initial conditions,
where L denotes a linear differential operator, and σ, b:R → R. In the definition
above, F is a Gaussian noise, white in time with some spatial correlation.

Consider the space of Schwartz functions on R
d , denoted by S (Rd), endowed

with the following inner product

〈φ,ψ〉H : =
∫
Rd

dy
∫
Rd

Γ (dx)φ(y)ψ(y − x),

where Γ is a nonnegative and nonnegative definite tempered measure. Using the
Fourier transform we can rewrite this inner product as

〈φ,ψ〉H =
∫
Rd

μ(dξ)Fφ(ξ)Fψ(ξ),

where μ is a nonnegative definite tempered measure with Fμ = Γ . Let H : =
(S , 〈·, ·〉H )

〈·,·〉H , and HT : = L2([0, T ];H ). It can be proved that F is an iso-
normal Wiener process on HT .

Let Λ denote the fundamental solution to Lu = 0 and assume that Λ is either a
function or a non-negative measure of the form Λ(t, dy)dt such that

sup
t∈[0,T ]

Λ(t,Rd) ≤ CT < ∞.
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We consider

u(t, x) =
∫ t

0

∫
Rd

Λ(t − s, x − y)σ (u(s, y))M(ds, dy)

+
∫ t

0

∫
Rd

Λ(t − s, x − y)b(u(s, y))dydy, (3)

as the integral formulation of (1), where M is the martingale measure generated by
F . In order for the stochastic integral in the previous equation to be well-defined, we
need to assume that

∫ T

0
ds

∫
Rd

μ(dξ)|FΛ(s)(ξ)|2 < +∞. (4)

According to [9, Theorem 13] (see also [23]), equation (3) has a unique random field
solution {u(t, x); (t, x) ∈ [0, T ] × R

d} which has a spatially stationary law (this is
a consequence of the S-property in [9]), and for all p ≥ 2

sup
(t,x)∈[0,T ]×Rd

E
[|u(t, x)|p] < ∞.

We will prove the following result on the existence of a density.

Theorem 1 Fix T > 0. Assume that for all t ∈ [0, T ], Λ(t) is a function or a non-
negative distribution such that (4) holds and supt∈[0,T ] Λ(t,Rd) < ∞. Assume fur-
thermore that σ and b are Lipschitz continuous functions. Moreover, we assume that

ctγ ≤
∫ t

0
ds

∫
Rd

μ(dξ)|FΛ(s)(ξ)|2 ≤ Ctγ1 ,

∫ t

0
ds|FΛ(s)(0)|2 ≤ Ctγ2 ,

for some γ, γ1, γ2 > 0 and positive constants c and C. Suppose also that there exists
δ > 0 such that

E
[|u(t, 0) − u(s, 0)|2] ≤ C |t − s|δ, (5)

for any s, t ∈ [0, T ] and some constant C > 0, and that

γ̄ : = min{γ1, γ2} + δ

γ
> 1.

Fix (t, x) ∈ (0, T ] × R
d . Then, the probability law of u(t, x) has a density f on

the set {y ∈ R; σ(y) 	= 0}. In addition, there exists n ≥ 1 such that the function
y �→ |σ(y)|n f (y) belongs to the Besov space Bβ

1,∞, with β ∈ (0, γ̄ − 1).
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Proof The existence, uniqueness and stationarity of the solution u is guaranteed by
[9, Theorem 13]. We will apply Lemma 1 to the law of u(t, x) at x = 0. Since
the solution u is stationary in space, this is enough for our purposes. Consider the
measure

κ(dy) = |σ(y)|n
(

P ◦ u(t, 0)−1
)

(dy).

We define the following approximation of u(t, 0). Let for 0 < ε < t

uε(t, 0) = U ε(t, 0) + σ(u(t − ε, 0))
∫ t

t−ε

∫
Rd

Λ(t − s,−y)M(ds, dy), (6)

where

U ε(t, 0) =
∫ t−ε

0

∫
Rd

Λ(t − s,−y)σ (u(s, y))M(ds, dy)

+
∫ t−ε

0

∫
Rd

Λ(t − s,−y)b(u(s, y))dyds

+ b(u(t − ε, 0))
∫ t

t−ε

∫
Rd

Λ(t − s,−y)dyds.

Applying the triangular inequality, we have

∣∣∣∣
∫
R

Δn
hφ(y)κ(dy)

∣∣∣∣ = ∣∣E[|σ(u(t, 0))|nΔn
hφ(u(t, 0))

]∣∣
≤ ∣∣E[

(|σ(u(t, 0))|n − |σ(u(t − ε, 0))|n)Δn
hφ(u(t, 0))

]∣∣
+ ∣∣E[|σ(u(t − ε, 0))|n(Δn

hφ(u(t, 0)) − Δn
hφ(uε(t, 0)))

]∣∣
+ ∣∣E[|σ(u(t − ε, 0))|nΔn

hφ(uε(t, 0))
]∣∣. (7)

Remember that ‖Δn
hφ‖C α

b
≤ Cn‖φ‖C α

b
. Consequently,

|Δn
hφ(x)| = |Δn−1

h φ(x) − Δn−1
h φ(x + h)| ≤ Cn−1‖φ‖C α

b
|h|α,

Using this fact, the first term on the right-hand side of the inequality in (7) can be
bounded as follows:

∣∣E[
(|σ(u(t, 0))|n − |σ(u(t − ε, 0))|n)Δn

hφ(u(t, 0))
]∣∣

≤ Cn‖φ‖C α
b
|h|αE[∣∣|σ(u(t, 0))|n − |σ(u(t − ε, 0))|n∣∣]. (8)

Apply the equality xn − yn = (x − y)(xn−1 + xn−2y + · · · + xyn−2 + yn−1) along
with the Lipschitz continuity of σ and Hölder’s inequality, to obtain
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E
[∣∣|σ(u(t, 0))|n − |σ(u(t − ε, 0))|n∣∣]

≤ E

[∣∣σ(u(t, 0)) − σ(u(t − ε, 0))
∣∣ n−1∑

j=0

|σ(u(t, 0))| j |σ(u(t, 0))|n−1− j
]

≤ C
(
E

[∣∣u(t, 0) − u(t − ε, 0)
∣∣2])1/2

(
E

[( n−1∑
j=0

|σ(u(t, 0))| j |σ(u(t, 0))|n−1− j
)2]) 1

2

≤ Cn

(
E

[∣∣u(t, 0) − u(t − ε, 0)
∣∣2])1/2

≤ Cnεδ/2, (9)

where we have used that σ has linear growth, also that u(t, 0) has finite moments of
any order and (5). Thus,

∣∣E[
(|σ(u(t, 0))|n − |σ(u(t − ε, 0))|n)Δn

hφ(u(t, 0))
]∣∣ ≤ Cn‖φ‖C α

b
|h|αεδ/2. (10)

With similar arguments,

∣∣E[|σ(u(t − ε, 0))|n(Δn
hφ(u(t, 0)) − Δn

hφ(uε(t, 0)))
]∣∣

≤ Cn‖φ‖C α
b
E

[|σ(u(t − ε, 0))|n|u(t, 0) − uε(t, 0)|α]
≤ Cn‖φ‖C α

b

(
E

[|u(t, 0) − uε(t, 0)|2])α/2(
E

[|σ(u(t − ε, 0))|2n/(2−α)
])1−α/2

≤ Cn‖φ‖C α
b
εδα/2(g1(ε) + g2(ε)

)α/2
, (11)

where in the last inequality we have used the upper bound stated in [20, Lemma 2.5].
It is very easy to adapt the proof of this lemma to the context of this section. Note
that the constant Cn in the previous equation does not depend on α because

(
E

[|σ(u(t − ε, 0))|2n/(2−α)
])1−α/2 ≤ (

E
[
(|σ(u(t − ε, 0))| ∨ 1)2n])1−α/2

≤ E
[|σ(u(t − ε, 0))|2n ∨ 1

]
.

Nowwe focus on the third term on the right-hand side of the inequality in (7). Let
pε denote the density of the zero mean Gaussian random variable

∫ t
t−ε

∫
Rd Λ(t −

s,−y)M(ds, dy), which is independent of the σ -fieldFt−ε and has variance

g(ε): =
∫ ε

0
ds

∫
Rd

μ(dξ)|FΛ(s)(ξ)|2 ≥ Cεγ .

In the decomposition (6), the random variable U ε(t, 0) is Ft−ε-measurable. Then,
by conditioning with respect toFt−ε and using a change of variables, we obtain
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∣∣E [|σ(u(t − ε, 0))|nΔn
hφ(uε(t, 0))

]∣∣
= ∣∣E[

E
[
1{σ(u(t−ε,0)) 	=0}|σ(u(t − ε, 0))|nΔn

hφ(uε(t, 0))
∣∣Ft−ε

]]∣∣
=

∣∣∣∣E
[
1{σ(u(t−ε,0)) 	=0}

∫
R

|σ(u(t − ε, 0))|nΔn
hφ(U ε

t + σ(u(t − ε, 0))y)pε(y)dy

]∣∣∣∣
=

∣∣∣∣E
[
1{σ(u(t−ε,0)) 	=0}

∫
R

|σ(u(t − ε, 0))|n

× φ(U ε
t + σ(u(t − ε, 0))y)Δn

−σ(u(t−ε,0))−1h pε(y)dy

]∣∣∣∣
≤ ‖φ‖∞E

[
1{σ(u(t−ε,0)) 	=0}|σ(u(t − ε, 0))|n

∫
R

∣∣Δn
−σ(u(t−ε,0))−1h pε(y)

∣∣dy

]
.

On the set {σ(u(t − ε, 0)) 	= 0}, the integral in the last term can be bounded
as follows,

∫
R

∣∣Δn
−σ(u(t−ε,0))−1h pε(y)

∣∣dy ≤ Cn|σ(u(t − ε, 0))|−n|h|n‖p(n)
ε ‖L1(R)

≤ Cn|σ(u(t − ε, 0))|−n|h|ng(ε)−n/2,

where we have used the property ‖Δn
h f ‖L1(R) ≤ Cn|h|n‖ f (n)‖L1(R), and also that

‖p(n)
ε ‖L1 = (g(ε))−n/2 ≤ Cnε−nγ /2 (see e.g. [20, Lemma 2.3]).
Substituting this into the previous inequality yields

∣∣E[|σ(u(t − ε, 0))|nΔn
hφ(uε(t, 0))

]∣∣ ≤ Cn‖φ‖C α
b
|h|nε−nγ /2, (12)

because ‖φ‖∞ ≤ ‖φ‖C α
b
.

With (7), (10)–(12), we have

∣∣∣∣
∫
R

Δn
hφ(y)κ(dy)

∣∣∣∣
≤ Cn‖φ‖C α

b

(
|h|αεδ/2 + εδα/2(g1(ε) + g2(ε)

)α/2 + |h|nε−nγ /2
)

≤ Cn‖φ‖C α
b

(
|h|αεδ/2 + ε(δ+γ1)α/2 + ε(δ+γ2)α/2 + |h|nε−nγ /2

)

≤ Cn‖φ‖C α
b

(
|h|αεδ/2 + εγ γ̄ α/2 + |h|nε−nγ /2

)
(13)

Let ε = 1
2 t |h|ρ , with ρ = 2n/(γ n + γ γ̄ α). With this choice, the last term in (13)

is equal to

Cn‖φ‖C α
b

(
|h|α+ nδ

γ (n+γ̄ α) + |h| nγ̄ α
n+γ̄ α

)
.
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Since γ1 ≤ γ , by the definition of γ̄ , we obtain

γ̄ − 1 = min{γ1, γ2}
γ

+ δ

γ
− 1 ≤ δ

γ
.

Fix ζ ∈ (0, γ̄ − 1). We can choose n ∈ N sufficiently large and α sufficiently close
to 1, such that

α + nδ

γ (n + γ̄ α)
> ζ + α and

nγ̄ α

n + γ̄ α
> ζ + α.

This finishes the proof of the theorem.

Remark 1 (i) Assume that σ is bounded from above but not necessary bounded
away from zero. Following the lines of the proof of Theorem 1 we can also
show the existence of a density without assuming the existence of moments
of u(t, x) of order higher than 2. This applies in particular to SPDEs whose
fundamental solutions are general distributions as treated in [8], extending the
result on absolute continuity given in [20, Theorem 2.1].

(ii) Unlike [20, Theorem 2.1], the conclusion on the space to which the density
belongs is less precise. We do not know whether the order γ̄ − 1 is optimal.

3 Ambit Random Fields

In this section we prove the absolute continuity of the law of a random variable
generated by an ambit field at a fixed point (t, x) ∈ [0, T ] × R

d . The methodology
we use is very much inspired by [10]. Ambit fields where introduced in [5] with
the aim of studying turbulence flows, see also the survey papers [6, 15]. They are
stochastic processes indexed by (t, x) ∈ [0, T ] × R

d of the form

X (t, x) = x0 +
∫∫

At (x)
g(t, s; x, y)σ (s, y)L(ds, dy) +

∫∫
Bt (x)

h(t, s; x, y)b(s, y)dyds,

(14)
where x0 ∈ R, g, h are deterministic functions subject to some integrability and
regularity conditions, σ, b are stochastic processes, At (x), Bt (x) ⊆ [0, t] × R

d

are measurable sets, which are called ambit sets. The stochastic process L is a Lévy
basis on the Borel setsB([0, T ]×R

d). More precisely, for any B ∈ B([0, T ]×R
d)

the random variable L(B) has an infinitely divisible distribution; given B1, . . . , Bk

disjoint sets of B ∈ B([0, T ] × R
d), the random variables L(B1), . . . , L(Bk) are

independent; and for any sequence of disjoint sets (A j ) j∈N ⊂ B([0, T ] × R
d),

L(∪∞
j=1A j ) =

∞∑
j=1

L(A j ), P-almost surely.
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Throughout the section, we will consider the natural filtration generated by L , i.e.
for all t ∈ [0, T ],

Ft : = σ(L(A); A ∈ [0, t] × R
d , λ(A) < ∞).

For deterministic integrands, the stochastic integral in (14) is defined as in [18].
In the more general setting of (14), one can use the theory developed in [7]. We refer
the reader to these references for the specific required hypotheses on g and σ .

The class ofLévybases considered in this section are describedby infinite divisible
distributions of pure-jump, stable-like type. More explicitly, as in [18, Proposition
2.4], we assume that for any B ∈ B([0, T ] × R

d),

logE
[
exp(iξ L(B))

] =
∫
[0,T ]×Rd

λ(ds, dy)

∫
R

ρs,y(dz)
(
exp(iξ z − 1 − iξ z1[−1,1](z))

)
,

where λ is termed the control measure on the state space and (ρs,y)(s,y)∈[0,T ]×Rd is
a family of Lévy measures satisfying

∫
R

min{1, z2}ρs,y(dz) = 1, λ − a.s.

Throughout this section, we will consider the following set of assumptions on
(ρs,y)(s,y)∈[0,T ]×Rd and on λ.

Assumptions 1 Fix (t, x) ∈ [0, T ] × R
d and α ∈ (0, 2), and for any a > 0 let

Oa : = (−a, a). Then,

(i) for all β ∈ [0, α) there exists a nonnegative function Cβ ∈ L1(λ) such that for
all a > 0,

∫
(Oa)c

|z|βρs,y(dz) ≤ Cβ(s, y)aβ−α, λ − a.s.;

(ii) there exists a non-negative function C̄ ∈ L1(λ) such that for all a > 0,

∫
Oa

|z|2ρs,y(dz) ≤ C̄(s, y)a2−α, λ − a.s.;

(iii) there exists a nonnegative function c ∈ L1(λ) and r > 0 such that for all ξ ∈ R

with |ξ | > r ,

∫
R

(
1 − cos(ξ z)

)
ρs,y(dz) ≥ c(s, y)|ξ |α, λ − a.s.



Non-elliptic SPDEs and Ambit Fields: Existence of Densities 131

Example 1 Let

ρs,y(dz) = c1(s, y)1{z>0}z−α−1dz + c−1(s, y)1{z<0}|z|−α−1dz,

with (s, y) ∈ [0, T ] × R
d , and assume that c1, c−1 ∈ L1(λ). This corresponds to

stable distributions (see [18, Lemma 3.7]). One can check that Assumptions 1 are
satisfied with C = C̄ = c1 ∨ c−1, and c = c1 ∧ c−1.

Assumptions 2 (H1)We assume that the deterministic functions g, h:{0 ≤ s < t ≤
T } × R

d × R
d → R and the stochastic processes (σ (s, y); (s, y) ∈ [0, T ] × R

d),
(b(s, y); (s, y) ∈ [0, T ]×R

d) are such that the integrals on the right-hand side of (14)
are well-defined (see the conditions in [18, Theorem 2.7] and [7, Theorem 4.1]). We
also suppose that for any y ∈ R

d , p ∈ [2,∞)we have sups∈[0,T ] E[|σ(s, y)|p] < ∞.
(H2) Let α be as in Assumptions 1. There exist δ1, δ2 > 0 such that for some
γ ∈ (α, 2] and, if α ≥ 1, for all β ∈ [1, α), or for β = 1, if α < 1,

E
[|σ(t, x) − σ(s, y)|γ ] ≤ Cγ (|t − s|δ1γ + |x − y|δ2γ ), (15)

E
[|b(t, x) − b(s, y)|β] ≤ Cβ(|t − s|δ1β + |x − y|δ2β), (16)

for every (t, x), (s, y) ∈ [0, T ] × R
d , and some Cγ , Cβ > 0.

(H3) |σ(t, x)| > 0, ω-a.s.
(H4) Let α, C̄ , Cβ and c as in Assumptions 1 and 0 < ε < t . We suppose that

∫ t

t−ε

∫
Rd

1At (x)(s, y)c̄(s, y)|g(t, s, x, y)|αλ(ds, dy) < ∞, (17)

cεγ0 ≤
∫ t

t−ε

∫
Rd

1At (x)(s, y)c(s, y)|g(t, s, x, y)|αλ(ds, dy) < ∞, (18)

where in (17), c̄(s, y) = C̄(s, y) ∨ C0(s, y), and (18) holds for some γ0 > 0.
Moreover, there exist constants C, γ1, γ2 > 0 and γ > α such that

∫ t

t−ε

∫
Rd

1At (x)(s, y)C̃β(s, y)|g(t, s, x, y)|γ |t − ε − s|δ1γ λ(ds, dy) ≤ Cεγ γ1 ,

(19)∫ t

t−ε

∫
Rd

1At (x)(s, y)C̃β(s, y)|g(t, s, x, y)|γ |x − y|δ2γ λ(ds, dy) ≤ Cεγ γ2 .

(20)

We also assume that there exist constants C, γ3, γ4 > 0 such that for all β ∈ [1, α),
if α ≥ 1, or for β = 1, if α < 1,
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∫ t

t−ε

∫
Rd

1Bt (x)(s, y)|h(t, s, x, y)|β |t − ε − s|δ1βdyds ≤ Cεβγ3 , (21)

∫ t

t−ε

∫
Rd

1Bt (x)(s, y)|h(t, s, x, y)|β |x − y|δ2βdyds ≤ Cεβγ4 , (22)

where C̃β is defined as in Lemma 3.
(H5) The set At (x) “reaches t”, i.e. there is no ε > 0 satisfying At (x) ⊆ [0, t −

ε] × R
d .

Remark 2 (i) By the conditions in (H4), the stochastic integral in (14) with respect
to the Lévy basis is well-defined as a random variable in Lβ(Ω) for any β ∈
(0, α) (see Lemma 3).

(ii) One can easily derive some sufficient conditions for the assumptions in (H4).
Indeed, suppose that

∫ t

t−ε

∫
Rd

1At (x)(s, y)C̃β(s, y)|g(t, s, x, y)|γ λ(ds, dy) ≤ Cεγ γ̄1 ,

then (19) holds with γ1 = γ̄1 + δ1. If in addition, At (x) consists of points
(s, y) ∈ [0, t] × R

d such that |x − y| ≤ |t − s|ζ , for any s ∈ [t − ε, t], and
for some ζ > 0, then (20) holds with γ2 = γ̄1 + δ2ζ . Similarly, one can derive
sufficient conditions for (21), (22).

(iii) The assumption (H5) is used in the proof of Theorem 2, where the law of
X (t, x) is compared with that of an approximation Xε(t, x), which is infinitely
divisible. This distribution is well-defined only if At (x) is non-empty in the
region [t − ε, t] × R

d .
(iv) Possibly, for particular examples of ambit sets At (x), functions g, h, and sto-

chastic processes σ, b, the Assumptions 2 can be relaxed. However, we prefer
to keep this formulation.

We can now state the main theorem of this section.

Theorem 2 We suppose that the Assumptions 1 and 2 are satisfied and that

min{γ1, γ2, γ3, γ4}
γ0

>
1

α
. (23)

Fix (t, x) ∈ (0, T ] × R
d . Then the law of the random variable X (t, x) defined by

(14) is absolutely continuous with respect to the Lebesgue measure.

3.1 Two Auxiliary Results

In this subsection we derive two auxiliary lemmas. They play a similar role as those
in [10, Sects. 5.1 and 5.2], but our formulation is more general.
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Lemma 2 Let ρ = (ρs,y)(s,y)∈[0,T ]×Rd be a family of Lévy measures and let λ be a
control measure. Suppose that Assumption 1(ii) holds. Then for all γ ∈ (α, 2) and
all a ∈ (0,∞)

∫
|z|≤a

|z|γ ρs,y(dz) ≤ Cγ,αC̄(s, y)aγ−α, λ − a.s.,

where Cγ,α = 2−γ+2 22−α

2γ−α−1 . Hence

∫ T

0

∫
Rd

∫
|z|≤a

|z|γ ρs,y(dz)λ(ds, dy) ≤ Caγ−α.

Proof The result is obtained by the following computations:

∫
|z|≤a

|z|γ ρs,y(dz) =
∞∑

n=0

∫
{a2−n−1<|z|≤a2−n}

|z|γ ρs,y(dz)

≤
∞∑

n=0

(a2−n−1)γ−2
∫

{|z|≤a2−n}
|z|2ρs,y(dz)

≤ C̄(s, y)

∞∑
n=0

(a2−n−1)γ−2(a2−n)2−α

≤ Cγ−αC̄(s, y)aγ−α. �

The next lemma provides important bounds on the moments of the stochastic
integrals. It plays the role of [10, Lemma 5.2] in the setting of this article.

Lemma 3 Assume that L is a Lévy basis with characteristic exponent satisfying
Assumptions 1 for some α ∈ (0, 2). Let H = (H(t, x))(t,x)∈[0,T ]×Rd be a predictable
process. Then for all 0 < β < α < γ ≤ 2 and for all 0 ≤ s < t ≤ s + 1,

E

[∣∣∣∣
∫ t

s

∫
Rd

1At (x)(r, y)g(t, r, x, y)H(r, y)L(dr, dy)

∣∣∣∣
β]

≤ Cα,β,γ |t − s|β/α−1

×
( ∫ t

s

∫
Rd

1At (x)(r, y)C̃β(r, y)|g(t, r, x, y)|γE[|H(u, y)|γ ]
λ(dr, dy)

)β/γ

,

(24)

where C̃β(r, y) is the maximum of C̄(r, y), and (Cβ + C1)(r, y) (see Assumptions 1
for the definitions).
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Proof There exists a Poisson random measure N such that for all A ∈ B(Rd),

L([s, t] × A) =
∫ t

s

∫
A

∫
|z|≤1

z Ñ (dr, dy, dz) +
∫ t

s

∫
A

∫
|z|>1

zN (dr, dy, dz)

(see e.g. [14, Theorem 4.6]), where Ñ stands for the compensated Poisson random
measure Ñ (ds, dy, dz) = N (ds, dy, dz) − ρs,y(dz)λ(ds, dy). Then we can write

E

[∣∣∣∣
∫ t

s

∫
Rd

1At (x)(r, y)g(t, r, x, y)H(r, y)L(dr, dy)

∣∣∣∣
β]

≤ Cβ

(
I 1s,t + I 2s,t + I 3s,t

)
,

(25)
with

I 1s,t : = E

[∣∣∣∣
∫ t

s

∫
Rd

1At (x)(r, y)

∫
|z|≤(t−s)1/α

zg(t, r, x, y)H(r, y)Ñ (dr, dy, dz)

∣∣∣∣
β]

I 2s,t : = E

[∣∣∣∣
∫ t

s

∫
Rd

1At (x)(r, y)

∫
(t−s)1/α<|z|≤1

zg(t, r, x, y)H(r, y)Ñ (dr, dy, dz)

∣∣∣∣
β]

I 3s,t : = E

[∣∣∣∣
∫ t

s

∫
Rd

1At (x)(r, y)

∫
|z|>1

zg(t, r, x, y)H(r, y)N (dr, dy, dz)

∣∣∣∣
β]

To give an upper bound for the first term, we apply first Burkholder’s inequality, then
the subadditivity of the function x �→ xγ /2 (since the integral is actually a sum),
Jensen’s inequality, the isometry of Poisson random measures and Lemma 2. We
obtain,

I 1s,t ≤ CβE

[∣∣∣∣
∫ t

s

∫
Rd

1At (x)(r, y)

∫
|z|≤(t−s)1/α

× |z|2|g(t, r, x, y)|2|H(r, y)|2N (dr, dy, dz)

∣∣∣∣
β/2]

≤ CβE

[∣∣∣∣
∫ t

s

∫
Rd

1At (x)(r, y)

∫
|z|≤(t−s)1/α

× |z|γ |g(t, r, x, y)|γ |H(r, y)|γ N (dr, dy, dz)

∣∣∣∣
β/γ ]

≤ Cβ

(
E

[ ∫ t

s

∫
Rd

1At (x)(r, y)

∫
|z|≤(t−s)1/α

× |z|γ |g(t, r, x, y)|γ |H(r, y)|γ N (dr, dy, dz)

])β/γ

= Cβ

(
E

[ ∫ t

s

∫
Rd

1At (x)(r, y)

( ∫
|z|≤(t−s)1/α

|z|γ ρr,y(dz)

)
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× |g(t, r, x, y)|γ |H(r, y)|γ λ(dr, dy)

])β/γ

≤ Cβ

(
Cγ,α(t − s)(γ−α)/α

)β/γ

×
( ∫ t

s

∫
Rd

1At (x)(r, y)C̄(r, y)|g(t, r, x, y)|γE[|H(u, y)|γ ]
λ(dr, dy)

)β/γ

.

Notice that the exponent (γ − α)/α is positive.
With similar arguments but applying now Assumption 1(i), the second term in

(25) is bounded by

I 2s,t ≤ CβE

[∣∣∣∣
∫ t

s

∫
Rd

1At (x)(r, y)

∫
(t−s)1/α<|z|≤1

|z|2

× |g(t, r, x, y)|2|H(r, y)|2N (dr, dy, dz)

∣∣∣∣
β/2]

≤ CβE

[ ∫ t

s

∫
Rd

1At (x)(r, y)

∫
(t−s)1/α<|z|≤1

|z|β

× |g(t, r, x, y)|β |H(r, y)|β N (dr, dy, dz)

]

= CβE

[ ∫ t

s

∫
Rd

1At (x)(r, y)

( ∫
(t−s)1/α<|z|≤1

|z|βρr,y(dz)

)

× |g(t, r, x, y)|β |H(r, y)|βλ(dr, dy)

]

≤ Cβ(t − s)(β−α)/α
E

[ ∫ t

s

∫
Rd

1At (x)(r, y)Cβ(r, y)

× |g(t, r, x, y)|β[|H(r, y)|βλ(dr, dy)

]

≤ Cβ,γ (t − s)(β−α)/α

(∫ t

s

∫
Rd

1At (x)(r, y)Cβ(r, y)

× |g(t, r, x, y)|γE[|H(r, y)|γ ]
λ(dr, dy)

)β/γ

,

where in the last step we have used Hölder’s inequality with respect to the finite
measure Cβ(r, y)λ(dr, dy).

Finally, we bound the third term in (25). Suppose first that β ≤ 1. Using the
subadditivity of x �→ xβ and Lemma 2(i) yields

I 3s,t ≤ CβE

[ ∫ t

s

∫
Rd

1At (x)(r, y)

∫
|z|>1

|z|β |g(t, r, x, y)|β |H(r, y)|β N (dr, dy, dz)

]

≤ CβE

[ ∫ t

s

∫
Rd

1At (x)(r, y)

( ∫
|z|>1

|z|βρr,y(dz)

)
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× |g(t, r, x, y)|β |H(r, y)|βλ(dr, dy)

]

≤ CβE

[ ∫ t

s

∫
Rd

1At (x)(r, y)Cβ(r, y)|g(t, r, x, y)|β |H(r, y)|βλ(dr, dy)

]

≤ Cβ

(∫ t

s

∫
Rd

1At (x)(r, y)Cβ(r, y)|g(t, r, x, y)|γE[|H(r, y)|γ ]
λ(dr, dy)

)β/γ

,

where in the last step we have used Hölder’s inequality with respect to the finite
measure Cβ(r, y)λ(dr, dy).

Suppose now thatβ > 1 (which implies thatα > 1).We applyHölder’s inequality
with respect to the finite measure C1(r, y)λ(dr, dy) and Assumption 1(i)

I 3s,t ≤ 2β−1
E

[∣∣∣∣
∫ t

s

∫
Rd

1At (x)(r, y)

∫
|z|>1

zg(t, r, x, y)H(r, y)Ñ (dr, dy, dz)

∣∣∣∣
β]

+ 2β−1
E

[∣∣∣∣
∫ t

s

∫
Rd

1At (x)(r, y)

(∫
|z|>1

|z|ρr,y(dz)

)

× g(t, r, x, y)H(r, y)λ(dr, dy)

∣∣∣∣
β]

≤ CβE

[∣∣∣∣
∫ t

s

∫
Rd

1At (x)(r, y)

∫
|z|>1

|z|2|g(t, r, x, y)|2

× |H(r, y)|2N (dr, dy, dz)

∣∣∣∣
β/2]

+ CβE

[∣∣∣∣
∫ t

s

∫
Rd

1At (x)(r, y)C1(r, y)|g(t, r, x, y)|H(r, y)|λ(dr, dy)

∣∣∣∣
β]

≤ CβE

[ ∫ t

s

∫
Rd

1At (x)(r, y)

∫
|z|>1

|z|β |g(t, r, x, y)|β |H(r, y)|β N (dr, dy, dz)

]

+ Cβ

(∫ t

s

∫
Rd

C1(r, y)λ(dr, dy)

)β−1

×
∫ t

s

∫
Rd

1At (x)(r, y)C1(r, y)|g(t, r, x, y)|βE[|H(r, y)|β]
λ(dr, dy)

≤ CβE

[ ∫ t

s

∫
Rd

1At (x)(r, y)(C1(r, y) + Cβ(r, y))

× |g(t, r, x, y)|β |H(u, y)|βλ(dr, dy)

]

≤ Cβ

(∫ t

s

∫
Rd

1At (x)(r, y)(C1(r, y) + Cβ(r, y))

× |g(t, r, x, y)|γE[|H(u, y)|γ ]
λ(dr, dy)

)β/γ

,
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where in the last step we have used Hölder’s inequality with respect to the finite
measure (C1(r, y) + Cβ(r, y))λ(dr, dy). We are assuming 0 < t − s ≤ 1, and
0 < β < α. Hence, the estimates on the terms I i

s,t , i = 1, 2, 3 imply (24)

3.2 Existence of Density

With the help of the two lemmas in the previous subsection, we can now give the
proof of Theorem 2. Fix (t, x) ∈ (0, T ] × R

d and let 0 < ε < t to be determined
later. We define an approximation of the ambit field X (t, x) by

Xε(t, x) = U ε(t, x)+σ(t−ε, x)

∫ t

t−ε

∫
Rd

1At (x)(s, y)g(t, s; x, y)L(ds, dy), (26)

where

U ε(t, x) = x0 +
∫ t−ε

0

∫
Rd

1At (x)(s, y)g(t, s; x, y)σ (s, y)L(ds, dy)

+
∫ t−ε

0

∫
Rd

1Bt (x)(s, y)h(t, s; x, y)b(s, y)dyds

+ b(t − ε, x)

∫ t−ε

0

∫
Rd

1Bt (x)(s, y)h(t, s; x, y)dyds

Note that U ε(t, x) isFt−ε-measurable.
The stochastic integral in (26) is well defined in the sense of [18] and is a random

variable having an infinitely divisible distribution. Moreover, the real part of its
characteristic exponent is given by

�(
logE

[
exp(iξ X)

]) =
∫
R

(
1 − cos(ξ z)

)
ρ f (dz),

where

ρ f (B) =
∫

[0,T ]×Rd

∫
R

1{z f (s,y)∈B\{0}}ρs,y(dz)λ(ds, dy).

In the setting of this section, the next lemma plays a similar role as [20, Lemma
2.3]. It generalizes [10, Lemma 3.3] to the case of Lévy bases as integrators.

Lemma 4 The Assumptions 1, along with (17) and (18) hold. Then, the random
variable

X : =
∫ t

t−ε

∫
Rd

1At (x)(s, y)g(t, s, x, y)L(ds, dy)

has a C∞-density pt,x,ε, and for all n ∈ N there exists a finite constant Cn > 0 such

that ‖p(n)
t,x,ε‖L1(R) ≤ Cn,t,x (ε

γ0 ∧ 1)−n/α .
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Proof We follow the proof of [10, Lemma 3.3], which builds on the methods of [21].
First we show that for |ξ | sufficiently large, and every t ∈ (0, T ],

ct,x,ε|ξ |α ≤ �ΨX (ξ) ≤ C |ξ |α. (27)

Indeed, let r be as in Assumption 1(iii). Then, for |ξ | > r , we have

�ΨX (ξ) =
∫
R

(
1 − cos(ξ z)

)
ρ f (dz)

=
∫ t

t−ε

∫
Rd

λ(ds, dy)

∫
R

(
1 − cos(ξ z1At (x)(s, y)g(t, s, x, y))

)
ρs,y(dz)

≥ |ξ |α
∫ t

t−ε

∫
Rd

1At (x)(s, y)|g(t, s, x, y)|αc(s, y)λ(ds, dy)

≥ ct,ε,xε
γ0 |ξ |α. (28)

This proves the lower bound in (27) for |ξ | > r .
In order to prove the upper bound in (27), we set

aξ,t,s,x,y : = |ξ |1At (x)(s, y)|g(t, s, x, y)|

and use the inequality (1 − cos(x)) ≤ 2(x2 ∧ 1) to obtain

�ΨX (ξ) =
∫ t

t−ε

∫
Rd

λ(ds, dy)

∫
R

(
1 − cos(zξ1At (x)(s, y)g(t, s, x, y))

)
ρs,y(dz)

≤ 2
∫ t

t−ε

∫
Rd

λ(ds, dy)

∫
R

(|z|2|ξ |21At (x)(s, y)|g(t, s, x, y)|2 ∧ 1
)
ρs,y(dz)

= 2
∫ t

t−ε

∫
Rd

λ(ds, dy)

∫
|z|≤a−1

ξ,t,s,x,y

|z|2|ξ |21At (x)(s, y)|g(t, s, x, y)|2ρs,y(dz)

+ 2
∫ t

t−ε

∫
Rd

λ(ds, dy)

∫
|z|≥a−1

ξ,t,s,x,y

ρs,y(dz). (29)

Then, using Assumption 1(ii), the first integral in the right-hand side of the last
equality in (29) can be bounded as follows:

∫ t

t−ε

∫
Rd

λ(ds, dz)|ξ |21At (x)(s, y)|g(t, s, x, y)|2
(∫

|z|≤a−1
ξ,t,s,x,y

|z|2ρs,y(dz)

)

≤ |ξ |α
∫ t

t−ε

∫
Rd

1At (x)(s, y)|g(t, s, x, y)|αC̄(s, y)λ(ds, dy)

≤ C |ξ |α,

where in the last inequality, we have used (17).
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Consider now the last integral in (29). By applying Assumption 1(i) with β = 0
and (17)

∫ t

t−ε

∫
Rd

λ(ds, dy)

(∫
|z|≥a−1

ξ,t,s,x,y

ρs,y(dz)

)

≤ |ξ |α
∫ t

t−ε

∫
Rd

1At (x)(s, y)C0(s, y)|g(t, s, x, y)|αλ(ds, dy)

≤ C |ξ |α.

Hence, we have established that

�ΨX (ξ) ≤ C |ξ |α,

for |ξ | sufficiently large.
To complete the proof, we can follow the same arguments as in [10, Lemma 3.3]

which rely on the result in [21, Proposition 2.3]. Note that the exponent γ0 on the
right-hand side of the gradient estimate accounts for the lower bound of the growth
of the term in (18), which in the case of SDEs is equal to 1.

The next lemma shows that the error in the approximation Xε(t, x) in (26) and
the ambit field X (t, x) is bounded by a power of ε.

Lemma 5 Assume that Assumptions 1 hold for some α ∈ (0, 2) and that σ, b are
Lipschitz continuous functions. Then, for any β ∈ (0, α), and ε ∈ (0, t ∧ 1),

E
[|X (t, x) − Xε(t, x)|β] ≤ Cβε

β
(
1
α
+γ̄

)
−1

,

where γ̄ : = min{γ1, γ2, γ3, γ4}.
Proof Clearly,

E
[|X (t, x) − Xε(t, x)|β]

≤ CβE

[∣∣∣∣
∫ t

t−ε

∫
Rd

1At (x)(s, y)g(t, s; x, y)(σ (s, y) − σ(t − ε, x))L(ds, dy)

∣∣∣∣
β]

+ CβE

[∣∣∣∣
∫ t

t−ε

∫
Rd

1Bt (x)(s, y)h(t, s; x, y)(b(s, y) − b(t − ε, x))dyds

∣∣∣∣
β]

.

Fix γ ∈ (α, 2] and apply Lemma 3 to the stochastic process H(s, y): = σ(s, y) −
σ(t − ε, x), where the arguments t, ε, x are fixed. We obtain
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E

[∣∣∣∣
∫ t

t−ε

∫
Rd

1At (x)(s, y)g(t, s; x, y)(σ (s, y) − σ(t − ε, x))L(ds, dy)

∣∣∣∣
β]

≤ Cα,β,γ εβ/α−1
( ∫ t

t−ε

∫
Rd

1At (x)(s, y)C̃β(s, y)1At (x)|g(t, s, x, y)|γ

× E
[|σ(s, y) − σ(t − ε, x)|γ ]

λ(ds, dy)

)β/γ

Owing to hypothesis (H2) this last expression is bounded (up to the constant
Cα,β,γ εβ/α−1) by

( ∫ t

t−ε

∫
Rd

1At (x)(s, y)C̃β(s, y)1At (x)|g(t, s, x, y)|γ

× (|t − ε − s|δ1γ + |x − y|δ2γ )
λ(ds, dy)

)β/γ

The inequality (19) implies

εβ/α−1
( ∫ t

t−ε

∫
Rd

1At (x)(s, y)C̃β(s, y)|g(t, s, x, y)|γ |t − ε − s|δ1γ λ(ds, dy)

)β/γ

≤ Cεβ( 1
α
+γ1)−1,

and (20) yields

εβ/α−1
(∫ t

t−ε

∫
Rd

1At (x)(s, y)C̃β(s, y)|g(t, s, x, y)|γ |x − y|δ2γ λ(ds, dy)

)β/γ

≤ Cεβ( 1
α
+γ2)−1.

Thus,

E

[∣∣∣∣
∫ t

t−ε

∫
Rd

1At (x)(s, y)g(t, s; x, y)(σ (s, y) − σ(t, x))L(ds, dy)

∣∣∣∣
β]

≤ Cεβ( 1
α
+[γ1∧γ2])−1. (30)

Assume that β ≥ 1 (and therefore α > 1). Hölder’s inequality with respect to the
finite measure h(t, s; x, y)dyds, (H2), (21), (22), imply

E

[∣∣∣∣
∫ t

t−ε

∫
Rd

1Bt (x)(s, y)h(t, s; x, y)(b(s, y) − b(t − ε, x))dyds

∣∣∣∣
β]

≤ Cβ

∫ t

t−ε

∫
Rd

1Bt (x)(s, y)|h(t, s, x, y)|βE[|b(s, y) − b(t − ε, x)|β]
dyds
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≤ Cβ

∫ t

t−ε

∫
Rd

1Bt (x)(s, y)|h(t, s, x, y)|β |t − ε − s|δ1βdyds

+ Cβ

∫ t

t−ε

∫
Rd

1Bt (x)(s, y)|h(t, s, x, y)|β |x − y|δ2βdyds

≤ Cεβ(γ3∧γ4).

Suppose now that β < 1, we use Jensen’s inequality and once more, (H2), (21),
(22), to obtain

E

[∣∣∣∣
∫ t

t−ε

∫
Rd

1Bt (x)(s, y)h(t, s; x, y)(b(s, y) − b(t − ε, x))dyds

∣∣∣∣
β]

≤
(
E

[ ∫ t

t−ε

∫
Rd

1Bt (x)(s, y)|h(t, s; x, y)||b(s, y) − b(t − ε, x)|dyds

])β

=
(∫ t

t−ε

∫
Rd

1Bt (x)(s, y)|h(t, s; x, y)|E[|b(s, y) − b(t − ε, x)|]dyds

)β

≤ C

( ∫ t

t−ε

∫
Rd

1Bt (x)(s, y)|h(t, s; x, y)| [|t − s|δ1 | + |x − y|δ2] dyds

)β

≤ Cεβ(γ3∧γ4).

This finishes the proof.

We are now in a position to prove Theorem 2.

Proof (Proof of Theorem2) We consider the inequality

|E[|σ(t, x)|nΔn
hφ(X (t, x))]| ≤ ∣∣E[(|σ(t, x)|n − |σ(t − ε, x)|n)

Δn
hφ(X (t, x))

]∣∣
+ ∣∣E[|σ(t − ε, x)|n(

Δn
hφ(X (t, x)) − Δn

hφ(Xε(t, x))
)]∣∣

+ ∣∣E[|σ(t − ε, x)|nΔn
hφ(Xε(t, x))

]∣∣. (31)

Fix η ∈ (0, α ∧ 1). As in (8) we have

∣∣E[(|σ(t, x)|n − |σ(t − ε, x)|n)
Δn

hφ(X (t, x))
]∣∣

≤ Cn‖φ‖C η
b
|h|ηE[∣∣|σ(t, x)|n − |σ(t − ε, x)|n∣∣]∣∣

Now we proceed as in (9) using the finiteness of the moments of σ(t, x) stated in
Hypothesis (H1), and (H2). Then for all γ ∈ (α, 2] we have

E
[∣∣|σ(t, x)|n − |σ(t − ε, x)|n∣∣]

= E

[∣∣σ(t, x) − σ(t − ε, x)
∣∣ n−1∑

j=0

|σ(t, x)| j |σ(t − ε, x)|n−1− j
]
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≤ C
(
E

[∣∣σ(t, x) − σ(t − ε, x)
∣∣γ ])1/γ

×
(
E

[( n−1∑
j=0

|σ(t, x)| j |σ(t − ε, x))|n−1− j
)γ /(γ−1)])1−1/γ

≤ Cnε
δ1 .

Therefore

∣∣E[(|σ(t, x)|n − |σ(t − ε, x)|n)
Δn

hφ(X (t, x))
]∣∣ ≤ Cn‖φ‖C η

b
|h|ηεδ1 . (32)

Consider the inequality ‖Δn
hφ‖C α

b
≤ Cn‖φ‖C α

b
, and apply Hölder’s inequality

with some β ∈ (η, α) to obtain

∣∣E[|σ(t − ε, x)|n(Δn
hφ(X (t, x)) − Δn

hφ(Xε(t, x)))
]∣∣

≤ Cn‖φ‖C η
b
E

[|σ(t − ε, x)|n|X (t, x) − Xε(t, x)|η]

≤ Cn‖φ‖C η
b

(
E

[|X (t, x) − Xε(t, x)|β])η/β(
E

[|σ(u(t − ε, 0))|nβ/(β−η)
])1−η/β

≤ Cn,β‖φ‖C η
b
ε
η
(
1
α
+γ̄

)
− η

β , (33)

where γ̄ : = min{γ1, γ2, γ3, γ4}, and we have applied Lemma 5.
Conditionally toFt−ε, the random variable

∫ t

t−ε

∫
Rd

1At (x)(s, y)g(t, s; x, y)L(ds, dy)

has an infinitely divisible law and a C∞-density pt,xε for which a gradient estimate
holds (see Lemma 4). Then, by a discrete integration by parts, and owing to (H3),

∣∣E[|σ(t − ε, x)|nΔn
hφ(Xε(t, x))

]∣∣
=

∣∣∣∣E
[ ∫

R

|σ(t − ε, x)|nΔn
hφ(U ε

t + σ(t − ε, x)y)pt,x,ε(y)dy

]∣∣∣∣
=

∣∣∣∣E
[ ∫

R

|σ(t − ε, x)|nφ(U ε
t + σ(t − ε, x)y)Δn

−σ(t−ε,x)−1h pt,x,ε(y)dy

]∣∣∣∣
≤ ‖φ‖∞E

[
|σ(t − ε, x)|n

∫
R

∣∣Δn
−σ(t−ε,x)−1h pt,x,ε(y)

∣∣dy

]
.

From Lemma 4 it follows that
∫
R

∣∣Δn
−σ(t−ε,x)−1h pt,x,ε(y)

∣∣dy ≤ Cn|σ(t − ε, x)|−n |h|n‖p(n)
t,x,ε‖L1(R)

≤ Cn|σ(t − ε, x)|−n |h|nε−nγ0/α,
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which yields

∣∣E[|σ(t − ε, x)|nΔn
hφ(Xε(t, x))

]∣∣ ≤ Cn‖φ‖C η
b
|h|nε−nγ0/α, (34)

because ‖φ‖∞ ≤ ‖φ‖C η
b
.

The estimates (31)–(34) imply

|E[|σ(t, x)|nΔn
hφ(X (t, x))]| ≤ Cn,β‖φ‖C η

b

(|h|ηεδ1 + ε
η
(
1
α
+γ̄

)
− η

β + |h|nε−nγ0/α
)

Set ε = t
2 |h|ρ , with |h| ≤ 1 and

ρ ∈
(

αβ

β + αβγ̄ − α
,
α(n − η)

nγ0

)
.

Notice that, since limn→∞ α(n−η)
nγ0

= α
γ0
, for β close to α and γ0 as in the hypothesis,

this interval is nonempty. Then, easy computations show that with the choices of ε

and ρ, one has

|h|ηεδ1 + ε
η
(
1
α
+γ̄

)
− η

β + |h|nε−nγ0/α ≤ 3|h|ζ ,

with ζ > η. Hence, with Lemma 1 we finish the proof of the theorem.

Remark 3 (i) If σ is bounded away from zero, then one does not need to assume
the existence of moments of sufficiently high order. In this case one can follow
the strategy in [20].

(ii) The methodology used in this section is not restricted to pure-jump stable-like
noises. One can also adapt it to the case of Gaussian space-time white noises.
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Dynamic Risk Measures and Path-Dependent
Second Order PDEs

Jocelyne Bion-Nadal

Abstract We propose new notions of regular solutions and viscosity solutions for
path-dependent second order partial differential equations.Making use of themartin-
gale problem approach to path-dependent diffusion processes, we explicitly construct
families of time-consistent dynamic risk measures on the set of càdlàg paths IRn val-
ued endowed with the Skorokhod topology. These risk measures are shown to have
regularity properties. We prove then that these time-consistent dynamic risk mea-
sures provide viscosity supersolutions and viscosity subsolutions for path-dependent
semi-linear second order partial differential equations.

Keywords Path-dependent PDE · Risk measures · Martingale problems

MSC: 35D40 · 35R15 · 35K55 · 60J60 · 91B30

1 Introduction

Diffusion processes are linked with parabolic second order Partial Differential
Equations via the “Feynman-Kac” formula. The field of path-dependent PDEs first
started in 2010 when Peng asked in [19] whether a BSDE (Backward Stochastic
Differential Equation first introduced in [17]) could be considered as a solution to a
path-dependent PDE. In line with the recent literature on the topic, a solution to a
path-dependent second order PDE

H(u, ω, φ(u, ω), ∂uφ(u, ω), Dxφ(u, ω), D2
xφ(u, ω)) = 0 (1)

is searched as a progressive function φ(u, ω) (i.e. a path dependent function depend-
ing at time u on all the path up to time u).
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In contrast with the classical setting, the notion of regular solution for a path-
dependent PDE (1) needs to deal with càdlàg paths. Indeed to give a meaning to
the partial derivatives Dxφ(u, ω) and D2

xφ(u, ω) at (u0, ω0), one needs to assume
that φ(u0, ω) is defined for paths ω admitting a jump at time u0. Peng has intro-
duced in [20] a notions of regular and viscosity solution for path-dependent second
order PDEs. In [20] a regular or a viscosity solution for a path-dependent PDE is a
progressive function φ(t, ω) defined on the space of càdlàg paths endowed with the
uniform norm topology and the notion of continuity and partial derivatives are those
introduced by Dupire [12]. A comparison theorem is proved in this setting [20].
The motivation comes mainly from the theory of BSDE and examples of regular
solutions to path-dependent PDEs can be constructed from BSDEs [18]. The main
drawback for this approach based on [12] is that the uniform norm topology on the
set of càdlàg paths is not separable, hence it is not a Polish space. Recently Ekren et
al. proposed a notion of viscosity solution for path-dependent PDEs in the setting of
continuous paths in [13, 14]. This work was motivated by the fact that a continuous
function defined on the set of continuous paths does not have a unique extension
into a continuous function on the set of càdlàg paths. Therefore it is suitable that
the notion of viscosity solution for functions defined only on the set of continuous
paths does not require to extend the function to the set of càdlàg paths. The approach
developed in [13, 14] is also based on BSDE.
In the present paper we introduce a new notion of regular and viscosity solution
for path-dependent second order PDEs (Sect. 2). A solution to (1) is a progressive
functionφ defined on IR+×Ω whereΩ is the set of càdlàg paths. In contrast with [20]
and many works on path-dependent problems, we consider the Skorokhod topology
on the set of càdlàg paths. Thus Ω is a Polish space. This property is very important.
To define the continuity and regularity properties for a progressive function, wemake
use of the one to one correspondence between progressive functions on IR+ × Ω

and strictly progressive functions on IR+ × Ω × IRn established in [3]. A function
φ defined on IR+ × Ω is progressive if φ(s, ω) = φ(s, ω′) as soon as ω(u) = ω′(u)

for all 0 ≤ u ≤ s. A function φ defined on IR+ × Ω × IRn is strictly progressive
if φ(s, ω, x) = φ(s, ω′, x) as soon as ω(u) = ω′(u) for all 0 ≤ u < s. The one to
one correspondence is given by φ(s, ω, x) = φ(s, ω ∗s x) where (ω ∗s x)(u) = ω(u)

for all 0 ≤ u < s and (ω ∗s x)(u) = x for all u ≥ s. The continuity and regularity
properties that we want for a progressive function φ are derived from the usual
continuity and regularity properties for φ via the above one to one correspondence.
For example, Dxφ(u, ω) is defined as Dxφ(u, ω) := Dxφ(u, ω, ω(u)) where Dxφ is
the usual partial derivative of φ with respect to the third variable. Notice that via the
above one to one correspondence, the regularity properties for a progressive function
φ are defined in a very natural way. This is in contrast with the most commonly used
regularity definitions first introduced in [12].
The notion of viscosity solution that we introduce in the present paper is motivated
by our construction of a solution to semi-linear second order path-dependent PDEs
based on the martingale problem approach.
Our study for viscosity solutions of path-dependent PDEs allows then to introduce a
new definition of viscosity solution for path-dependent functions defined only on the
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set of continuous paths. As in [13, 14], this does not require to extend the function
nor the coefficient functions appearing in the path-dependent PDE to the set of càdlàg
paths. However our approach is very different from the one introduced in [13, 14].
In the present paper we construct then time consistent dynamic risk measures on the
set Ω of càdlàg paths, to produce solutions for path-dependent semi-linear second
order PDEs.

{
∂uv(u, ω) + L av(u, ω) + f (t, ω, Dxv(u, ω)) = 0 on [0, t] × Ω

v(t, ω) = h(ω)
(2)

withL av(u, ω) = 1
2Tr[a(u, ω)D2

xv(u, ω)].
These dynamic risk measures are constructed using probability measures solution
to a path-dependent martingale problem. This approach is motivated by the Feyn-
man Kac formula and more specifically by the link between solutions of a parabolic
second order PDE and probability measures solutions to a martingale problem. The
martingale problem has been first introduced and studied by Stroock and Varadhan
[10, 11] in the case of continuous diffusion processes. The martingale problem is
linked to stochastic differential equations. However the martingale problem formu-
lation is intrinsic and is very well suitable to construct risk measures. In [22] the
martingale problem has been extended and studied to the case of jump diffusions. In
[3], the study of themartingale problem is extended to the path-dependent casewhich
means that the functions a and b (and also the jump measure) are no more defined
on IR+ × IRn but on IR+ ×Ω . The question of existence and uniqueness of a solution
to a path-dependent martingale problem is addressed in [3] in a general setting of
diffusions with a path-dependent jump term. In the case where there is no jump term
and under Lipschitz conditions on the coefficients, the existence and uniqueness of a
solution has been already established in [8] from the stochastic differential equation
point of view.

In Sect. 3, we recall some results from [3] on the martingale problem for path-
dependent diffusion processes and study the support of a probabilitymeasure solution
to the path-dependent martingale problem for L a,b.

The theory of dynamic risk measures on a filtered probability space has been
developped in recent years. In the case of a Brownian filtration, dynamic risk mea-
sures coincide with g-expectations introduced by Peng [21]. An important property
for dynamic risk measures is time consistency. The time consistency property for
dynamic risk measures is the analogue of the Dynamic Programming Principle. For
sublinear dynamic risk measures time consistency has been characterized by Del-
baen [9]. For general convex dynamic risk measures two different characterizations
of time consistency have been given. One by Cheridito et al. [7], the other by Bion-
Nadal [5]. This last characterization of time consistency is very useful in order to
construct time consistent dynamic risk measures.

Following [5], one can construct a time consistent dynamic risk measure as soon
as one has a stable set of equivalent probability measures Q and a penalty defined
on Q satisfying some conditions. In Sect. 4, we construct a stable set of probability
measures on the set Ω of càdlàg paths. In the whole paper a is a given bounded
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progressively continuous function defined on IR+ ×Ω such that a(s, ω) is invertible
for all (s, ω). For all r ≥ 0 andω ∈ Ω the set of probability measuresQr,ω is a stable
set generated by probability measures Qa,b

r,ω solution to the martingale problem for
L a,b starting from ω at time r. The functions b are assumed to satisfy some uniform
BMO condition. In Sect. 5 we construct penalties on the stable setQr,ω from a path-
dependent function g. Some growth conditions are assumed on the function g to
ensure integrability properties for the penalties. With such a stable set and penalties,
we construct in Sect. 6 time consistent convex dynamic riskmeasures.More precisely
for all r and ω we construct a time consistent convex dynamic risk measure ρ

r,ω
s,t on

the filtered probability space (Ω, (Bt), Qa
r,ω) where Qa

r,ω means Qa,0
r,ω and (Bt) is

the canonical filtration.
We prove furthermore in Sect. 7 that these time consistent dynamic risk measures

satisfy the following Feller property: Let Ct be the set of Bt measurable functions
h defined on Ω which can be written as h(ω) = k(ω, ω(t)) for some continuous
function k on Ω × IRn such that k(ω, x) = k(ω′, x) if ω(u) = ω′(u) for all u < t.
Then for all h in Ct , there is a progressively lower semicontinuous function R(h) on
[0, t] × Ω such that R(h)(t, ω) = h(ω),

ρ
r,ω0
r,t (h) = R(h)(r, ω0)∀0 ≤ r ≤ t

Furthermore, for all 0 ≤ r ≤ s ≤ t,

ρ
r,ω0
s,t (h)(ω′) = R(h)(s, ω′) Qa

r,ω0
a.s.

We prove furthermore in Sect. 8 that the lower semicontinuous function R(h) is
a viscosity supersolution for the path-dependent semi linear second order partial
differential equation (2). The function f : IR+ × IRn × IRd → IR appearing in Eq. (2)
is linked to the choice of the penalty of the risk measure. It is convex in the last
variable.
We prove also that the upper semi-continuous envelope of R(h) is a viscosity subso-
lution for (2).
When the above function h is defined only on the set of continuous paths, it is the same
for the function R(h). We prove then that R(h) provides a viscosity supersolution and
a viscosity subsolution for (2) on the set of continuous paths.

2 Solution of Path-dependent PDEs

In this sectionwe introduce newnotions for regular and viscosity solutions for second
order path-dependent PDEs on the set of càdlàg paths. In contrast with [20] and all
the papers using the notions of continuity and derivative introduced by Dupire [12],
we work with the Skorohod topology on the set of càdlàg paths. A solution to a
path-dependent PDE (1) is a progressive function φ(t, ω)where t belongs to IR+ and
ω belongs to the set of càdlàg paths.
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2.1 Topology and Regularity Properties

In the whole paper Ω denotes the set of càdlàg paths with the Skorohod topology.
The setΩ is then a Polish space (i.e. is metrizable and separable). Polish spaces have
nice properties which are very important in the construction of solutions for path-
dependent PDEs. Among them are the existence of regular conditional probability
distributions, the equivalence between relative compactness and tightness for a set
of probability measures, to name a few.
To define the continuity and regularity properties for progressive functions, we use
the one to one correspondence between progressive functions on IR+×Ω and strictly
progressive functions on IR+ × Ω × IRn that we have established in [3].
A function φ defined on IR+ × Ω is progressive if φ(s, ω) = φ(s, ω′) as soon as
ω(u) = ω′(u) for all 0 ≤ u ≤ s.
A function φ defined on IR+ × Ω × IRn is strictly progressive if φ(s, ω, x) =
φ(s, ω′, x) as soon as ω(u) = ω′(u) for all 0 ≤ u < s.

The one to one correspondence φ → φ is given by φ(s, ω, x) = φ(s, ω ∗s x) where

ω ∗s x(u) = ω(u) ∀ 0 ≤ u < s and ω ∗s x(u) = x ∀ u ≥ s. (3)

Notice that φ(s, ω) = φ(s, ω, ω(s)). Accordingly a progressive function φ (in 2
variables (s, ω)) is said to be progressively continuous if the associated function φ

(in 3 variables (s, ω, x)) is continuous on IR+ × Ω × IRn.

2.2 Regular Solution

Making use of the one to one corrrespondence between progressive functions on
IR+ × Ω and strictly progressive functions on IR+ × Ω × IRn, we can then give the
following definition for a solution to a general path-dependent PDE.

Definition 1 Let v be a progressive function on IR+ × Ω where Ω is the set of
càdlàg paths with the Skorokhod topology. v is a regular solution to the following
path-dependent second order PDE

H(u, ω, v(u, ω), ∂uv(u, ω), Dxv(u, ω), D2
xv(u, ω)) = 0 (4)

if the function v belongs to C 1,0,2(IR+ ×Ω × IRn) and if the usual partial derivatives
of v satisfy the equation

H(u, ω ∗u x, v(u, ω, x), ∂uv(u, ω, x), Dxv(u, ω, x), D2
xv(u, ω, x) = 0 (5)

with v(u, ω, x) = v(u, ω ∗u x)
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(ω ∗u x)(s) = ω(s) ∀s < u, and (ω ∗u x)(s) = x ∀s ≥ u. The partial derivatives of v
are the usual ones, the continuity notion for v is the usual one.

2.3 Viscosity Solutions on the Set of Càdlàg Paths

The following definitions are motivated by the construction of viscosity solutions for
path-dependent PDEs that we develop in the following sections. Our construction of
solutions is based on themartingale problem approach for path-dependent diffusions.
The support of every probability measure Qa,b

r,ω0
solution to the martingale problem

forL a,b starting fromω0 at time r is contained in the set of pathswhich coincidewith
ω0 up to time r. This is a motivation for the following weak notion of continuity and
also for the weak notion of local minimizer (or local maximizer) that we introduce
in the definition of viscosity solution.

Definition 2 A progressively measurable function v defined on IR+ × Ω is contin-
uous in viscosity sense at (r, ω0) if

v(r, ω0) = lim
ε→0

{v(s, ω), (s, ω) ∈ Dε(r, ω0)} (6)

where

Dε(r, ω0) = {(s, ω), r ≤ s < r + ε, ω(u) = ω0(u), ∀0 ≤ u ≤ r

ω(u) = ω(s) ∀u ≥ s, and sup
r≤u≤s

||ω(u) − ω0(r)|| < ε} (7)

v is lower (resp. upper) semi continuous in viscosity sense if Eq. (6) is satisfied
replacing lim by lim inf (resp. lim sup).

Definition 3 Let v be a progressively measurable function on (IR+ × Ω, (Bt))

where Ω is the set of càdlàg paths with the Skorokhod topology and (Bt) the canon-
ical filtration.

1. v is a viscosity supersolution of (4) if v is lower semi-continuous in viscosity
sense, and if for all (t0, ω0) ∈ IR+ × Ω ,

• v is bounded from below on Dε(t0, ω0) for some ε > 0.
• for all strictly progressive function φ ∈ C 1,0,2

b (IR+ × Ω × IRn) such that
v(t0, ω0) = φ(t0, ω0), and (t0, ω0) is a minimizer of v − φ on Dε(t0, ω0) for
some ε > 0,

H(u, ω ∗u x, φ(u, ω, x), ∂uφ(u, ω, x), Dxφ(u, ω, x), D2
xφ(u, ω, x) ≥ 0 (8)

at point (t0, ω0, ω0(t0)).
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2. v is a viscosity subsolution of (4) if v is upper semi-continuous in viscosity sense,
and for all (t0, ω0),

• v is bounded from above on Dε(t0, ω0) for some ε > 0
• for all strictly progressive function φ ∈ C 1,0,2

b (IR+ × Ω × IRn) such that
v(t0, ω0) = φ(t0, ω0), and (t0, ω0) is a maximizer of v − φ on Dε(t0, ω0) for
some ε > 0,

H(u, ω ∗u x, φ(u, ω, x), ∂uφ(u, ω, x), Dxφ(u, ω, x), D2
xφ(u, ω, x) ≤ 0 (9)

at point (t0, ω0, ω0(t0)).

3. v is a viscosity solution if v is both a viscosity supersolution and a viscosity
subsolution.

2.4 Viscosity Solution on the Set of Continuous Paths

Recently Ekren et al. [13, 14] introduced a notion of viscosity solution of a path-
dependent second order PDE for a function v defined on the set of continuous paths.
One motivation for this was to define the notion of viscosity solution without extend-
ing the function v to the set of càdlàg paths.
We can notice that within our setting we can also define a notion of viscosity solution
for a function v defined only on the set of continuous paths without extending v. We
give the following definition which is very different from that of [13, 14] and much
simpler.

Definition 4 Let v be a progressively measurable function defined on IR+ ×
C (IR+, IRn) with the usual uniform norm topology. v is a viscosity supersolu-
tion of (4) if v is lower semi-continuous in viscosity sense and for all (t0, ω0) ∈
IR+ × C (IR+, IRn)

• v is bounded from below on D̃ε(t0, ω0) for some ε > 0,
• for all function strictly progressiveφ ∈ C 1,0,2

b (IR+×Ω×IRn) such that v(t0, ω0) =
φ(t0, ω0), and (t0, ω0) is a minimizer of v − φ on D̃ε(t0, ω0) for some ε > 0,

H(u, ω ∗u x, φ(u, ω, x), ∂uφ(u, ω, x), Dxφ(u, ω, x), D2
xφ(u, ω, x) ≥ 0 (10)

at point (t0, ω0, ω0(t0)).
HereΩ is the set of càdlàgpathswith theSkorokhod topology, D̃ε is the intersection
of Dε with the set of continuous paths, and φ(u, ω) = φ(u, ω, ω(u)).

The lower semi-continuity property in viscosity sense at (t0, ω0) in Definition 4
means

v(t0, ω0) = lim
ε→0

{v(s, ω), (s, ω) ∈ D̃ε(t0, ω0)}
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We have a similar definition for a viscosity subsolution. Notice that the continuity
along the sets D̃ε is also considered in [13, 14]. However the notion of viscosity
solution introduced in [13, 14] is fundamentally different from ours.
We will now construct time consistent dynamic risk measures making use of proba-
bility measures solution to a path-dependent martingale problem.We will then prove
that this leads to viscosity solutions to path-dependent PDEs (2).

3 Path-dependent Martingale Problem

In the classical setting, the Feynman Kac formula establishes a link between a solu-
tion of a parabolic second order PDE and probability measures solutions to a mar-
tingale problem. Assume that v is a solution of the PDE ∂uv(t, x)+L a,bv(t, x) = 0,
v(T , .) = h with

L a,bv(t, x) = 1

2
Tr(a(t, x))D2

x(v)(t, x) + b(t, x)∗Dxv(t, x)

From the Feynman Kac formula, the value v(t, x) can be expressed from the prob-
ability measure Qa,b

t,x solution to the martingale problem associated to the operator
L a,b starting from x at time t. v(t, x) = EQa,b

t,x
(h(XT )), where (Xu) is the canonical

process.
One natural way to construct soliutions for path-dependent parabolic second order
partial differential equations is thus to start with probability measures solution to
the path-dependent martingale problem associated to the operator L a,b for path-
dependent coefficients a and b. Let Ω be the set of càdlàg paths and (Bt) be the
canonical filtration. Let a and b be progressively measurable functions on IR+ × Ω

(a takes values in non negative invertible matrices and b in IRn). Let L a,b be the
operator defined on C 2

b (IRn) by

L a,b(t, ω) = 1

2

n∑
1

aij(t, ω)
∂2

∂xi∂xj
+

n∑
1

bi(t, ω)
∂

∂xi
(11)

Definition 5 Let r ≥ 0, ω0 ∈ Ω . A probability measure Q defined on (Ω, (Bt))

is a solution to the path-dependent martingale problem forL a,b starting from ω0 at
time r if

Q({ω ∈ Ω |ω(u) = ω0(u)∀0 ≤ u ≤ r}) = 1

and if for all f ∈ C 1,2
b (IR+ × IRn), and all t, (Za,b

r,t )r≤t given by

Za,b
r,t = f (t, Xt(ω)) − f (r, Xr(ω)) −

∫ t

r
(

∂

∂u
+ La,b(u, ω))(f )(u, Xu(ω))du (12)

is a (Q, (Bt)) martingale.
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In [3] we have studied the more general martingale problem associated with path-
dependent diffusions with jumps. We have shown that the good setting to prove
that the martingale problem is well posed is to deal with diffusions operators whose
coefficients a and b are progressively continuous.

Recall the following result from [3].

Theorem 1 1. Let a be a progressively continuous bounded function defined on
IR+ × Ω with values in the set of non negative matrices. Assume that a(s, ω) is
invertible for all (s, ω). Let b be a progressively measurable bounded function
defined on IR+ × Ω with values in IRn. For all (r, ω0), the martingale problem
for L a,ab starting from ω0 at time r is well posed i.e. admits a unique solution
Qa,ab

r,ω0
on the set of càdlàg paths.

2. Assume furthermore that b is progressively continuous bounded. Consider the
set of probability measures M1(Ω) equipped with the weak topology. Then the
map

(r, ω, x) ∈ IR+ × Ω × IRn → Qa,ab
r,ω∗rx ∈ M1(Ω)

is continuous on {(r, ω, x) | ω = ω ∗r x}.

3.1 The Role of Continuous Paths

In all the following Qa
r,ω0

means Qa,0
r,ω0

We start with a result which proves that the probability measure Qa,ab
r,ω0

is supported
by paths which are continuous after time r.

Proposition 1 Every probability measure Qa,ab
r,ω0

solution to the martingale problem
for L a,ab starting from ω0 at time r is supported by paths which are continuous after
time r, i.e. continuous on [r,∞[.
More precisely

Qa,ab
r,ω0

({ω, ω(u) = ω0(u) ∀u ≤ r, and ω|[r,∞[ ∈ C ([r,∞[, IRn)} = 1

Proof The probability measure Qa,ab
r,ω0

is equivalent with Qa
r,ω0

. Thus we can assume
that b = 0.
The function a is progressively continuous. This means that the function a is contin-
uous. Let an be the 1

n delayed function defined as an(u, ω, x) = a(u − 1
n , ω, x) for

all u ≥ r + 1
n and an(u, ω, x) = a(r, ω, x) for all 0 ≤ u ≤ r + 1

n . The function an

is also progressively continuous. Given n, let tn
k be an increasing sequence such that

tn
0 = r and |tn

k+2 − tn
k | < 1

n .
On a Polish space for every subsigma algebra of the Borel sigma algebra there
exists a regular conditional probability distribution. It follows from [22] and the
uniqueness of the solution for L an,0 starting from ω at time tn

k , that for all tn
k ,

Qan
tn
k ,ω

(ξ) = EQan
r,ω0

(ξ |Btn
k
)(ω) for Qan

r,ω0 almost all ω. Let an,ω(u, x) = an(u, ω, x)
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Let Ak = {ω′, ω′
[tn

k ,tn
k+2[ ∈ C ([tn

k , tn
k+2[)}. Given ω the function an,ω is not path-

dependent. It follows then from [11] that Q
an,ω

tn
k ,ω

is supported by paths continuous on

[tn
k ,∞[. We remark that an(u, ω′, x) = an,ω(u, x) for all tn

k ≤ u ≤ tn
k+2 and all ω′

such that ω′(u) = ω(u) for all u ≤ tn
k . It follows that Qan

tn
k ,ω

(Ak) = 1 for all ω. We

deduce by induction that Qan
r,ω0({ω′, ω′|[r,∞[ ∈ C ([r,∞[, IRn)} = 1.

The an being uniformly bounded, for given r and ω0, the set of probabilty mea-
sures {Qan

r,ω0 , n ∈ IN∗} is weakly relatively compact. There is a subsequence weakly
converging to a probability measure Q. From the continuity assumption on a, it fol-
lows that Q solves the martingale problem for L a,0 starting from ω0 at time r. The
uniqueness of the solution to this martingale problem implies that Q = Qa

r,ω0
. The

set {ω′, ω′|[r,∞[ ∈ C ([r,∞[, IRn)} is a closed subset of Ω . It follows from
the Portmanteau Theorem, see e.g. [2] Theorem 2.1, that Qa

r,ω0
({ω′, ω′|[r,∞[ ∈

C ([r,∞[, IRn)} = 1

Corollary 1 For all continuous path ω0 and all r, the support of the probability
measure Qa,ab

r,ω0
is contained in the set of continuous paths:

Qa,b
r,ω0

C ([IR+, IRn)) = 1

Remark 1 In the simpler case where the function a is only defined on the set of con-
tinuous paths, the continuity hypothesis is just the usual continuity hypothesis for a
function defined on IR+ × C ([IR+, IRn)) for the uniform norm topology. The asso-
ciated martingale problem: probability measure solution to the martingale problem
forL a,0 starting from ω0 at time r can only be stated for initial continuous paths ω0
(otherwise the path-dependent function a(u, ω) should be defined for paths ω which
can have jumps before time u).

4 Stable Set of Probability Measures Solution to a
Path-dependent Martingale Problem

In all the paperΩ denotes the set of càdlàg paths endowed with the Skorokhod topol-
ogy. From now on, a(s, ω) is a given progressively continuous function on IR+ × Ω

with values in non negative matrices. We assume that a is bounded and that a(s, ω)

is invertible for all (s, ω). The explicit construction of dynamic risk measures devel-
oped here, making use of probability measures solutions to a martingale problem
was first initiated in the unpublished preprint [4] in the Markovian case. We have
introduced in [5] a general method to construct time consistent convex dynamic risk
measures. This construction makes use of two tools. The first one is a setQ of equiv-
alent probability measures stable by composition and stable by bifurcation (cf. [5]
Definition 4.1). The second one consists in penalties αs,t(Q), s ≤ t defined for every
probability measure Q inQ, satisfying the local condition and the cocycle condition.
The corresponding definitions are recalled in the Appendix.
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4.1 Multivalued Mapping and Continuous Selector

Definition 6 X denotes the quotient of IR+ × Ω × IRn by the equivalence relation
∼: (t, ω, x) ∼ (t′, ω′, x′) if t = t′, x = x′ and ω(u) = ω′(u)∀u < t. The metric
topology onX is induced by the one to onemap fromX into a subset of IR+×Ω×IRn:
(t, ω, x) → (t, ω ∗t x, x),
where ω ∗t x has been defined in Sect. 2.2 Eq. (3).

The following observation is straightforward.

Remark 2 The set X is equipped with the metric topology defined above. Then every
progressively continuous map on IR+ × Ω defines a unique continuous map on X.
Furthermore every map continuous on the subset {(r, ω, x), ω = ω ∗r x} of IR+ ×
Ω × IRn defines also a unique continuous map on X.

Recall now the definition of a multivalued mapping from X to Y . We use here the
terminology chosen in [9]. Notice that the terminology used in [1] for multivalued
mapping is correspondence.

Definition 7 A multivalued mapping Λ from X into IRn is a map Λ defined on X
such that for all (t, ω, x) ∈ X , Λ(t, ω, x) is a subset of IRn. It can have additional
properties:

1. Λ is convex if ∀(t, ω, x) ∈ X , Λ(t, ω, x) is a convex subset of IRn.
2. Λ is closed if for all (t, ω, x), Λ(t, ω, x) is closed.

Recall the following definition of a continuous selector (Definition16.57 of [1]).

Definition 8 A selector from a multivalued mappingΛ fromX into IRn is a function
s : X → IRn such that s(t, ω, x) ∈ Λ(t, ω, x) for all (t, ω, x) ∈ X. A continuous
selector is a selector which is continuous.

Recall the following definition from [1] (Definition16.2 and Lemma16.5):

Definition 9 A multivalued mapping Λ from X into IRn is lower hemicontinuous if
it satisfies the following equivalent conditions

• For every closed subset F of IRn, Λu(F) = {(t, ω, x) ∈ X : Λ(t, ω, x) ⊂ F} is
closed

• For every open subset V of IRn, Λl(V ) = {(t, ω, x) ∈ X : Λ(t, ω, x) ∩ V = ∅} is
open

Recall the following Michael Selection Theorem (cf. [1] Theorem16.61)

Theorem 2 A lower hemicontinuous mapping from a paracompact space into a
Banach space with non empty closed convex values admits a continuous selector.

Recall also that every metrizable space is paracompact (Theorem 2.86 of [1]).

http://dx.doi.org/10.1007/978-3-319-23425-0_16
http://dx.doi.org/10.1007/978-3-319-23425-0_16
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4.2 Stable Set of Probability Measures Associated to a
Multivalued Mapping

In all the following,Λ is a closed convex lower hemicontinuousmultivaluedmapping
from X into IRn. In the following (Xt) denotes the canonical process on Ω : For all
càdlàg path ω, Xt(ω) = ω(t). (Bt) is the canonical filtration.
Given the progressively continuous matrix valued map a, given r ≥ 0, and ω ∈ Ω ,
we want to associate to Λ a stable set Qr,ω(Λ) of probability measures on (Ω,B)

all equivalent with the probability measure Qa
r,ω on Bt . Furthermore we want to

construct a continuous function v on X . Therefore we start with continuous selectors
λ from Λ.

Definition 10 Let a be progressively continuous bounded defined on IR+ × Ω with
values in non negative matrices, such that a(t, ω) is invertible for all (t, ω). Let Λ be
a closed convex lower hemicontinuous multivalued mapping from X into IRn.

• We define L(Λ) to be the set of continuous bounded selectors from themultivalued
mapping Λ.

• For given r ≥ 0 and ω ∈ Ω , the set Q̃r,ω(Λ) is the stable set of probability
measures generated by the probability measures Qa,aλ

r,ω , λ ∈ L(Λ) with λ(t, ω′) =
λ(t, ω′, Xt(ω

′))

(
dQa,aλ

r,ω

dQa
r,ω

)BT
= exp[

∫ T

r
〈λ(t, ω′), dXt〉 − 1

2

∫ T

r
〈λ(t, ω′), a(t, ω′)λ(t, ω′)〉dt]

We give now a description of the set Q̃r,ω(Λ).

Definition 11 We define L̃(Λ) to be the set of processes μ such that there is a finite
subdivision 0 = s0 < ·· < si < si+1 · · < sk < ∞. There is a continuous selector
λ0,i0 in L(Λ). And for all 0 < i ≤ k there is a finite partition (Ai,j)j∈Ii of Ω intoBsi

measurable sets, and continuous selectors λi,j in L(Λ) such that

∀si < u ≤ si+1, ∀ω′ ∈ Ω, μ(u, ω′, x) =
∑
j∈Ii

λi,j(u, ω′, x)1Ai,j (ω
′)

∀sk < u ∀ω′ ∈ Ω, μ(u, ω′, x) =
∑
j∈Ik

λk,j(u, ω′, x)1Ak,j (ω
′)

∀u ≤ s0, ∀ω′ ∈ Ω, μ(u, ω′, x) = λ0,i0(u, ω′, x) (13)

Remark 3 Every processμ in L̃(Λ) is bounded strictly progressive andP×B(IRn)

measurable whereP is the predictable sigma algebra. However there is no uniform
bound.
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Proposition 2 1. Let a be as above and μ ∈ L̃(Λ). For all r ≥ 0 and all ω ∈ Ω ,
there is a unique solution to the martingale problem for L a,aμ starting from
ω at time r with μ(u, ω) = μ(u, ω, ω(u)). Furthermore for all r < s, the
map ω′ → Qa,aμ

s,ω′ is Bs measurable and is a regular conditional probability

distribution of Qa,aμ
r,ω given Bs.

2. Given 0 ≤ r, the set Q̃r,ω(Λ) is the set of all probability measures Qa,aμ
r,ω for

some process μ belonging to L̃(Λ).

Proof Let μ ∈ L̃(Λ). There is a finite subdivision 0 = s0 < · · · < si < si+1 <

· · · sk < ∞ such that μ is described by Eq. (13). Let r and ω. We prove first by
induction on k that there is a unique solution Q to the martingale problem forL a,aμ

starting from ω at time r and that Q belongs to Q̃r,ω(Λ).
For k = 0 the result is true by hypothesis.

Inductive step: Assume that k ≥ 1 and that the result is proved for k − 1. Let Q be a
solution to themartingale problem forL a,aμ starting fromω at time r. LetQsk ,ω

′ be a
regular conditional probability distribution of Q givenBsk . From [22] it follows that
for Q almost all ω′ in Ak,j, Qsk ,ω

′ is a solution to the martingale problem forL a,aλk,j

starting from ω′ at time sk . The martingale problem for L a,aλk,j is well posed. Let

Q
a,aλk,j

sk ,ω
′ be the unique solution to the martingale problem for L a,aλk,j starting from

ω′ at time sk . It follows that Qsk ,ω
′ = Q

a,aλk,j

sk ,ω
′ on Ak,j Q a.s. Thus for all ξ ,

EQ(ξ |Bsk )(ω
′) =

∑
j∈Ik

1Ak,j (ω
′)Qa,aλk,j

sk ,ω
′ (ξ)

EQ(ξ |Bsk ) =
∑
j∈Ik

1Ak,j EQ
a,aλk,j
r,ω′

(ξ |Bsk ) (14)

On the other hand the restriction ofQ toBsk is a solution to themartingale problem for
L a,aν where ν ∈ L̃(Λ) is associated to the subdivision (si)0≤i≤k−1 and ν coincides
with μ on Bsk . From the induction hypothesis it follows that the restriction of Q to
Bsk is uniquely determined, it coincides with Qa,aν

r,ω and it belongs to Q̃r,ω(Λ).
The end of the proof of the inductive step follows then from Eq. (14), from the Bsk

measurability of the map ω′ → Q
a,aλk,j

sk ,ω
′ (ξ) and from the definition of Q̃r,ω(Λ).

On the other hand it is easy to verify that the set {Qa,aμ
r,ω : μ ∈ L̃(Λ)} is stable. �

5 Construction of Penalties

In the preceding section we have constructed for all given (r, ω) a stable set of
probabilitymeasures Q̃r,ω(Λ) associated to amultivaluedmappingΛ. In this section
we construct penalties αst(Q) for all r ≤ s ≤ t and all Q ∈ Q̃r,ω(Λ) making use of
a function g.
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Let g : IR+×Ω×IRn → IR∪{+∞} be a progressivelymeasurable function. LetΛ be
a closed convexmultivaluedBorelmapping such that for all (t, ω, x) ∈ IR+×Ω×IRn,
{0} ⊂ Λ(t, ω, x) ⊂ {y ∈ IRn| g(t, ω ∗t x, y) < ∞}. Define f as follows:

∀z ∈ IRd f (t, ω, z) = sup
y∈Λ(t,ω,Xt(ω))

(−z.y − g(t, ω, y)) (15)

The following lemma is straightforward:

Lemma 1 For all (t, ω), f (t, ω, .) is a closed convex function which is the dual
transform of the function g̃(t, ω, .) where

g̃(t, ω, y) = g(t, ω, y) if y ∈ Λ(t, ω, Xt(ω))

= +∞ else (16)

For every (t, ω) dom(g̃(t, ω, .)) = Λ(t, ω, Xt(ω))

If g(t, ω, 0) = 0 ∀(t, ω), f takes values in [0,∞].
If g takes values in [0,∞] and satisfies ∀(t, ω), infy∈Λ(t,ω,Xt(ω))g(t, ω, y) = 0 then
for all (t, ω), f (t, ω, 0) = 0.

Notice that, sinceΛ is a closed convexmultivaluedmapping, replacing g by g̃, one
can always assume that for all (t, ω), dom(g(t, ω, .) = {y ∈ IRd |g(t, ω, y) < ∞} is
closed, convex and equal to Λ(t, ω, Xt(ω)). We assume this in all the remainder.

Definition 12 1. g satisfies the following polynomial growth condition (GC1) if
there is K > 0, m ∈ IN∗ and ε > 0 such that

∀y ∈ Λ(u, ω, Xu(ω)), |g(u, ω, y)| ≤ K(1+sup
s≤u

||Xs(ω)||)m(1+||y||2−ε) (17)

2. g satisfies the growth condition (GC2) if there is K > 0 such that

∀y ∈ Λ(u, ω, Xu(ω)), |g(u, ω, y)| ≤ K(1 + ||y||2) (18)

Recall the following definition of BMO processes.

Definition 13 Let C > 0. Let P be a probability measure. A progressively measur-
able process μ belongs to BMO(P) and has a BMO norm less or equal to C if for all
stopping times τ ,

EP(

∫ ∞

τ

||μs||2ds|Fτ ) ≤ C

Recall also from [15] that the stochastic exponential E (μ) of a BMO process μ

is uniformly integrable, and that the BMO norms with respect to P and P(E (μ).)

are equivalent. Also from [15], for all C > 0 there is 1 < p0 < ∞ such that for all
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BMO(P) process μ with ||μ||BMO(P) ≤ C, the stochastic exponential E (μ) satisfies
the reverse Hölder inequality:

[EP(E (μ)p0 |Bs)]
1

p0 ≤ KCE (μ)s (19)

Definition 14 Assume that g is non negative or satisfies one of the growth conditions
(GC1) or (GC2). Let 0 ≤ r ≤ T . For all BMO(Qa

r,ω) process μ Λ-valued, for all
r ≤ s ≤ t ≤ T , define the penalty αs,t(Q

a,aμ
r,ω ) as follows

αs,t(Q
a,aμ
r,ω ) = EQa,aμ

r,ω
(

t∫
s

g(u, ω, μ(u, ω))du|Bs) (20)

We need to verify that the penalties are well defined for all BMO processes and that
they satisfy the local property and the cocycle condition. (Definition introduced in
[5], Definition 4.3 and recalled in the Appendix).

Proposition 3 Assume that the process μ belongs to BMO(Qa
r,ω). Let C such that

||μ||BMO(Qa
r,ω) ≤ C.

•1. Assume that g satisfies the growth condition (GC1). Then Eq. (20) defines a
random variable in Lp(Qa

r,ω) for all 1 ≤ p < ∞, and for given p, the Lp(Qa
r,ω)

norms of αs,t(Q
a,aμ
r,ω ) are uniformly bounded for r ≤ s ≤ t ≤ T, for all μ such

that ||μ||BMO(Qa
r,ω) ≤ C.

αs,t(Q
a,aμ
r,ω ) belongs also to L1(Q

a,aμ
r,ω ) and the L1(Q

a,aμ
r,ω ) norms of αs,t(Q

a,aμ
r,ω )

are uniformly bounded for ||μ||BMO(Qa
r,ω) ≤ C and r ≤ s ≤ t ≤ T.

2. Assume that g satisfies (GC2), then the random variables αs,t(Q
a,aμ
r,ω ) belong to

L∞(Qa
r,ω) and are uniformly bounded for ||μ||BMO(Qa

r,ω) ≤ C and r ≤ s ≤ t ≤
T.

3. In case g is non negative, Eq. (20) defines a non negative Br
s random variable.

• Assume that g satisfies the growth condition (GC1) or (GC2). Then the penalty
defined in (20) satisfies the cocycle condition for every Qa,aμ

r,ω : Let r ≤ s ≤ t ≤ u

αs,u(Q
a,aμ
r,ω ) = αs,t(Q

a,aμ
r,ω ) + EQa,aμ

r,ω
(αt,u(Q

a,aμ
r,ω )|Bs) (21)

• The penalty defined in (20) is local on Q̃r,ω(Λ)

• If g(t, ω, 0) = 0 ∀(t, ω) ∈ IR+ × Ω , The probability measure Qa
r,ω has zero

penalty.

Proof 1. Assume that the function g satisfies the growth condition (GC1). Without
loss of generality one can assume that m ≥ 2. Choose p1 > 1 such that (2 −
ε)p1 = 2. Let q be the conjugate exponent of p1.
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It follows from the conditional Hölder inequality and the equivalence of the
BMO norms with respect to Qa

r,ω and Qa,aμ
r,ω that

EQa,aμ
r,ω

(

t∫
s

(1 + sup
s≤u

||Xs(ω)||)m||μu(ω)||2−εdu|Bs)

≤ K1C
1

p1 [EQa,aμ
r,ω

( sup
s≤s′≤u

(1 + ||Xs′ ||)mq)|Bs]
1
q (t − s)

1
q (22)

Let p0 be such that Eq. (19) is satisfied for P = Qa
r,ω. Let q0 be the conjugate

exponent of p0. It follows from conditional Hölder inequality and (19) that

EQa,aμ
r,ω

(sup
s′≤u

(1 + ||Xs′ ||)mq|Bs)) ≤ KCEQa
r,ω

( sup
s≤s′≤t

(1 + ||Xs′ ||)mqq0 |Bs)
1

q0

≤ KCEQa
r,ω

( sup
s≤s′≤t

(1 + ||Xs′ ||)mqjq0 |Bs)
1

q0 j (23)

for all j ≥ 1. The first assertion of 1 of the proposition follows then from the
Eqs. (22) and (23) and the inequality EQa

r,ω
(sups≤u≤t(1 + ||Xt ||)k)) < ∞ for all

k ≥ 2 ( [16], Chap.2 Sect. 5).
The second asssertion of 1. of the proposition follows from Eq. (22) and then
from Eq. (23) applied withBs equal to the trivial sigma algebra.

2. Assume that g satisfies the the growth condition (GC2). Thus

|αst(Q
a,aμ
r,ω )| ≤ KEQa,aμ

r,ω
(

t∫
s

(1 + ||μu(ω)||2)du|Bs)

The result follows then from the BMO condition.
3. The case g non negative is trivial.

• The cocycle condition (21) follows easily from the definition (20) and the above
integrability.

• We prove now that the penalty α is local on Q̃r,ω(Λ). Let μ, ν ∈ L̃(Λ). The
probability measures Qa,aμ

r,ω and Qa,aν
r,ω are equivalent to Qa

r,ω. Let r ≤ s ≤ t
and A be Bs-measurable. Assume that for all X in L∞(Bt), EQa,aμ

r,ω
(X|Bs)1A =

EQa,aν
r,ω

(X|Bs)1A. It follows from the equality E (aμ)t
E (aμ)s

1A = E (aν)t
E (aν)s

1A and the P ×
B(IRn) measurability of μ and ν that 1|]s,t[1Aμ = 1|]s,t[1Aν Qa

r,ω a.s. From (20)

we get αs,t(Q
a,aμ
r,ω )1A = αs,t(Qa,aν

r,ω )1A. Thus the penalty α is local on Q̃r,ω(Λ).
• The last point follows easily from the definition of the penalty. �
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6 Time Consistent Dynamic Risk Measures Associated
to Path-dependent Martingale Problems

We change the sign in the classical definition of risk measures in order to avoid the
minus sign which appears in the time consistency property for usual dynamic risk
measures. In fact ρst(−X) are “usual” dynamic risk measures.

6.1 Normalized Time-Consistent Convex Dynamic Risk
Measures

Proposition 4 Let Q̃r,ω(Λ) be the stable set of probability measures defined in
Definition10. Assume that g is non negative, and that for all (u, ω′), g(u, ω′, 0) = 0.
Let r ≤ s ≤ t. The formula

ρ
r,ω
s,t (Y) = esssupQa,aμ

r,ω ∈Q̃r,ω()
(EQa,aμ

r,ω
(Y|Bs) − αs,t(Q

a,aμ
r,ω )) (24)

where αs,t(Q
a,aμ
r,ω ) is given by Eq. (20) defines a normalized time consistent convex

dynamic risk measure on L∞(Ω,B, Qa
r,ω).

For given 0 ≤ r ≤ t and Y in L∞(Ωr,Br
t , Qa

r,y), the process (ρ
r,ω
s,t (Y))r≤s≤t admits

a càdlàg version.

Proof Notice that for all bounded Y ,

−||Y ||∞ ≤ EQa
r,ω

(Y |Bs) ≤ ρ
r,ω
s,t (Y) ≤ esssupQa,aμ

r,ω ∈Q̃r,ω()
(EQa,aμ

r,ω
(Y|Bs) ≤ ||Y||∞

Thus for all r ≤ s ≤ t, ||ρr,ω
s,t (Y)||∞ ≤ ||Y ||∞. The first statement follows then

from Definition 10, from Propositions 2 and 3 and from Theorem 4.4 of [5].
The proof of the regularity of paths which was given in [6] Theorem3 for normalized
convex dynamic risk measures time consistent for stopping times can be extended
to normalized convex dynamic risk measures time consistent for deterministic
times. �

We have the following extension of the dynamic risk measure to random variables
essentially bounded from below:

Corollary 2 The definition of ρr,ω
s,t (Y) can be extended to random variables Y (Bt)-

measurable which are only essentially bounded from below.
ρ

r,ω
s,t (Y) = limn→∞ ρ

r,ω
s,t (Y ∧ n). For every Y essentially bounded from below, the

process (ρ
r,ω
s,t (Y)) is optional.

Proof Let Y be Bt-measurable and Qa
r,ω-essentially bounded from below, Y is the

increasing limit of Yn = Y ∧n as n tends to∞. Define ρ
r,ω
s,t (Y) as the increasing limit

of ρ
r,ω
s,t (Yn). As we already know that for given s and t, ρr,ω

s,t (Y) defined on bounded
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random variables by formula (24) is continuous from below, the extended definition
coincides with the previous one on Qa

r,ω-essentially bounded random variables.
From Proposition 4 for every n one can choose a càdlàg version of the process
ρ

r,ω
s,t (Yn). Thus the map (s, ω) → ρ

r,ω
s,t (Y) = lim ρ

r,ω
s,t (Yn) is measurable for the

optional sigma algebra. �

6.2 General Time-Consistent Convex Dynamic Risk Measures

In this section the function g (and thus the penalty) is not assumed to be non negative.

Definition 15 Let Q be a probability measure on (Ω, (Bt)t∈IR+). The multivalued
mapping Λ is BMO(Q) if there is a map φ ∈ BMO(Q) such that

∀(u, ω), sup{||y||, y ∈ Λ(u, ω)} ≤ φ(u, ω)

In the following, p0 is chosen such that the reverse Hölder inequality (19) is satisfied
for aφ.

Theorem 3 Let (r, ω). Assume that the multivalued set Λ is BMO(Qa
r,ω). Let

Q̃r,ω(Λ) be the stable set of probability measures defined in Definition10.
Let r ≤ s ≤ t. Let

ρ
r,ω
s,t (Y) = esssupQa,aμ

r,ω ∈Q̃r,ω()
(EQa,aμ

r,ω
(Y|Bs) − αs,t(Q

a,aμ
r,ω )) (25)

where αs,t(Q
a,aμ
r,ω ) is given by Eq. (20)

• Assume that g satisfies the growth condition (GC1). The above Eq. (25) defines a
dynamic risk measure (ρ

r,ω
s,t ) on Lp(Qa

r,ω, (Bt)) for all q0 ≤ p < ∞, (where q0 is
the conjugate exponent of p0 chosen as above). These dynamic risk measures are
time consistent for stopping times taking a finite number of values.

• Assume that g satisfies the growth condition (GC2). The above Eq. (25) defines
a dynamic risk measure (ρ

r,ω
s,t ) on L∞(Qa

r,ω, (Bt)) , and also on every Lp(Qa
r,ω,

(Bt)) for q0 ≤ p < ∞. These dynamic risk measures are time consistent for
stopping times taking a finite number of values.

Proof There is a constantC > 0 such that for allQa,aμ
r,ω ∈ Q̃r,ω(Λ), ||aμ||BMO(Qa

r,ω) ≤
C. It follows from the reverseHölder inequality (19), that for all non negativemeasur-

able Y , EQa,aμ
r,ω

(Y |Bs) ≤ KC(EQa
r,ω

(||Y ||q0 |Bs)
1

q0 . Thus Y → EQa,aμ
r,ω

(Y |Bs) defines
a linear continuous map on Lp(Qa

r,ω) with values Lp(Qa
r,ω) for all q0 ≤ p ≤ ∞, and

that for given p, the norms of these linear maps are uniformly bounded for Λ valued.
From Proposition 3, it follows then that Eq. (25) defines a dynamic risk measure
(ρ

r,ω
s,t ) on Lp(Qa

r,ω, (Bt)) for all q0 ≤ p < ∞ in case (GC1). Under assumption
(GC2), equation (25) defines a dynamic risk measure (ρ

r,ω
s,t ) on Lp(Qa

r,ω, (Bt)) for
all Lp, q0 ≤ p ≤ ∞.



Dynamic Risk Measures and Path-Dependent … 165

The time consistency for stopping times taking a finite number of values follows
from the stability property of the set of probability measures as well as the cocycle
and local property of the penalties (cf. [5] in L∞ case). The proof is the same in Lp

case.

7 Strong Feller Property

7.1 Feller Property for Continuous Parameters

We assume that the progressively measurable function g is a Caratheodory function
on IR+ × Ω × IRn, that is for all u, (ω, x) → g(u, ω, x) is continuous. The support
of Qa,μ

r,ω is contained in the paths ω′ continuous on [r,∞[ (Proposition 1) and which
coincidewithω on [0, r]. It follows that for every functionλ progressively continuous
bounded, and all u > r, the function ω′ → g(u, ω′, λ(u, ω′)) is continuous on the
support of Qa,aλ

r,ω . We prove then the following Feller property for the penalty.

Proposition 5 Let a be progressively continuous bounded such that a(s, ω) is invert-
ible for all (s, ω). Let λ be progressively continuous bounded. Assume that g is a real
valued Caratheodory function satisfying the growth condition (GC1) or (GC2).

1. There is a strictly progressive real valued map L(g) on [0, t]×Ω×IRn continuous
on {(s, ω, x), ω = ω ∗s x} such that

EQa,aλ
s,ω∗sx

∫ t

s
g(u, ω′, λ(u, ω′)du) = L(g)(s, ω, x) ∀s ≤ t ω and x (26)

2. For all 0 ≤ r ≤ s ≤ t, and ω ∈ Ω , there is a Qa,λ
r,ω-null set N such that for all

ω1 ∈ Nc,

EQa,aλ
r,ω

(

∫ t

s
g(u, ω′, λ(u, ω′))du|Bs)(ω1) = L(g)(s, ω1, Xs(ω1)) (27)

Proof We only need to prove 1.
Step 1: Assume that the function g is bounded. Then

∫ t
s g(u, ω′, λ(u, ω′))du is a

continuous bounded function of ω′ on the support of Qa,aλ
s,ω . The map λ being pro-

gressively continuous bounded, the continuity property for L(g) follows easily from
Theorem 1.
Step 2: general case. Notice that λ is bounded.
Thus under assumption (GC2), g(u, ω′, λ(u, ω′) is uniformly bounded and the con-
tinuity property of L(g) follows from step 1.
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Under assumption (GC1), let (sn, ωn, xn), ωn = ωn ∗sn xn with limit (s, ω, x), ω =
ω ∗s x. By definition the sequence ωn ∗sn xn has limit ω ∗s x. It follows from [3] that
the set of probability measures Q = {Qaλ

sn,ωn∗sn xn
, n ∈ IN} ∪ {Qaλ

s,ω∗sx} is weakly
relatively compact and thus tight. Thus for all η > 0, there is a compact setK such
that Q(K c) < η for all Q ∈ Q. From the growth condition (GC1), the existence
of a uniform bound for EQ[∫ t

s (1 + sups≤u ||Xu||m)du]k for Q ∈ Q and the Hölder
inequality, it follows that there is a progressively continuous bounded function g1
such that for all Q inQ,

EQ

∫ t

s
(||g(u, ω, (aλ)(u, ω) − g1(u, ω)||))du ≤ ε. (28)

The result follows then from step 1. �

We introduce now a class ofBt measurable functions onΩ satisfying a continuity
condition derived from the progressive continuity condition that we have introduced
for progressive functions and from the continuity property proved in Theorem 1.

Definition 16 Let t > 0. The function h defined on Ω belongs to Ct if there is a
function h̃ on Ω × IRn such that

• h(ω) = h̃(ω ∗t Xt(ω), Xt(ω))

• h̃(ω, x) = h̃(ω′, x) if ω(u) = ω′(u) ∀u < t

and such that h̃ is continuous bounded on {(ω, x), ω = ω ∗t x} ⊂ Ω × IRn

Corollary 3 Assume that a is progressively continuous bounded and that a(s, ω)

is invertible for all (s, ω). Let λ be progressively continuous bounded. Let h ∈ Ct .
Asssume that the penalty αs,t is given by Eq. (20) for some Caratheodory function g
on IR+ × Ω × IRn satifying the growth condition (GC1) or (GC2). There is a strictly
progressive map La,λ(h) continuous on {(u, ω ∗u x, x), 0 ≤ u ≤ t} such that for all
0 ≤ r0 ≤ r ≤ t,

La,λ(h)(t, ω, x) = h̃(ω, x)

La,λ(h)(r, ω, x) = EQa,aλ
r,ω∗r x

(h) − αr,t(Q
a,aλ
r,ω∗rx)

= [EQa,aλ
r0,ω0

(h|Br) − αr,t(Q
a,aλ
r0,ω0

)](ω ∗r x) Qa,aλ
r0,ω0

a.s. (29)

Proof The result follows from Theorem 1 and from Proposition5. �

7.2 Feller Property for the Dynamic Risk Measure

Proposition 6 Let μ in L̃(Λ) (Definition11). Let t > 0 and h ∈ Ct . Asssume that the
penalty αs,t is given by Eq. (20) for some Caratheodory function g on IR+ ×Ω × IRn

satifying the growth condition (GC1) or (GC2). There is a strictly progressive map
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Φμ(h) continuous on {(u, ω, x), ω = ω ∗u x, u ≤ t} such that Φμ(h)(t, ω, x) =
h̃(ω, x) for all ω, and such that for all r ≤ s ≤ t, there is a process νs in L̃(Λ) such
that

Φμ(h)(s, ω, x) = EQa,aνs
s,ω∗sx

(h) − αs,t(Q
a,aνs
s,ω∗sx) (30)

EQa,aνs
r,ω0

(h|Bs)(ω
′) − αs,t(Q

a,aνs
r,ω0

)(ω′) = Φμ(h)(s, ω′, Xs(ω
′)) Qa

r,ω0
a.s. (31)

and

EQa,aμ
r,ω0

(h|Bs) − αs,t(Q
a,aμ
r,ω0

) ≤ EQa,aνs
r,ω0

(h|Bs) − αs,t(Q
a,aνs
r,ω0

) Qa
r,ω0

a.s. (32)

Proof The proof is done in two steps. The first step is the construction of Φμ(h)

given μ. The second step is the construction of νs given μ and s. μ belongs to L̃(Λ).
From Definition 11, let 0 = s0 < ·· < si < si+1 · · < sk < sk+1 = ∞ be a finite
partition such that Eq. (13) is satisfied.

• First step: construction of Φμ(h). We construct Φμ(h) recursively on [si, si+1[.
Let sn be such that sn < t ≤ sn+1. From Corollary 3, for all j ∈ In there is a
strictly progressive map La,λn,j (h) continuous on {(u, ω, x), ω = ω ∗u x, u ≤ t}
satisfying Eq. (29). Let

Φμ(h)(s, ω, x) = sup
j∈In

La,λn,j (h)(s, ω, x) ∀s ∈ [sn, t[ (33)

Let hn(ω) = Φμ(h)(sn, ω, Xsn(ω)). The function hn belongs to Csn and
h̃n(ω, x) = Φμ(h)(sn, ω, x). Then we can proceed on [sn−1, sn[ with hn. We con-
struct recursively the strictly progressivemapΦμ(h) continuouson {(u, ω, x), ω =
ω ∗u x, u ≤ t}. Notice that for all s ∈ [si, si+1], there are Bs measurable sets
(Cs,j)j∈Ii , such that

Φμ(h)(s, ω, x) =
∑
j∈Ii

1Cs,j (ω)La,λi,j (hi+1)(s, ω, x) (34)

• Second step: Given s ∈ [r, t], construction of the process νs.
There is a unique k such that s ∈]sk, sk+1]. For i > k for all u ∈]si, si+1], define

νs(u, ω) =
∑
j∈Ii

1Csi ,j
(ω)λi,j(u, ω) (35)

And for u ∈]s, sk+1], define

νs(u, ω) =
∑
j∈Ik

1Cs,j (ω)λk,j(u, ω) (36)
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and νs(u, ω) = μ(u, ω) for all 0 ≤ u ≤ s. It follows from the construction of νs

that the process νs belongs to L̃(Λ). It follows also recursively that for all i > k
and ω ∈ Ω ,

EQa,aνs
si ,ω

(h) − αsi,t(Q
a,aνs
si,ω

) = Φμ(h)(si, ω, Xsi(ω)) (37)

and for all ω ∈ Ω ,

EQa,aνs
s,ω

(h) − αs,t(Q
a,aνs
s,ω ) = Φμ(h)(s, ω, Xs(ω)) (38)

By construction the following inequality is satisfied:

EQa,aμ
s,ω

(h) − αs,t(Q
a,aμ
s,ω ) ≤ Φμ(h)(s, ω, Xs(ω)) (39)

It follows then from Proposition 2 that

EQa,aμ
r,ω0

(h|Bs) − αs,t(Q
a,aμ
r,ω0

) ≤ EQa,aνs
r,ω0

(h|Bs) − αs,t(Q
a,aνs
r,ω0

) Qa
r,ω0

a.s.

and

[EQa,aνs
r,ω0

(h|Bs) − αs,t(Q
a,aνs
r,ω0

)](ω′) = Φμ(h)(s, ω′, ω′(s)) Qa
r,ω0

a.s. �

Theorem 4 Assume that the hypothesis of Theorem3 are satisfied and that g
is Caratheodary function. The time consistent dynamic risk measure (ρ

r,ω
s,t )r≤s≤t

defined on L∞(Ω,B, Qa
r,ω) by Eq. (25) satisfies the following Feller property: For

every function h ∈ Ct , there is a progressive map R(h)on IR+×Ω , R(h)(t, ω) = h(ω),
such that R(h) is lower semi continuous on {(u, ω, x), u ≤ t, ω = ω ∗u x} and such
that the following equation is satisfied

∀s ∈ [r, t], ∀ω′ ∈ Ω, ρ
s,ω′
s,t (h) = R(h)(s, ω′) (40)

∀0 ≤ r ≤ s ≤ t, ρ
r,ω
s,t (h)(ω′) = R(h)(s, ω′, ω′(s)) Qa

r,ω a.s. (41)

(R(h) denotes the strictly progressive map on IR+ × Ω × IRn associated to R(h) in
the one to one corrrespondence introduced in Sect.2).

Proof For all μ ∈ L̃(Λ), let Φμ(h) be the strictly progressive map, continuous
on {(u, ω, x), ω = ω ∗u x, u ≤ t} constructed in Proposition 6. Let R(h) =
supμ∈L̃(Λ) Φμ(h). The functionR(h) is then lower semi continuouson {(u, ω, x), ω =
ω ∗u x, u ≤ t}. Let R(h)(u, ω) = R(h)(u, ω, Xu(ω)). Equations (40) and (41) follow
easily from Proposition 6.
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8 Existence of Viscosity Solutions for Path-dependent PDEs

8.1 Existence of Viscosity Supersolutions

Recall that Λ is a closed convex lower hemicontinuous multivalued mapping from
X into IRn (Sect. 4.2). Let f be the convex conjugate of g defined as

f (u, ω, z) = sup
y∈Λ(u,ω)

(z∗y − g(u, ω, y)) (42)

We prove now that for all h ∈ Ct the map R(h) of Theorem4 leads to viscosity
solutions for the following semi-linear second order PDE.

⎧⎨
⎩

−∂uv(u, ω) − L v(u, ω) − f (u, ω, a(u, ω)Dxv(u, ω)) = 0
v(t, ω) = f (ω)

L v(u, ω) = 1
2Tr(a(u, ω)D2

x(v)(u, ω))

(43)

Theorem 5 Fix (t0, ω0). Assume that the mutivalued set Λ is BMO(Qa
t0,ω0

) (Def-
inition15). Assume that the function g satisfies the preceding hypothesis (g is
a Caratheodory function and satisfies the growth condition (GC1) or (GC2)).
Assume furthermore that g is upper semicontinuous on {(s, ω, y), (s, ω) ∈ X, y ∈
Λ(s, ω, ω(s)}. For all r and ω, let (ρ

r,ω
s,t ) be the dynamic risk measure given by

Eq. (24) where the penalty satisfies Eq. (20).
Let h ∈ Ct . The function R(h) is progressive and R(h) is lower semi continuous on
{(u, ω, x), ω = ω ∗u x, u ≤ t} (Theorem4). R(h) is a viscosity supersolution of the
path-dependent second order partial differential equation (43) at each point (t0, ω0)

such that f (t0, ω0, a(t0, ω0)z) is finite for all z.

Proof Let x0 = ω0(t0). From Theorem4, the function R(h) is progressive and R(h)

is lower semi continuous on {(u, ω, x), ω = ω ∗u x, u ≤ t}. We prove first that R(h)

is bounded from below on some Dε(t0, ω0). R(h)(u, ω) ≥ EQa
u,ω

(h)−αut(Qa
u,ω). For

all given k ≥ 2, EQa
u,ω

(sups≤u≤t(1 + ||Xt ||)k)) is uniformly bounded for (u, ω) ∈
Dε(t0, ω0). The result follows then from either the (GC1) condition or the (GC2).
Let φ progressive, φ in C 1,0,2

b (IR+ × Ω × IRn) such that φ(t0, ω0) = R(h)(t0, ω0)

and (t0, ω0) is a local minimizer of R(h) − φ on Dη(t0, ω0) for some η > 0.

• Step 1: Continuity properties
By hypothesis f (t0, ω0, a(t0, ω0)Dxφ(t0, ω0, x0)) < ∞. Thus for all ε > 0, there
is λ0 ∈ Λ(t0, ω0) such that

Dxφ(t0, ω0, x0)
ta(t0, ω0)λ0 − g(t0, ω0, λ0) > f (t0, ω0, a(t0, ω0)Dxφ(t0, ω0, x0)) − ε

(44)
The multivalued set Λ is assumed to be lower hemicontinuous. It follows that
for all K > 0, ΛK is also lower hemicontinuous, where ΛK (u, ω, x) = {z ∈
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Λ(u, ω, x), ||z|| < K}. ChooseK > ||λ0||. FromTheorem2, there is thus a contin-
uous bounded selector λ(u, ω, x) ofΛK defined on X such that λ(t0, ω0, x0) = λ0.
From the upper semi-continuity condition satisfied by g, and the continuity of the
map λ, it follows that for all ε > 0, there is η1 > 0, such that for t0 ≤ u ≤ t ≤
t0 + η1, d(ω, ω0) < η1 and ||ω(t) − x0|| < η1,

g(t, ω, λ(t, ω, ω(t))) − g(t0, ω0, λ0) < ε (45)

From the continuity of the function λ, the hypothesis φ ∈ C 1,0,2
b and the progres-

sive continuity of a, there is η2 such that for t0 ≤ u ≤ t ≤ t0 + η2, ||x − x0|| < η2
and d(ω ∗u x, ω0) < η2,

|∂uφ(u, ω, x) + 1

2
Trace(D2

xφa(u, ω, x)) + (Dxφ
t
aλ)(u, ω, x)−

∂uφ(t0, ω0, x0) + 1

2
Trace(D2

xφa)(t0, ω0, x0)) + Dxφ
t
a(t0, ω0, x0)λ0| ≤ ε (46)

The maps a and λ are bounded. It follows from [22] that there is 0 < α <

inf (η, η1, η2) such that

Qa,aλ
t0,ω0

(A) < ε with A = {ω | sup
t0≤u≤t0+α

||ω(u) − ω0(t0)|| ≥ inf (η, η1, η2) }
(47)

Let C = {ω, ω(u) = ω0(u) ∀0 ≤ u ≤ t0, supt0≤u≤t0+α ||ω(u) − ω0(t0)|| <

inf (η, η1, η2)}
• Step 2: Time consistency
For all 0 < β < α, let δ be the stopping time δ = β1C . The stopping time δ takes
only 2 different values. By definition of the probability measure Qa,aλ

t0,ω0
, it follows

from (47) that Qa,aλ
t0,ω0

(C) > (1 − ε).
The dynamic risk measure (ρ

t0,ω0
u,v )0≤u≤v, is time consistent for stopping times

taking a finite number of values, thus

ρ
t0,ω0
t0,t (h) = ρ

t0,ω0
t0,t0+δ(ρ

t0,ω0
t0+δ,t(h)) (48)

From Theorem 4, the lower semi continuous function R(h) satisfies: (ρ
t0,ω0
t0+δ,t

(h)(ω) = R(h)(t0 + δ, ω, Xt0+δ(ω)) Qa
t0,ω0

a.s., and ρ
t0,ω0
t0,t (h) = R(h)(t0, ω0).

Let λ be the continuous function defined in step 1. By hypothesis R(h) ≥ φ on
Dη(t0, ω0). For all ω ∈ C and u ≤ β, (u, ω ∗u ω(u)) ∈ Dη(t0, ω0). Since the
functions R(h) and φ are progressive it follows that R(h) ≥ φ on [t0, t0 + β] × C.
It follows then from the equality φ(t0, ω0) = R(h)(t0, ω0) and from the definition
of ρ

t0,ω0
t0,t0+δ that

φ(t0, ω0) ≥ EQa,aλ
t0,ω0

[φ(t0 + δ, ω, Xt0+δ(ω)) −
∫ t0+δ

t0
g(u, ω, λ(u, ω, Xu(ω)))du]

(49)
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• Step 3: Martingale problem
The probability measure Qa,aλ

t0,ω0
is solution to the martingale problem for L a,aλ

starting from ω0 at time t0. The function φ is strictly progressive and belongs to
C 1,0,2

b (IR+ × Ω × IRn). It follows from the martingale property proved in [3] that

0 ≥ EQa,aλ
t0,ω0

[
∫ t0+δ

t0
(∂uφ(u, ω, Xu(ω)) + 1

2
Trace((D2

xφa)(u, ω, Xu(ω))))du]

+ EQa,aλ
t0,ω0

[
∫ t0+δ

t0
(Dxφ

t
aλ)(u, ω, Xu(ω)) − g(u, ω, λ(u, ω, Xu(ω)))du] (50)

• Step 4: Conclusion
Divide (50) by β and let β tend to 0. It follows from the definitions of C and δ and
the Eqs. (44)–(46) proved in step 1 and Qa,aλ

t0,ω0
(C) > 1 − ε that

−∂uφ(t0, ω0, x0) − L φ(t0, ω0, x0) − f (t0, ω0, σ
t(t0, ω0)Dxφ(t0, ω0, x0)) ≥ −2ε(1−ε)

This gives the result. �

8.2 Existence of Viscosity Subsolutions

In this section we will assume that the set Λ has some uniform BMO property.

Definition 17 The multivalued mapping Λ is uniformly BMO with respect to a if
there is a non negative progressively measurable map ϕ and C > 0 such that for all
0 ≤ s,

sup{|λ|, λ ∈ Λ(s, ω)} ≤ ϕ(s, ω) (51)

and such that for all (s′, ω′), the unique solution to the martingale problem L a

starting from ω′ at time s′ satisfies:

Qa
s′,ω′(

∫ ∞

s′
ϕ(s, ω)2ds) ≤ C (52)

Of course the above condition is satisfied if supω

∫ ∞
0 ϕ(s, ω)2ds < ∞.

The name “uniform BMO” property is justifed by the following result.

Lemma 2 Assume that the multivalued mapping Λ is uniformly BMO with respect
to a. Then for all (r, ω) and all process μ Λ valued such that μ is P × B(IRn)

measurable, μ belongs to BMO(Qa
r,ω) and ||μ||BMO(Qa

r,ω) ≤ C

Proof Let r, ω and a stopping time τ ≥ r. It follows from [22] and from uniqueness
of the solution to the martingale problem forL a,0 starting from ω′ at time τ(ω′) that
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for Qa
r,ω almost all ω′,

EQa
r,ω

(

∫ ∞

τ

ϕ(u, ω)2du|Bτ )(ω
′) = EQa

τ (ω′),ω′ (
∫ ∞

τ(ω′)
ϕ(u, ω)2du) ≤ C �

Let h ∈ Ct . The function R(h) is lower semi continuous in viscosity sense but it is not
necessarily upper semi continuous. Therefore we need to introduce the upper semi
continuous envelope of R(h) in the viscosity sense according to Sect. 2.3. Denote it
R(h)∗.

R(h)∗(s, ω) = lim sup
η→0

{R(h)(s′, ω′), (s′, ω′) ∈ Dη(s, ω)}

Theorem 6 Let (t0, ω0) be given. Assume that the mutivalued set Λ is uniformly
BMO with respect to a. Assume that the function g is a Caratheodory function sat-
isfying the growth condition (GC1) or (GC2) and that the Fenchel transform f of g
is progressively continuous.
Let h ∈ Ct . The map R(h)∗ is progressive, R(h)∗ is upper semicontinuous in viscosity
sense. R(h)∗ is a viscosity subsolution of the path-dependent second order partial
differential equation (43).

Proof Let x0 = ω0(t0). The progressivity of R(h)∗ follows from the equality
Dη(s, ω) = Dη(s, ω ∗s ω(s)). The upper semicontinuity property follows from
the definition of R(h)∗. We prove first that R(h) is bounded on some Dε(t0, ω0).
R(h)(u, ω) = supμ(EQa,aμ

u,ω
(h) − αu,t(Q

a,aμ
u,ω )). For given k ≥ 2, EQa

u,ω
(sups≤u≤t(1 +

||Xt ||)k)) is uniformly bounded for (u, ω) ∈ Dε. The result follows then from either
the (GC1) condition or the (GC2), and from the uniform BMO hypothesis with
similar arguments as in the proof of Proposition 3.
Let φ progressive, φ ∈ C 1,0,2

b (IR+ × Ω × IRn) such that φ(t0, ω0) = R(h)∗(t0, ω0)

and such that (t0, ω0) is a maximizer of R(h)∗ − φ on Dη(t0, ω0).

• Step 1: Making use of the progressive continuity property of a, f and of the
regularity of φ, for all n ∈ IN∗, there is ηn > 0, t0 + ηn < t such that for
t0 ≤ u ≤ t0 + ηn, d(ωo, ω) < ηn and ||x0 − ω(u)|| < ηn,

f (u, ω, (aDxφ)(u, ω, ω(u))) ≤ f (t0, ω0, (aDxφ)(t0, ω0, x0)) + 1

n
(53)

|∂uφ(u, ω, ω(u)) + 1

2
Trace(D2

xφa)(u, ω, ω(u)))−

∂uφ(t0, ω0, x0) + 1

2
Trace(D2

xφa)(t0, ω0, x0))| ≤ 1

n
(54)

Without loss of generality one can assume ηn < η.
The matrix valued process a being bounded, it follows from [22] that there is hn

such that for all t0 ≤ s ≤ t0 + η and ω ∈ Dη(t0, ω0),
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Qa
s,ω({ω′, sup

s≤u≤s+hn

||ω′(u) − ω(s)|| >
ηn

2
}) < ε (55)

Without loss of generality one can assume that hn <
ηn
2 .

For all n > 0 choose (tn, ωn) ∈ D ηn
2
(t0, ω0) such that limn→∞ R(h)(tn, ωn) =

R(h)∗(t0, ω0) and

φ(tn, ωn) ≤ R(h)(tn, ωn) + hn

n
(56)

Let Cn = {ω′, suptn≤u≤tn+hn
||ω′(u) − ωn(tn)|| ≤ ηn

2 , ω′(v) = ωn(v), ∀v ≤ tn}.
It follows from Eq. (55) that Qa

tn,ωn
(Cn) > 1−ε for all n. From Lemma 2 there is a

constant C′ > 0 such that ||aμ||BMO(Qa
tn,ωn ) ≤ C′ for all μ ∈ L̃(Λ) and all n. From

[15] it follows that there is p0 such that the reverseHölder inequality (19) is satisfied

for all E (aμ) and thus that for all μ ∈ L̃(Λ), and all n, Qa,aμ
tn,ωn

(Cc
n) ≤ KC(ε)

1
q0

where q0 is the conjugate exponent of p0. The constants q0 and Kc depend neither
on μ nor on n. Thus ε can be chosen such that Qa,aμ

tn,ωn
(Cn) > 1

2 for all n and all
μ ∈ L̃(Λ).
Let δn be the stopping time taking only two values hn and 0 defined by δn = hn1Cn .

• Step 2: Time consistency
Making use of the time consistency of the risk measure (ρ

tn,ωn
u,v ), and of the fol-

lowing equations deduced from Theorem 4,

R(h)(tn, ωn) = ρ
tn,ωn
tn,t (h)

ρ
tn,ωn
tn+δn,t

(h) = R(h)(tn + δn, .) Qa
tn,ωn

a.s.

it follows that
R(h)(tn, ωn) = ρ

tn,ωn
tn,tn+δn

(R(h)(tn + δn, .))

It follows from the definition of the risk measure (ρ
tn,ωn
tn,tn+δn

), that for all n there is

a process μn in L̃(Λ) such that

R(h)(tn, ωn) ≤ EQa,aμn
tn,ωn

(R(h)(tn + δn, .)) − αtn,tn+δn(Q
a,aμn
tn,ωn

) + hn

n
(57)

For all ω′ ∈ Cn, (tn + hn, ω
′ ∗tn+hn ω′(tn + hn)) ∈ Dη(t0, ω0). The functions R(h)

and φ are progressive and satisfy R(h) ≤ R(h)∗ ≤ φ on Dη(t0, ω0). It follows that

R(h)(tn + δn, ω
′) ≤ φ(tn + δn, ω

′) ∀ω′ ∈ Cn (58)

From Eqs. (56)–(58), it follows that

φ(tn, ωn) ≤ EQa,aμn
tn,ωn

[φ(tn + δn, .) −
∫ tn+δn

tn
g(u, ω′, μn(u, ω′))du] + 2

hn

n
(59)
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• Step 3: Martingale problem
Given (tn, ωn), the probability measure Qa,aμn

tn,ωn
is solution to the martingale prob-

lemL a,aμn starting fromωn at time tn. The strictly progressive function φ belongs
to C 1,0,2

b . It follows from [3] and from Eq. (59) that

0 ≤ EQa,aμn
tn ,ωn

[
∫ tn+δn

tn
(∂uφ(u, ω′, (ω′(u))) + 1

2
Trace(D2

xφa)(u, ω′, ω′(u)))du]

+ EQa,aμn
tn ,ωn

[
∫ tn+δn

tn
(Dxφ

t
(u, ω′, ω′(u))a(u, ω′)μn(u, ω′) − g(u, ω′, μn(u, ω′)))du] + 2

hn

n
(60)

By definition of f it follows that

0 ≤ EQa,aμn
tn,ωn

[
∫ tn+δn

tn
(∂uφ(u, ω′, ω′(u))) + 1

2
Trace((D2

xφa)(u, ω′, ω′(u)))du]

+ EQa,aμn
tn,ωn

[
∫ tn+δn

tn
f (u, ω′, (aDxφ)(u, ω′, ω′(u)))du] + 2

hn

n
(61)

• Step 4: Conclusion
Divide equation (61) by hn and let n tend to ∞. The result follows from step 1,
the inequality Qa,aμn

tn,ωn
(Cn) ≥ 1

2 for all n and δn = hn1Cn . �

8.3 Existence of Viscosity Solutions on the Set
of Continuous Paths

On the set of continuous pathsC (IR+ ×IRn)we consider the uniform norm topology.
In this section we assume that the function a is only defined on IR+ ×C (IR+ × IRn)

and that it is continuous. For every continuous function h on the space of continuous
paths C (IR+ × IRn) such that h(ω) = h(ω′) if ω(u) = ω′(u) for all u ≤ t, the
corresponding function R(h) is constructed as above. In this case the function R(h) is
defined only on the set of continuous paths (more precisely on [0, t]×C (IR+×IRn)).
We make use of the definition of viscosity solution on the set of continuous paths
introduced in Sect. 2.4 (Definition 4). To prove that R(h) is a viscosity supersolution,
to define R(h)∗ and prove that it is a viscosity subsolution, we do not need to extend
the functions a nor R(h). Indeed as the support of the probability measure Qa

r,ω is
contained in the set of continuous paths, we just need to use the restrictions of the
function φ and of its partial derivatives to the set IR+ × C (IR+ × IRn) × IRn. The
proofs given for Theorems 5 and 6 can be easily adapted to prove the analog result
in the setting of continuous paths.
Thus the setting of continuous paths can be considered as a “particular case” of the
setting of càdlàg paths.
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9 Conclusion and Perspectives

We have introduced new notions of regular solutions and viscosity solutions for path-
dependent second order PDEs, Eq. (1), in the setting of càdlàg paths. In line with the
recent literature on the topic, a solution of (1) must be searched among progressive
functions, that is path-dependent functions depending at time t on all the path up to
time t. However, the notions of solutions introduced in the present paper differ from
previous notions introduced in the literature on two major points:

• In contrast with other papers, we consider on the set Ω of càdlàg paths the Sko-
rokhod topology. Ω is thus a Polish space. This property is fundamental for the
construction of solutions for path-dependent PDE that we give in the present paper.

• The notions of partial derivative for progressive functions that we introduce are
defined in a very naturalway by considering a progressive function of two variables
as a function of three variables.

In addition we introduce also a notion of viscosity solution on the set of continuous
paths.
Making use of the martingale problem approach to path-dependent diffusion
processes, we then construct time consistent dynamic risk measures ρ

r,ω
st . The stable

set of probability measures used for the construction of ρ
r,ω
st is a set generated by

probability measures solution to the path-dependent martingale problem for L a,aμ

starting form ω at time r. The path-dependent progressively continuous bounded
function a is given and takes values in the set of invertible non negative matrices.
The path-dependent functions μ are progressively continuous and vary accordingly
to a multivalued mapping Λ. This construction is done in a very general setting. In
particular the coefficients μ are not uniformly bounded. We just assume that they
satisfy some uniform BMO condition. To construct the penalties, we make use of a
path-dependent function g satisfying some polynomial growth conditionwith respect
to the path and some L2 condition with respect to the process μ related to the BMO
condition. In contrast with the usual setting of BSDE, in all this construction no Lip-
schitz hypothesis are assumed. Notice however that the Lipschitz setting can also be
studied within our approach: instead of starting with progressively continuous maps
a and μ, one could start from a subfamily of maps which, for example, satisfy some
uniform continuity condition (as K Lipschitz maps).
We show that these risk measures provide explicit solutions for semi-linear path-
dependent PDEs (2). First, we prove that the risk measures ρ

r,ω
st satisfy the following

Feller property. For every function hBt measurable having some continuity property,
there is a progressively lower semi-continuous functionR(h) such that ρr,ω

rt (h(Xt)) =
R(h)(r, ω) and R(h)(t, ω) = h(t, ω). Next, the function R(h) is proved to be a
viscosity supersolution for a semi-linear path-dependent PDE (2), where the function
f itself is associated to g by duality on the multivalued mapping Λ. We prove also
that the upper semi continuous envelope of R(h) is a viscosity subsolution for the
path-dependent semi linear second order PDE (2).
Here we have proved the progressive lower semi continuity for R(h). To prove the
progressive continuity property, additional hypothesis should be added, e.g. Lipschitz
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conditions. Another way of proving the continuity is to apply a comparison Theorem.
The study of comparison theorems and of continuity properties in this setting, as well
as the study of solutions to fully non linear path-dependent PDE will be the subject
of future work.
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Appendix

An important way of constructing time consistent dynamic risk measures is to con-
struct a stable set of equivalent probabilitymeasures and to define on this set a penalty
which is local and satisfies the cocycle condition [5]. Recall the following definitions

Definition 18 A set Q of equivalent probability measures on a filtered probability
space (Ω,B, (Bt)) is stable if it satisfies the two following properties:

1. Stability by composition
For all s ≥ 0 for all Q and R in Q, there is a probability measure S in Q such
that for all X bounded B-measurable,

ES(X) = EQ(ER(X|Bs))

2. Stability by bifurcation
For all s ≥ 0, for all Q and R inQ, for all A ∈ Bs, there is a probability measure
S inQ such that for all X bounded B-measurable,

ES(X|Fs) = 1AEQ(X|Fs) + 1Ac ER(X|Fs)

Definition 19 Apenalty functionα defined on a stable setQ of probabilitymeasures
all equivalent is a family of maps (αs,t), s ≤ t, defined on Q with values in the set
of Bs-measurable maps such that

(i) α is local:
For all Q, R in Q, for all s, for all A in Bs, the assertion 1AEQ(X|Bs) =
1AER(X|Bs) for all X bounded Bt measurable implies that 1Aαs,t(Q) =
1Aαs,t(R).
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(ii) α satisfies the cocycle condition: For all r ≤ s ≤ t, for all Q inQ,

αr,t(Q) = αr,s(Q) + EQ(αs,t(Q)|Fr)

Recall the following result from [5].

Proposition 7 Given a stable set Q of probability measures and a penalty (αs,t)

defined on Q satisfying the local property and the cocycle condition,

ρst(X) = esssupQ∈Q(EQ(X|Fs) − αst(Q))

defines a time consistent dynamic risk measure on L∞(Ω,B, (Bt)) or on Lp(Ω,B,

(Bt)) if the corresponding integrability conditions are satisfied.
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Pricing CoCos with a Market Trigger

José Manuel Corcuera and Arturo Valdivia

Abstract Contingent Convertible Bonds, or CoCos, are contingent capital instru-
mentswhich are converted into shares, ormay suffer a principalwrite-down, if certain
trigger event occurs. In this paper we discuss some approaches to the problem of pric-
ing CoCos when its conversion and the other relevant credit events are triggered by
the issuer’s share price. We introduce a newmodel of partial information which aims
at enhancing the market trigger approach while remaining analytically tractable. We
address also CoCos having the additional feature of being callable by the issuer at a
series of pre-defined dates. These callable CoCos are thus exposed to a new source
of risk—referred to as extension risk—since they have no fixed maturity, and the
repayment of the principal may take place at the issuer’s convenience.

Keywords Contingent convertible · Coco bond · Callable bond · Extension risk

1 Introduction

The Basel Committee on banking Supervision was created in 1974, after the collapse
of the German Bank Herstatt, with the aim of establishing prudential rules of trading.
During the 1980s this committeewas concernedwith the bigmoral hazard of Japanese
banks that distorted the competition among countries. In 1988 it formulated a set of
rules, so called Basel I, to stabilize the international banking system. Basically the
main rule was that each bank should hold a minimum of 8% of its total assets, where,
for the valuation of the assets it was used some weights reflecting the credit risk of
each asset. These measures produced a credit crunch and some criticism appeared,
mainly related with the weights used to measure the risk of the different assets.
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These weights only took into account the kind of institution borrowing or issuing the
security and not what the spreads observed in the market. To amend the first Basel
accords and take into account the market risk and interest-rate risk, it was started a
process that concluded in 2004 with new rules, Basel II. These agreements are more
complex and consider not only new rules for capitalization, with the introduction
of VaR methodology, but also supervision and transparency rules. The regulator
calculated the weights on the basis of the formula

K = LGD × Φ

[
Φ−1(PD)√

1 − R
+
√

R

1 − R
× Φ−1 (0.999)

]
− PD × LGD, (1)

where Φ is the CDF of the standard normal distribution, LGD is the loss in case
of default, PD is the probability of default, and R is the correlation between the
portfolio of loans and a macroeconomic risk factor, see [24] for an explanation of its
underlying model. To determine the different parameters, banks were allowed to use
their own models.

In 2007 a financial crisis, originated in theU.S. home loansmarket, quickly spread
to other markets, sectors and countries, forcing the Federal Reserve and the European
Central Bank to intervene in response to the collapse of the interbank market. This
gave rise, in 2010, to new regulation rules, known as Basel III, that would change
the financial landscape. Some securities were not going to be allowed anymore as
regulatory capital and supervisors put emphasis in the fact that capital regulatory
should have a real loss absorbing capacity. This is when Contingent Convertibles
(CoCos) started to play an important role.

In 2002 Flannery proposed and early form of CoCo that he called Reverse Con-
vertible Debentures, see [22]. The idea was that whenever the bank issuing such
debentures reaches a market-based capital ratio that is below a pre-specified level, a
sufficient number of said debentures would convert into shares at the current market
price. Later, in [23], he updated the proposal and named these assets as Contingent
Capital Certificates. The idea behind was in agreement with what [19] wrote in
The Prudential Regulation of Banks. In this work they formulated the representation
hypothesis. According to this hypothesis prudential regulation should aim at replicat-
ing the corporate governance of non-financial firms, that is, acting as a representative
of the debtholders of bank, regulation should play the role of creditors in nonfinancial
institutions.

A Contingent Convertible is a bond issued by a financial institution where, upon
the appearance of a trigger event, related with a distress of the institution, either an
automatic conversion into a predetermined number of shares takes place or a partial
write-down of the bond’s face value is applied. It is intended to be a loss absorbing
security in the sense that in case of liquidity difficulties it produces a recapitalization
of the entity.

Basel III, among other regulating measures, proposed the inclusion of CoCos as
part of Additional Tier 1 Capital, where Tier 1 is, roughly speaking, the capital or the
assets that the entity have, for sure, in case of crisis, and consists of Common Equity
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Tier 1 and Additional Tier 1. Chan and van Wijnbergen [5] affirm that the inclusion
of Cocos in Tier 1 is a likely factor in the increase of CoCo issuances. In December
2013, the CoComarket had reached $49bn in size in Europe.

It is a controversial issue if CoCos are a stabilizing security. Koziol and Lawrenz
[28] show that, under certain modelling assumptions, if CoCos are part of the capital
structure of the company equity holders can take more risky strategies, trying to
maximize the value of their shares. In their work Koziol and Lawrenz use a low
level of the asset price of the company as a trigger for the conversion. Chan and
van Wijnbergen [5] point out that conversion can be seen as a negative signal by
the depositors of a bank and to produce bank runs. They also argue that far from
lowering the risks, CoCos can increase even the systemic risks. On the other hand
[20] defend that CoCos is an appropriate solution that does not lead to moral hazard
provided that conversion is tied to exogenous macroeconomic shocks.

There is also disagreement about how to establish the trigger event. It is perhaps
the most controversial parameter in a CoCo. Some advocate conversion based on
book values, like the different capital ratios used in Basel III. Others defend market
triggers like the market value of the equity. So far the CoCos issued by the private
sector are based on accounting ratios.

Themarket for contingent convertibles started inDecember 2009when the Lloyds
Banking Group launched its $13.7bn issue of Enhanced Capital Notes. Next in line
was Rabobankmaking its first entry in themarket for contingent debt with ae1.25bn
issue early 2010. After this, things turned quiet until February 2011, when Credit
Suisse launched its so-called Buffer Capital Notes ($2bn). This Credit Suisse issue
was done on the back of the new regulatory regime in Switzerland. This was called
the “Swiss Finish” and it required the larger banks such as UBS and Credit Suisse
to hold loss absorbing capital up to 19% of their risk weighted assets, see [11]. This
capital had to consist of at least 10% common equity and up to 9% in contingent
capital. In 2014 a number of banks issued CoCos, including Deutsche Bank and
Mizuho Financial Group.

From a modelling point of view and sometimes depending on the trigger chosen
for the conversion, usually a low level of a certain index related with the asset, the
debt or the equity of the firm, one can follow an intensity approach or a structural
approach tomodel the trigger. For an intensity approach formodelling the conversion
time, see for instance [8, 16]. This approach is especially useful when pricing CoCos
is the main interest, it is a kind of statistical modelling of the trigger event. In fact
what one models is the law of the conversion time. In the structural approach for
modelling the trigger, one models the random variable describing the conversion
time and one relates it with the dynamics of the assets, debt, or equities. It is a more
explanatory approach, where one can use the observed dynamics of certain economic
facts to describe the conversion time.

In the structural approach one can use a market trigger based on a low level of
the equity value. This approach is very appealing because the market value of equity
is an observable economic variable whose dynamics can be modelled in order to fit
historical data. At the same time it allows to obtain close pricing formulas, like in
[13], and to define an objective trigger that can be observed immediately. Cheridito



182 J.M. Corcuera and A. Valdivia

and Xu [7] also use this trigger and show that pricing and hedging problems can be
treated for quite general continuousmodels and barriers and that solutions can always
be obtained, at least numerically, using Feymann-Kac type results, translating the
problem of pricing into a problem of solving a series of parabolic partial differential
equations (PDE) with Dirichlet boundary conditions.

One argument against accounting triggers is that monitoring is not continuous,
there is always a delay in the information.Moreover, in the recent crisis these triggers
did not provide any signal of distress in troubled banks. On the contrary, when using
market triggers, there exist the risk of market manipulations of the equity price trying
to force the conversion or undesirable phenomena like the death-spiral effect. In [17]
authors propose a system of multiple triggers to avoid the death spiral, whereas in
[13] a system of coupon cancellations is proposed in order to alleviate this effect.
Sundaresan andWang [39] analyze this kind of trigger and find that to use low equity
values as trigger is not innocuous. It can have destabilizing effects in the firm. Their
reasoning is roughly speaking the following. Suppose that (At)t≥0 represents the
aggregate value of the assets of the company, (Dt)t≥0 its aggregate debt, (Ct)t≥0
the aggregate value of the CoCos, and (Lt)t≥0 the aggregate liquidation value of the
CoCos issued by the firm. Set τ for the conversion time, and assume that it happens
when the (aggregate) equity value, (Et)t≥0 is lower that some level say (Ht)t≥0. Since
equity value is the residual value of the asset, at any time t ≤ τ , we will have two
possibilities:

At − Dt − Ct > Ht if t < τ (2)

or

At − Dt − Lt < Ht if t = τ. (3)

This gives that, at any time t ≤ τ ,

Dt + Ct < At < Dt + Lt . (4)

So, if Ct > Lt there is not any possible value for At and if Ct < Lt there are
multiple values, all of these allowing, according to [39], potential pricemanipulation,
market uncertainty, inefficient allocation and unreliability of conversion.Obviously
if Ct = Lt , that is, if there is no jump on the wealth of CoCo’s investors at the
conversion time, then the equilibrium is possible, but this is considered non realistic
and even problematic, since a punitive conversion for shareholders could help to
maintain the market discipline. As a possible remedy to this situation [32] propose a
trigger based not only in the value of the equities but also in the value of the CoCos.
They also propose to include, in the CoCo contract, a PUT option of the issuer on
the equities, in case of conversion, to avoid market price manipulations.

Another possibility, in the structural approach, is to use a low value of the asset
value as a trigger. It is also quite appealing, since it allows to consider the whole
capital structure of the company, to study the effect of CoCo debt in the equity value
and to obtain the optimal conversion barrier for the shareholders. See for instance
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[6, 28] or [2]. In this latter paper they also consider other triggers aiming at providing
a proxy for regulatory triggers.

Nevertheless in all these papers authors consider a fixed maturity of the CoCo
bond. However bonds often do not just have a legal maturity but can have also
different call dates. In such cases, the bond can be called back by the issuer at these
dates prior to the legal maturity. This risk of extending the life of a contract is what we
call extension risk. This has been treated for the first time in [18] using an intensity
approach and in [14] using a structural approach.

In this paper we review our work on the topic of pricing CoCos, and we introduce
new issues like delay in the information and jumps.We always consider low values of
the stock as triggers andCoCos that convert totally into equities in case of conversion.
The paper is organized as follows. The contract features are specified in Sect. 2. In
addition, amodel-free formula for theCoCoprice is presented in order to establish the
general pricing problem. In Sect. 3 a model with stochastic interest rates is studied.
A closed-form formula for the price is given and subsequently used in order to
study the Black-Scholes model and its Greeks. In Sect. 4 two advanced models are
discussed. On the one hand, the stochastic volatility Heston model is incorporated
to the share price dynamics, and the correspondent prices are later on obtained by a
PDE approach. On the other hand, an exponential Lévy model is proposed, and the
obtainment of the correspondent prices is addressed by a Fourier method exploiting
the so-called Wiener-Hopf factorization for Lévy processes. In Sect. 5 we introduce
a new trigger model which aims to describe the delay of information present in
accounting triggers. Finally, in Sect. 6 we show how the original pricing problem is
modified when no fixed maturity is imposed on the CoCo. This variation leads to
what we call CoCos with extension risk, and the pricing problem includes solving
an optimal stopping time problem which, even in the Black-Scholes, turns out to be
far from straightforward.

2 The Pricing Problem

The definition of a CoCo requires the specification of its face value K and maturity
T , along with the random time τ at which the CoCo conversion may occur, and
the prefixed price Cp at which the investor may buy the shares if conversion takes
place. We refer to τ and Cp as conversion time and conversion price, respectively.
The quantity Cr := K/Cp is refered to as conversion ratio. Assuming m coupons
are attached to the CoCo, then we further need to specify a series of credit events
that may trigger a coupon cancellation. Denote by τ1, ..., τm the random times at
which the aforementioned credit events may occur. Then the whole coupon structure
(cj, Tj, τj)

m
j=1 of the CoCo is defined, in such a way that the amount cj is paid at

time Tj, provided the τj > Tj. We establish that the last coupon is paid at maturity
time, i.e., Tm := T . The coupon cancellation feature was introduced in [13] in order
to alleviate the so-called death-spiral effect exhibited by the traditional CoCo—see
details in Sect. 3.1. Thus it is assumed that coupon cancellation precedes conversion
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according to τ1 ≥ · · · ≥ τm ≥ τ . Of course it suffices to set τ1 = · · · = τm = ∞ if
this feature were to be excluded from modelling.

It will be assumed that the issuer of the CoCo pays dividends according to a
deterministic function κ . From the investors side, it seems to be reasonable to assume
that no dividends are paid after the conversion time τ . Thus hereafter we shall assume
that the following condition holds true.

Condition (F). There are no dividends after the conversion time τ .

Remark 1 It is worth mentioning that, whereas this condition simplifies the expres-
sions obtained for the price, it is not crucial, in the sense that the computations still
can be carried on. We refer to [13] for a further discussion on this topic.

Once these features are settled, the CoCo’s final payoff, is given by

K1{τ>T} + K

Cp
Sτ 1{τ≤T} +

m∑
j=1

cje
∫ T

Tj
rudu

1{τj>Tj}, (5)

where (St)t≥0 and (rt)t≥0 stand for the share price and interest rate, respectively.

2.1 A Model-Free Formula for the CoCo Price

In Proposition 2, a model-free formula for the CoCo price is given. Let us first
introduce some notation required for what follows. Underlying to our market, we
shall consider a complete probability space (Ω,F ,P), endowed with a filtration
F := (Ft)t∈[0,T ] representing the trader’s information—this includes the information
generated by all state variables (e.g., share price, interest rates, total assets value,...)
and the default-freemarket. All filtrations considered are assumed to satisfy the usual
conditions of P-completeness and right-continuity. We shall denote the evolution of
the money in the bank account by (Bt)t∈[0,T ], i.e.,

Bt = exp

{∫ t

0
rudu

}
, 0 ≤ t ≤ T .

Recall that two probability measures on (Ω,F ), P1 and P2, are said to be equiv-
alent if, for every A ∈ F , P1(A) = 0 if and only if P2(A) = 0. We shall assume
the existence of a risk-neutral probability measure P∗, equivalent to the real-world
probability measure P, such that the discounted value of self-financing portfolios,
(Ṽt := Vt

Bt
)t∈[0,T ], follows a P∗-martingale. Hereafter the symbol tilde will be used to

denote discounted prices. Now, in addition to P
∗, we shall consider other two prob-

ability measures (also equivalent to P) which will allow us to carry on some of the
computations related with the CoCo arbitrage-free price. First, letting (B(t, Tj))t≥0
stand for the price of the default-free zero-coupon bond with maturity Tj, we define
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the Tj-forward measure P
Tj through its Radon-Nikodým derivative with respect to

P
∗ as given by

dPTj

dP∗ = e− ∫ Tj
0 rudu

B(0, Tj)
. (6)

We say that PTj is given by taking the bond price (B(t, Tj))t≥0 as numéraire.
Similarly, but now taking the issuer’s share price (St)t≥0—without dividends—as
numéraire, we obtain the share measure P

(S); its Radon-Nikodým derivative with
respect to P∗ is given by

dP(S)

dP∗ = e− ∫ T
0 [ru−κ(u)]duST

S0
. (7)

In what follows, expectation with respect to P∗, PTj and P(S) will be denoted by E∗,
E

Tj and E
(S), respectively.

Proposition 2 The discounted CoCo arbitrage-free price, on the set {t < τ }, equals

π̃t := E
∗ [ K̃1{τ>T}

∣∣Ft
] + CrE

∗ [ S̃T 1{τ≤T}
∣∣Ft

] +
m∑

j: Tj>t

E
∗ [ c̃j1{τj>Tj}

∣∣Ft
]

(8)

= KB̃(t, T)PT (τ > T | Ft) + CrS̃t

e
∫ T

t κ(u)du
P

(S)(τ ≤ T | Ft) +
m∑

j: Tj>t

cjB̃(t, Tj)P
Tj (τj > Tj| Ft). (9)

Proof Due to the Condition (F), to receive K
Cp

Sτ at time τ is equivalent to receive
K
Cp

ST at time T . Therefore the payoff in (5) is equivalent to

K1{τ>T} + K

Cp
ST 1{τ≤T} +

m∑
j=1

cje
∫ T

Tj
rudu

1{τj>Tj}, (10)

and thus expression (8) for the price follows by preconditioning, taking into account
that Cr = K

Cp
. As for (9), it suffices to notice that, in light of the abstract Bayes rule,

for every X ∈ L 1(FTj ,P
Tj ) we have

E
Tj [X| Ft] =

E
∗
[

X
dPTj

dP∗

∣∣∣∣Ft

]

E∗
[
dPTj

dP∗

∣∣∣∣Ft

] =
E

∗
[

Xe− ∫ Tj
0 rudu

∣∣∣∣Ft

]

e− ∫ t
0 ruduB(t, Tj)

, (11)
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and thus

E
∗
[

Xe− ∫ Tj
t rudu

∣∣∣∣Ft

]
= B(t, Tj)E

Tj [X| Ft]. (12)

Similarly, for every X ∈ L 1(FT ,P(S)) we have

E
∗ [XSTe

− ∫ T
t rudu

∣∣∣Ft

]
= e− ∫ T

t κ(u)duStE
(S)[X| Ft]. (13)

Combining (8) with these identities we get the expression (9).

With Proposition 2 at hand, the subsequent difference between models relies on
howconversion and coupon cancellation is defined, and how the corresponding prices
are evaluated. In this paper we follow a structural approach to price CoCos. That is
to say, given a model for the share price (St)t≥0, a series of critical time-varying
barriers � and �j are set in such a way that �1 ≥ · · · ≥ �m ≥ � and the credit events
are given by

τ := inf{t > 0 : St ≤ �(t)}, and τj := inf{t > 0 : St ≤ �j(t)}, j = 1, ..., m, (14)

with the standard convention inf ∅ := ∞. Then our main concern is to derive analyt-
ically tractable formulas for (8)–(9), either in the form of closed formulas or efficient
simulation methods. Later on in Sects. 5 and 6 we shall incorporate short-term uncer-
tainty and extension risk to the pricing problem.

2.2 Pricing CoCos with Write-Down

In the case of CoCos with write-down, upon the appearance of the trigger event the
investor does not receive a certain amount of shares. Instead, she receives only a
fraction R ∈ (0, 1) of the original face value K , provided that the issuer has not
defaulted. Let δ denote the random time at which the issuer may default. Then the
payoff of this CoCo contract with write-down equals

K1{τ>T} + RK1{τ≤T}1{δ>T} +
m∑

j=1

cje
∫ T

Tj
rudu

1{τj>Tj}.

Similarly to Proposition 2, we can give now a model-free price formula for the
CoCo with write-down. For this matter, we make no further assumption beyond
model consistency in the sense that δ and τ are modelled in such a way that δ > τ

so that default may only occur after conversion.
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Proposition 3 The discounted arbitrage-free price of the CoCo with write-down,
on the set {t < τ }, equals

π̃wd
t := (1 − R)KB̃(t, T)PT (τ > T | Ft) + RKB̃(t, T)PT (δ > T | Ft)

+
m∑

j: Tj>t

cjB̃(t, Tj)P
Tj (τj > Tj| Ft). (15)

Proof It suffices to notice that the payoff can be rewritten as

R1{δ>s}1{τ≤s} + 1{τ>s} = R1{δ>s}1{τ≤s} + (
R1{τ>s} + (1 − R)1{τ>s}

)
= R1{δ>s}1{τ≤s} + R1{τ>s}1{δ>s} + (1 − R)1{τ>s}
= R1{δ>s}

(
1{τ≤s} + 1{τ>s}

) + (1 − R)1{τ>s},

where for the second equivalence we have used the identity 1{τ>s}1{δ>s} = 1{τ>s},
which holds due to the consitency assumption τ < δ.

By comparing (9) with (15) we can see that the techniques used to price the CoCo
with conversion can be readily applied to CoCo with write-down. Across this work
we focus on the former contract.

3 A Model with Stochastic Interest Rates

In this section we assume that the price of default-free zero-coupon bonds are sto-
chastic. More specifically, for j ∈ {1, ..., m}, the default-free zero-coupon bond price
(B(t, Tj))t∈[0,Tj] is assumed to have the following P

∗-dynamics

dB(t, Tj)

B(t, Tj)
= rtdt +

d∑
k=1

bk(t, Tj)dWk
t , (16)

where each bk is a positive deterministic càdlàg function, and (W1
t , ..., Wd

t )t∈[0,T ] is a
d-dimensional Brownian motion with respect to the risk-neutral probability measure
P

∗ and the trader’s filtration F. We shall assume as well that the share price (St)t∈[0,T ]
obeys

dSt

St
= [rt − κ(t)]dt +

d∑
k=1

σk(t)dWk
t , (17)

where σ := (σk)
d
1 is a positive deterministic càdlàg function such that, for all t ∈

[0, Tj], the inequality
∥∥σ(t) − b(t, Tj)

∥∥ > 0 is satisfied.
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The conversion and coupon cancellation events in our model are linked to the
asset dividends and the evolution of bond prices, in such a way that conversion is
triggered as soon as (St)t≥0 crosses

�t := LmB(t, Tm) exp

{∫ Tm

t
κ(u)du

}
, 0 ≤ t ≤ Tm;

and similarly, for j ∈ {1, ..., m}, the j-th coupon cancellation is triggered as soon as
(St)t≥0 crosses

�
j
t :=

{
LjB(t, Tj) exp

{∫ Tj
t κ(u)du

}
, 0 ≤ t < Tj

Mj, t = Tj.
(18)

The parameters Mj and Lj are assumed to be given non-negative constants satisfying
Mj ≥ Lj, with Lm < Cp and

Lj+1

Lj
≤ exp

{
−
∫ Tj+1

Tj

κ(u)du

}
, j = 1, ..., m − 1, (19)

so that the required ordering �1t ≥ �2t ≥ · · · ≥ �m
t is fulfilled—thus ensuring that

0 ≤ τj ≤ Tj implies τj < τj+1, for j = 1, ..., m − 1. Clearly the Mertonian condition
(i.e., STj must be bigger than Mj) can be removed by taking Lj = Mj. See Fig. 1 for
an illustration of the barrier’s shape and parameters.

St

2
t

M2

L2

t

T0 T1 T2 T3 Tm

Fig. 1 The graph illustrates the share price (St)t≥0, along with the barriers �j and its parameters
Lj and Mj . The first barrier is hit at t = T1, whereas the third one is hit at some T2 < t < T3. On
the other hand, the second barrier is not hit since the share price stays above �2 on the whole period
[T0, T2], and the Mertonian condition is satisfied, i.e., ST2 > M2. Conversion is not triggered either
since the barrier � is never hit by (St)t≥0
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In the current setting, the process (Uj
t := log St

�j(t)
)t≥0 plays a fundamental role.

Indeed, from the definition of the random times τ and τj (see (14)) and the barriers
� and �j it follows that

{τ > Tm} =
{

inf
0≤t≤Tm

Um
t > 0

}
and {τj > Tj}

=
{

inf
0≤t≤Tj

Uj
t > 0, Uj

Tj
> log

Mj

Lj

}
, j = 1, ..., m.

From this observation we have that, in order to price the CoCo contract, we need to
be able to compute the conditional joint distribution of (Uj

Tj
, Uj

Tj
), where we have

defined Uj
Tj

:= inf0≤t≤Tj Uj
t . To this matter, notice that an application of the Itô

formula tells us that

dUj
t = −1

2

∥∥σ(t) − b(t, Tj)
∥∥2 dt + ∥∥σ(t) − b(t, Tj)

∥∥ dW
Tj
t .

where (W
Tj
t )t≥0 is the PTj -Brownian motion given by the Girsanov theorem, corre-

sponding to the probability change (6). In fact we can see that under P(S) we have
similar dynamics

dUj
t = 1

2

∥∥σ(t) − b(t, Tj)
∥∥2 dt + ∥∥σ(t) − b(t, Tj)

∥∥ dW (S)
t ,

where (W (S)
t )t≥0 is the P(S)-Brownian motion corresponding now to the probability

change (7). Consequently, a time change given by

aj(t) :=
∫ t

0

∥∥σ(s) − b(s, Tj)
∥∥2 ds, 0 ≤ t ≤ Tj, (20)

renders the fundamental process (Uj
t := log St

�j(t)
)t≥0 a drifted Brownian motion.

Then we can apply a known result (see [34]) on joint distribution of the Brownian
motion and its running infimum in order to obtain the following closed-formula for
the CoCo price. See details in [13].

Proposition 4 In the current setting, the CoCo arbitrage-free price, on the set {t <

τm}, is given by

πt =
m∑

j: Tj>t

1{t<τj}cj

⎛
⎝B(t, Tj)Φ(−dj

+ − Dj) − Ste− ∫ Tj
t κ(u)du

Lj
Φ(dj

− − Dj)

⎞
⎠ (21)

+ KB(t, Tm) +
(

Cr − K

Lm

)(
LmB(t, Tm)Φ(dm+) + Ste

− ∫ Tm
t κ(u)duΦ(dm−)

)
,
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where

dj
± = log

LjB(t,Tj)e
∫ Tj
t κ(u)du

St
± 1

2

∫ Tj
t

∥∥σ(u) − b(u, Tj)
∥∥2 du√∫ Tj

t

∥∥σ(u) − b(u, Tj)
∥∥2 du

, and

Dj = 1√∫ Tj
t

∥∥σ(u) − b(u, Tj)
∥∥2 du

log
Mj

Lj
, (22)

and Φ denotes the standard Gaussian cumulative distribution function.

3.1 The Black-Scholes Model and the Greeks

The Black-Scholes model is obtained as a particular case of the model above, by
taking default-free bond prices with null volatilities—i.e., by taking the b(·, Tj) in
(16) to be zero. Consequently, the closed-form price formula given by
Proposition 4 can be used in order to derive the Greeks, Delta Δ and Vega ν, which
respectively describe the CoCo’s price sensitivity to share price and volatility. We
have the following.

Proposition 5 Let Φ and φ denote, respectively, the standard Gaussian cumula-
tive distribution and density function. In the Black-Scholes model, the CoCo’s price
sensitivity to share price Δ := ∂πt

∂St
and to volatility ν := ∂πt

∂σ
are respectively given by

Δ =
m∑

j: Tj>t

1{t<τj}
cj

Lj

(
2

σ
√

Tj − t
φ(bj

−) − Φ(bj
−)

)

+
(

K

Lm
− Cr

)(
2

σ
√

Tm − t
φ(bm−) − Φ(bm−)

)
,

and

ν =
m∑

j: Tj>t

1{t<τj}
cj

Lj

log
Lj
St

− r(Tj − t)

σ 2
√

Tj − t

(
φ(−bj

+)Lje
−r(Tj−t) + Stφ(bj

−)
)

−
(

Cr − K

Lm

) log Lm
St

− r(Tm − t)

σ 2
√

Tj − t

(
φ(bm+)Lme

−r(Tm−t) + Stφ(bm−)
)

,

where

bj
± = log

Lj
St

− (r ∓ 1
2σ

2)(Tj − t)

σ
√

Tj − t
, j = 1, ..., m. (23)
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Some remarks are in order. On the one hand, it is has been documented that by
actively hedging the equity risk, investors can unintentionally force the conversion
by making the share price deteriorate and eventually trigger the conversion. This
situation is referred to as the death-spiral effect. Now, from the above expression for
the Delta Δ it can be checked that it is strictly positive, and in fact one can observe
that the Delta Δ increases sharply when the time to maturity T decreases. Thus one
of the conclusions in [13] is that the coupon cancellation feature leads to a flatter
behaviour of the Delta Δ, hence reducing the death-spiral risk. On the other hand, it
can also be checked that the Vega ν is strictly negative, this tell us that an increase in
the volatility translates into a decrease in the prices. Such observation is clearly in
line with the intuition that a higher volatility will increase the probability of crossing
the barriers � and �j defining the conversion and coupon cancellation events.

4 Advanced Models

4.1 Incorporating the Heston Stochastic Volatility Model

Let us start this section by remarking the fact that the arguments preceding the obtain-
ment of Proposition 4 hold even if the share and default-free bond price volatilities
(i.e., σ and b(·, Tj) in (17) and (16)) are no longer deterministic. However, the time
change aj in (20) would be now stochastic and, consequently, the time-changed
fundamental process dynamics

dUj
aj(t)

= −1

2
aj(t)dt + dW

Tj

aj(t)
, (24)

would no longer match those of a drifted Brownian motion. Thus one anticipates that
the pricing problem, in the setting of stochastic volatility, will lead to closed-form
formulas only in few cases, and require more advanced numerical tools otherwise.

As a particularmodel, we shall assume that the volatilities are stochastic according
to the work of [26]: we consider a new stochastic factor (Vt)t≥0 acting on both σ and
b(·, Tj), in such a way that the dynamics in (17) and (16) are now replaced by

dSt

St
= [rt − κ(t)]dt + √

Vt

d∑
k=1

σk(t)dWk
t , (25)

and

dB(t, Tj)

B(t, Tj)
= rtdt + √

Vt

d∑
k=1

bk(t, Tk)dWk
t , (26)
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respectively. The factor (Vt)t≥0 is given as the solution to the following SDE

dVt = [α − βVt]dt + γ
√

VtdZt,

where α, β and γ are constants, with 2α > γ 2 to ensure the positivity of the solution,
and (Zt)t≥0 is a one-dimensional PTj -Brownian motion. Similar dynamics under the
share measure P(S) are assumed to be satisfied by (Vt)t≥0.

If we further assume the independence between the noises driving the prices and
their volatilities, then we see that the PTj -Brownian motion in (24) is independent of
the (now stochastic) time change

aj(t) =
∫ t

0
Vs

∥∥σ(s) − b(s, Tj)
∥∥2 ds, 0 ≤ t ≤ Tj. (27)

Thus, by a preconditioning argument, we obtain the following extension of Proposi-
tion 4.

Proposition 6 In the current setting, the CoCo arbitrage-free price, on the set {t <
τm}, is given by

πt =
m∑

j,Tj>t

1{t<τj}cj

⎛
⎝B(t, Tj)E

Tj [Φ(−dj
+ − Dj)|Ft] − StE

Tj [Φ(dj
− − Dj)|Ft]

Lje
∫ Tj

t κ(u)du

⎞
⎠

+ KB(t, Tm)ETm [Φ(−dm−)| Ft] − KSt

Lje
∫ Tj

t κ(u)du
E

Tm [Φ(dm+)| Ft]

+ CrSte
− ∫ Tm

t κ(u)du
E

(S)[Φ(dm−)| Ft] + CrLmB(t, Tm)E(S)[Φ(dm+)| Ft],

where

dj
± = log

LjB(t,Tj)e
∫ Tj
t κ(s)ds

St
± 1

2

∫ Tm
t Vs

∥∥σ(s) − b(s, Tj)
∥∥2 ds√∫ Tj

t Vs
∥∥σ(s) − b(s, Tj)

∥∥2 ds
, (28)

and

Dj = 1√∫ Tj
t Vs

∥∥σ(s) − b(s, Tj)
∥∥2 ds

log
Mj

Lj
. (29)

From the pricing formula above we can see that the CoCo price is related to the
price of binary options. Indeed, for instance, for a binary option with maturity Tj and
strike Mj we have
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E
∗
[
e− ∫ Tj

t rudu1{STj <Mj}
∣∣∣∣Ft

]
= B(t, Tj)E

Tj
[

1{STj <Mj}
∣∣∣Ft

]

= B(t, Tj)P
Tj

(
Uj

Tj
≤ log

Mj

Lj

∣∣∣∣Ft

)
.

Moreover, according to our previous discussion, conditioned to FV
Tj

:= σ(Vs, 0 ≤
s ≤ Tj) the random variable Uj

Tj
is normally distributed, so that we also have

P
Tj

(
Uj

Tj
≤ log

Mj

Lj

∣∣∣∣Ft

)
= E

Tj [Φ(dj
+ + Dj)|Ft].

Let us now give an explicit computation of the probability above; this illustrates how
the CoCo price can be computed. For this matter, we use the relationship between
the characteristic and distribution functions (see for instance [38]) which allows us
to write

P
Tj

(
Uj

Tj
≤ log

Mj

Lj

∣∣∣∣Ft

)
= 1

2
+ 1

2π

∫ ∞

0

(
Mj
Lj

)iξ
ϕTj (t, Ut, Vt; −ξ) −

(
Mj
Lj

)−iξ
ϕTj (t, Ut, Vt; ξ)

iξ
dξ,

where

ϕTj (t, Ut, Vt; ξ) := E
Tj [exp{iξ(Uj

Tj
)}|Ft] = E

Tj [exp{iξ(Uj
Tj

)}|Ut, Vt], (30)

and the last equation holds by Markovianity. Hence the problem of computing
the probability above translates into the problem of finding an expression for
ϕTj (t, u, v; ξ). It follows from the Itô formula that

∂ϕTj

∂t
+ 1

2

∂2ϕTj

∂u2
vσ 2

Tj
+ 1

2

∂2ϕTj

∂v2
γ 2v − 1

2

∂ϕTj

∂u
vσ 2

Tj
+ ∂ϕTj

∂v
(α − βv) = 0, (31)

with the boundary conditionϕTj (Tj, u, v; ξ) = eiξu, andwhere σ 2
Tj

= ‖σ −b(·, Tj)‖2.
For an affine solution like

ϕTj (t, u, v; ξ) = eAj(Tj−t)+Bj(Tj−t)v+iξu, (32)

the PDE in (31) is reduced to the Riccati equation

{
∂Bj
∂t − 1

2γ
2B2

j + βBj = − ( 1
2ξ

2 − i
2ξ
)
σ 2

Tj
,

∂Aj
∂t = αBj,

(33)
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with Aj and Bj vanishing at t = Tj. As shown in [13], for a constant function σ 2
Tj
,

such equation is explicitly solved by

Bj(Tj − t) = −λ(ξ) + β

γ 2

exp
{−λ(Tj − t)

} − 1

exp
{−λ(Tj − t)

} + λ(ξ)+β
λ(ξ)−β

,

and

Aj(t) = −α
λ(ξ)−β
λ(ξ)+β

[
2
γ 2 log

(
(λ(ξ) − β) exp

{−λ(ξ)(Tj − t)
} + λ(ξ)+β

λ(ξ)−β

)

+λ(ξ)−β

γ 2 (Tj − t)
]
,

where λ(ξ) :=
√

β2 + γ 2σ 2
Tj

(ξ2 − iξ), and
√· denote the analytic extension of the

real square root to C \ R−.

4.2 An Exponential Lévy Model

In this section we shall consider an exponential Lévy model for the share price. As
opposed to the previous sections, we shall now consider a numerical approach to
pricing, based on exploiting the so-called Wiener-Hopf factorization of the driving
Lévy process (Xt)t≥0. This approach has been recently applied in order to price
contracts with path-dependent payoffs as in [12, 31]; see more details below.

4.2.1 First-Passage Times and Wiener-Hopf Factorization

Let (Xt)t≥0 be a Lévy process with characteristic triplet (μ, σ, ν), and denote its
characteristic exponent by ψX . For details and proofs of the following arguments we
refer to [1].

Recall that if e(λ) is an exponential randomvariablewith parameterλ, independent
of (Xt)t≥0, then we have the following equality in distribution

Xe(λ) = I + S,

where I and S are independent random variables, distributed as

Xe(λ) := inf
0≤u≤e(λ)

Xu and Xe(λ) := sup
0≤u≤e(λ)

Xu,

respectively. Moreover,

E
[
exp

{
zXe(λ)

}] = E
[
exp

{
zXe(λ)

}]
E
[
exp

{
zXe(λ)

}]
. (34)
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We shall refer to (34) as the Wiener-Hopf factorization. In fact, in general it holds
that

E
[
exp

{
zXe(λ)

}] = λ

λ − ψX(z)
.

Consequently, the knowledge of one of the factors in (34) allows us to establish the
other one. A particular case of interest arises when (Xt)t≥0 is a spectrally negative
process since, in this case, it is known that the right factor in (34) is given by

ψ+
λ (z) := E

[
exp

{
zXe(λ)

}] = βλ

βλ − z
, (35)

where βλ is a constant, depending on λ, defined as the solution to

ψX(β) = λ. (36)

Therefore, once we have computed βλ explicitly, we obtain the following expres-
sion for the left factor in (34):

ψ−
λ (z) := E

[
exp

{
zXe(λ)

}] = λ

λ − ψX(z)

βλ − z

βλ

. (37)

This expression can be linked to the distribution function of Xt by partial integration.
Indeed we have

ψ−
λ (z) =

∫ ∞

0
λe−λtdt

∫ 0

−∞
zezξ

P(Xt > ξ)dξ

= λz
∫ ∞

0

∫ ∞

0
e−λt−zξ F(t, ξ)dtdξ (38)

= λzF̃(λ, z)

where we have defined F(t, ξ) := P(Xt > −ξ), and denoted its Laplace transform
by F̃. As argued by [33], by combining (37) and (38)we can recoverF by the standard
Fourier transform inversion. Further, the result can be numerically computed in an
efficient way, provided the condition

lim
z→∞

1

z

∫ 0

−∞
[
ezx − 1 − zx1{|x|≤1}

]
ν(dx) = 0, (39)

holds true. This condition is imposed in order to facilitate the computation of βλ (i.e.,
the solution of (35)) by means of suitable integration contour change. In fact, such a
change allows to take βλ = λ/μ. This result is summarized in the following lemma.
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Lemma 7 For fixed t and ξ , and given the parameter set (A1, A2, l1, l2, N1, N2),
define

a1 := A1

2tl1
, a2 := A2

2ξ l2
, h1 := π

tl1
, h2 := π

ξ l2
, g(x) := ψX(x/μ)

and, for every N ∈ N,

sN (t, ξ) := h1h2
4π2

N∑
n=−N

N∑
k=−N

dg

dx
(a1 + inh1)

F̃(g(a1 + inh1), a2 + ikh2)e
tg(a1t+inh1)+x(a2+ikh2).

If the condition (39) is satisfied, then the following approximation holds true

P(Xt > ξ) �
N2∑

n=0

(
N2

n

)
sN1+n(t, ξ),

where the symbol � indicates an Euler summation.

The double sum in the lemma is used as an initial approximation of F. Here the
parameters (A1, A2, l1, l2) are positive real numbers chosen large enough in order to
control the aliasing error. The final Euler summation is used in order to improve the
accuracy of the raw approximation sN . It is suggested that choosing A1 = A2 = 22,
l1 = l2 = 1, N1 = 12 and N2 = 15 gives satisfactory results. For further details see
[33] and references therein.

4.2.2 The One-Sided CGMY Lévy Process

Hereafter we shall focus on a particular spectrally negative Lévy process (Xt)t≥0
known as one-sided CGMY process, or simply CMY process. This process has no
continuous part, and only one-sided jumps with its Lévy measure being given by

ν(dx) = C exp{−Mx}|x|−1−Y 1{x<0}dx, (40)

where C, M > 0 and Y < 1 are constants. Further, its characteristic exponent can
be obtained in closed-form as

ψX(z) = μz +
∫ 0

−∞
[
ezx − 1 − zx1{|x|≤1}

]
ν(dx)

= μz + CΓ (−Y)((M + z)Y − MY ), (41)
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where Γ stands for the Gamma function. Thus it is apparent that the condition (39)
holds true. Before we proceed, let us mention that the CGMY processes are also
referred to as Tempered stable processes. On the other hand, by setting the parameter
Y = 0 (resp., Y = 1/2) the CMY process becomes a Gamma process (resp., Inverse
Gaussian process). For details on CMYprocesses we refer to [4, 31] and [36, Section
2.3.5].

In order to price CoCos we need to understand the behavior of (Xt)t≥0 both under
the risk-neutral measure P∗ and the share measure P(S). The following result shows
how the Lévy characteristics of (Xt)t≥0 change under Esscher transforms.

Lemma 8 For every real number θ , consider the probability measurePα , equivalent
to P, given by

dPα

dP
= exp {αXT }

E
[
exp {αXT }] .

Assume Mα := M − α > 0. Then the Lévy exponent of (Xt)t≥0 under Pα is given by

ψα
X (z) := zμα +

∫ 0

−∞
[
ezx − 1 − zx1{|x|≤1}

]
να(dx),

where

μα := μ +
∫
|x|≤1

x(eαx − 1)ν(dx), and να(dx) := C exp{−Mαx}|x|−1−Y 1{x<0}dx.

Proof The first part follows from (41) and [35, Theorems 33.1 and 33.2]. Now, using
the expression in (40) we have

να(dx) = C exp{−(M − α)x}|x|−1−Y 1{x<0}dx = C exp{−Mαx}|x|−1−Y 1{x<0}dx.

The assumption Mα > 0 assures that (C, Mα, Y) is a rightful parameter set for a
CMY distribution.

4.2.3 Application to CoCos

We shall assume that, under P∗, there is a pure-jump (C, M, Y )-Lévy process (Xt)t≥0
driving the share price (St)t≥0 in such a way that

St := e(r−κ)t exp {Xt}
E∗ [exp {Xt}

] = exp{μt + Xt}, t ≥ 0,

where the interest rate r and the dividends κ are assumed to be constants, and we
define� := − logE∗[eX1 ] and setμ := r −κ +� . Further, we shall assume that the
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parameter M is bigger than 1. We remark here that, on the one hand, this technical
assumption will allow us to accommodate the Variance Gamma (VG) process con-
sidered in [30]. On the other hand, this assumption is consistent with the numerical
experiments reported by [31].

Proposition 9 In the current setting, the price of a CoCo at time 0 ≤ t ≤ T can be
numerically approximated in an efficient way by means of the expression

πt ≈
m∑

j: Tj>t

e−r(Tj−t)P0
j (t, Tj) + Ke−r(Tm−t)P0

m(t, Tm) + CrSte
−κ(Tm−t)P1

m(t, Tm),

where

Pα
j (t, Tj) �

N2∑
n=0

(
N2

n

)
sα

N1+n

(
Tj − t, log St

�j(t)
+ �(Tj − t)

)
, j = 1, ..., m, α = 0, 1,

(42)
with the symbol � indicating an Euler summation, and

sα
N (t, ξ) :=

N∑
n=−N

N∑
k=−N

μα + YCΓ (−Y)
(
Mα + μ−1

α t
)Y−1

4μαtξ l1l2

F̃α(gα(a1 + inh1), a2 + ikh2)e
tgα(a1t+inh1)+x(a2+ikh2),

with the parameters (a1, a2, h1, h2, l1, l2, N1, N2) given as in Lemma 7, and

F̃α(λ, z) := λ − zμα(
λ − zμα − CΓ (−Y)((Mα + z)Y − MY

α )
)

zλ
,

gα(x) := x + CΓ (−Y)

((
Mα + μ−1

α x
)Y − MY

α

)
, α = 0, 1,

where Mα and μα are defined in Lemma 8.

Proof Taking into account the general expression for theCoCo price (c.f. Proposition
2), computing πt boils down to compute

P0
j (t, Tj) := P

∗ (τj > Tj
∣∣Ft

) = P
∗(XTj−t > −ξ)

∣∣∣
ξ=log(St/�j(t))+�(Tj−t)

,

for j = 1, ..., m, and

P1
m(t, Tm) := P

(S) ( τm > Tm|Ft) = P
(S)(XTm−t > −ξ)

∣∣∣
ξ=log(St/�m(t))+�(Tm−t)

.

These computations can be carried out by means of Lemma 7. Indeed, under this
exponential Lévy model, the share measure P

(S) (resp., risk-neutral measure P
∗)
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coincides with an Esscher transform of parameter α = 1 (resp., α = 0). In light
of Lemma 8, the driving noise (Xt)t≥0 will remain a CMY process under P(S), but
now having the shifted parameter set (C, M1, Y) = (C, M − 1, Y). Moreover, this
implies that the Lévy measure of (Xt)t≥0 also satisfies the condition (39) under P(S).
Thus, if we write P0 = P

∗ and P1 = P
(S), by the reasoning in Sect. 4.2.1 we see that

the Laplace transform of Fα(t, ξ) := P
α(Xt > −ξ) is given by F̃α as defined above.

Moreover, the correspondent contour change is given by gα .

Remark 10 [12] provides an alternative approach which exploits the Wiener-Hopf
factorization in a different way: instead of computing first-time passage probabil-
ities as done here, what is computed is the joint density of (Xt, Xt). As the noise
driving share prices, the authors consider the so-called Beta-Variance Gamma (β-
VG) process—also referred to asLamperti-Stable process by [3]—which exhibits the
same exponential decay as the Variance Gamma process, hence leading to a smile-
conform model. For this β-VG process the distribution of the variables Xe(λ) and
Xe(λ) can be specified, thus obtaining the Wiener-Hopf factors ψ+

λ and ψ−
λ . Taking

(8) into account, combining the knowledge of the (Xt, Xt) density with a Monte-
Carlo technique due to [29], the authors provide an efficient numerical pricing of
CoCos.

5 Triggering Conversion Under Short-Term Uncertainty

Linking credit events to themovements of a fully observable (i.e.,F-adapted) process
(Ut)t≥0 is certainly one of the most appealing features of structural models. Indeed,
this full observability assumption—hereafter referred to as (A1)—gives rise to clear
and analytically tractable models as we have seen in the previous sections. When
considering contingent capital contracts such as CoCos, however, the assumption
(A1) seems arguable since in most cases regulatory capital depends on the balance
sheets of the issuer, and those sheets are updated only at a series of predetermined
dates (tj)t∈N. Thusweare interested in considering the followingpartial observability
assumption.

Assumption (A1′). The fundamental process (Ut)t≥0 is fully observable only at
predetermined dates (tj)t∈N.

On the other hand, when the process (Ut)t≥0 is related to the share price, it is
also commonly assumed that the correlation between the noises driving the share
price and (Ut)t≥0 is equal to ρ = 1 (or ρ = −1)—hereafter this assumption will be
referred to as (A2). Nevertheless, it would be reasonable to consider the chance that a
different (possibly time-dependent) correlation parameter ρ ∈ [−1, 1] may provide
a better fit. Consequently we are also interested in considering the correlation ρ as
an additional rightful model parameter by taking the following alternative to (A2).

Assumption (A2′). The correlation ρ between the noises driving the share price and
(Ut)t≥0 may vary.
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In what follows we revisit the simple framework of Sect. 3.1 in order to illustrate
these ideas and show how the pricing problem is modified under (A1′) and (A2′). For
a full study of this short-term uncertainty model we refer to the forthcoming paper
[15].

5.1 Pricing CoCos on a Black-Scholes Model Under
Short-term Uncertainty

As shown in Sect. 3.1, in the Black-Scholes model,

dSt = St([r − κ]dt + σdW∗
t ),

the cancellation of the j-th coupon is triggered as soon as the process

dUt := d log
St

�t
= −1

2
σ 2dt + σdW∗

t ,

crosses the critical value log
Mj
Lj
, j = 1, ..., m, whereas for conversion zero is the

critical level. In this settingAssumption (A2′) is translated as the correlation structure
between the noise driving (St)t≥0 and that of the new process

dUt(ρ) := −1

2
σ 2dt + σdWρ

t := −1

2
σ 2dt + σd(ρW∗

t +
√
1 − ρ2Zt), (43)

where ρ is the given correlation parameter, and (Zt)t≥0 is a second Brownian motion,
independent of (W∗

t )t≥0. Thus, instead of the process (Ut)t≥0 above, we shall now
consider the parametric family (Ut(ρ))t≥0 whose driving noise (Wρ

t )t≥0 is also a
Brownian motion but correlated to (W∗

t )t≥0, in such a way that dWρ
t dW∗

t = ρdt.
Further, the time at which the j-th coupon may be cancelled is given by

τj(ρ) := inf

{
t ≥ 0 : Ut(ρ) ≤ log

Mj

Lj

}
.

As for Assumption (A1′), notice that the full information flow corresponds to

Gt := σ(W∗
s , Zs, 0 ≤ s ≤ t) = FW∗

t ∨ F Z
t , t ≥ 0,

whereas, setting �t� := min{tj ∈ {0, t1, t2, ...} : tj ≤ t < tj+1}, the information
available to the modeller is now given by

F̃t := FW∗
t ∨ σ(Zs, 0 ≤ s ≤ �t�) = FW∗

t ∨ F Z�t�, t ≥ 0.
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Since Gt ⊇ F̃t , and the equality holds only at the predetermined dates {tj, j ∈ N},
we can think of (Zt)t≥0 as an extra source of noise which clears out at update times
(tj)j∈N. The fact that the extra noise is cleared out at (tj)j∈N motivates the notion of
short-term uncertainty, and it has two important implications. On the one hand, our
model differs from other partial or incomplete informationmodels like [9, 10, 21], or
[25] since the information structure is different.On the other hand, as opposed to other
structural models, the short-term uncertainty considered here prevents the conversion
time τj(ρ) from being a stopping timewith respect to the reference filtrationF, which
is generated by the relevant state variables and the risk-free market. Hence, one can
investigate conditions under which τj(ρ) admits an intensity, as done by [9, 21], or
[27].

5.2 Coupon Cancellation Probabilities Under Short-Term
Uncertainty

Let us show how the coupon cancellation probabilities are modified under the
assumptions (A1′) and (A2′). We begin by defining two auxiliary processes

ζt := σ
√
1 − ρ2(Zt − Z�t�) and ξt := ρ log

St

S�t�
+ ρ log

�t

��t�
, t ≥ 0.

These processes have an important role in the computations within our short-term
uncertainty model since they appear implicitly in (Ut(ρ))t≥0 according to the fac-
torization

Ut(ρ) = (
U�t�(ρ) + ξt

) + ζt . (44)

It is apparent that the term between parentheses belongs to F̃t = FW∗
t ∨ F Z�t�. On

the other hand, ζt is independent of F̃t , and it is normally distributed with zero mean
and variance

ν2(t) := (1 − ρ2)(t − �t�)σ 2.

We note here that the variance ν2(t) represents a key quantity within this frame-
work. Indeed, on the one hand, it actually encodes the two new features of our
model: the factor 1 − ρ2 measures how close (St)t≥0 and (Ut)t≥0 are to being com-
pletely correlated; whereas the factor t − �t� measures the elapsed time from the
last information update. On the other hand, as the following result suggests, coupon
cancellation probabilities and other analytical formulas obtained within our model
depend explicitly on ν(t).
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Proposition 11 For every x ∈ R define the random time τx(ρ) := inf {s ≥ 0 : Us

(ρ) ≤ x}. Then, for every 0 ≤ t ≤ T, the following equation holds true on {τ > �t�}

P
∗(τx(ρ) > T |F̃t) = E

∗
[
Φ

(
−D− + ζt

σ
√

T − t

)]
− e−(U�t�(ρ)−x)

(
S�t���t�

St�t

)

E
∗
[
e−ζt Φ

(
D+ − ζt

σ
√

T − t

)]
,

where the expectations above are restricted to the values

D± = x − U�t�(ρ) − ξt ± 1
2σ

2(T − t)

σ
√

T − t
. (45)

Moreover,

E
∗
[
Φ

(
−D− + ζt

σ
√

T − t

)]
=
∫
R

Φ

(
−D− + zν(t)

σ
√

T − t

)
φ(z)dz (46)

and

E
∗
[
e−ζt Φ

(
D+ − ζt

σ
√

T − t

)]
= e

1
2 ν2(t)

∫
R

Φ

(
D+ − zν(t) − ν2(t)

σ
√

T − t

)
φ(z)dz,

(47)
whereΦ and φ stand, respectively, for the standard Gaussian cumulative distribution
and density functions.

Proof Since under Gt the computation is known, for every t = tj we have, on
{τx(ρ) > t},

P
∗(τx(ρ) > T |F̃tj ) = P

∗(τx(ρ) > T |Gtj )

= Φ

(−x + Utj (ρ) + 1
2σ

2(T − tj)

σ
√

T − tj

)
− e−(Utj (ρ)−x)

Φ

(
x − Utj (ρ) + 1

2σ
2(T − tj)

σ
√

T − tj

)
.

Define

d1±(t) = x − Ut(ρ) ± 1
2σ

2(T − t)

σ
√

T − t
.
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For t /∈ {tj, j ∈ N}, by conditioning we get, on {τx(ρ) > �t�},

P
∗(τx(ρ) > T |F̃t) = E

∗ [
P

∗(τx(ρ) > T |Gt)
∣∣ F̃t

] = E
∗ [Φ

(
−d1−(t)

)∣∣∣ F̃t

]

− E
∗ [e−(Ut(ρ)−x)Φ

(
d1+(t)

)∣∣∣ F̃t

]
.

In these terms, for �t� < t, the first summand above satisfies

E
∗ [Φ (−d−(t))| F̃t

] = E
∗
[
Φ

(
−D− + ζt

σ
√

T − t

)]
,

where the right-hand side of the expectation above is restricted to the value of D−
given in (45); in fact the equation above reduces to (46) since ζt ∼ N(0, ν2(t)) for
every fixed t ≥ 0. Similarly for the second summand, it follows from (44) that

E
∗ [ e−(Ut (ρ)−x)Φ

(
d1+

)∣∣∣ F̃t

]
= e−(U�t�(ρ)−x+ξt )E

∗
[
e−ζt Φ

(
D+ − ζt

σ
√

T − t

)]

= e−(U�t�(ρ)−x)
(

S�t���t�
St�t

)
E

∗
[
e−ζt Φ

(
D+ − ζt

σ
√

T − t

)]
.

In order to obtain (47), let us consider the change of measure given by

dP
′

dP∗ = exp

{
ζt − 1

2
ν2(t)

}
= exp

{∫ T

0
σ
√
1 − ρ21[�t�,t](s)dZs

−1

2

∫ T

0
[σ
√
1 − ρ21[�t�,t](s)]2ds

}
.

In virtue of the Girsanov theorem, the process

Z
′
s := Zs −

∫ s

0
σ
√
1 − ρ21[�t�,t](u)du, s ≥ 0,

follows a P
′
-Brownian motion. Thus

E
∗
[
eζt− 1

2 ν2(t)
Φ

(
D+ − ζt

σ
√

T − t

)]
= E

P
′
[
Φ

(
D+ − ζt

σ
√

T − t

)]

= E
P

′
[
Φ

(
D+ −

∫ T
0 σ

√
1 − ρ21[�t�,t](s)dZ

′
s + ν2(t)

σ
√

T − t

)]

=
∫
R

Φ

(
D+ − x + ν2(t)

σ
√

T − t

)
exp

{
− x2

2ν2(t)

}
√
2πν2(t)

dx

=
∫
R

Φ

(
D+ − ν(t)z + ν2(t)

σ
√

T − t

)
φ(z)dz,
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where the first equivalence follows from the abstract Bayes’ rule, and for the last
equivalence we have simply used the standard change of variables z = x

ν(t) .

Jeanblanc and Valchev [27] study the role of information on defaultable-bond
prices within a Black-Scholes setting, with constant parameters and flat default bar-
rier. In some sense, the short-term uncertainty model considered here can be seen
as a bivariate extension of [27]. Despite this analogy, immediate differences arise.
For instance, the survival probabilities obtained by [27] are constant between obser-
vation dates, i.e., within each interval [tj, tj+1). Whereas in Proposition 11 these
probabilities vary in continuous time. This difference relies on the fact that, event
though within each interval [tj, tj+1) our knowledge of the short-term noise ζt is
constant, we still fully observe the evolution of (St)t≥0 and all the other F-adapted
state variables.

In order to conclude this section, let us recall that in light of our discussion
in Sect. 3.1, CoCo prices can be obtained in our current setting once we compute
expressions of the form

P
∗(τj(ρ) > Tj, STj > Lj|F̃t), and P

(S)(τm(ρ) > Tm, STm > Lm|F̃t).

It is worth noticing that the F̃t-conditional joint distribution of (τj(ρ), STj ) =
(infs≤Tj Us(ρ), STj ) cannot be computed directly from Proposition 11 since the
entries of this vector are driven by two different (though correlated) Brownian
motions. An additional complication comes from the fact that the current infor-
mation about one of them might be incomplete. The aforementioned distribution,
and full details on the model, can be found in [15].

6 Extension Risk

According to the new regulatory Basel III framework, CoCos can be categorised as
either belonging to the Additional Tier 1 or Tier 2 capital category. In order to belong
to the former class, a CoCo is supposed to have the coupon cancellation feature and,
further, no fixedmaturity is to be imposed to the contract. Instead, the issuer is entitled
to redeem the CoCo at any of the prespecified call times {Ti, i ∈ N}. Moreover, as
opposed to the common practice on callable contracts before the 2008 financial crisis,
the definition of this contract does not contain any incentive (e.g., a coupon step-up)
for the issuer to redeem at the first call date. Investing in such a contract has the
inherent risk of a financial loss due to the lengthening of the (investor’s) expected
maturity duration which ultimately postpones the payment of the face value K . This
risk is referred to as extension risk. Two recent papers [14, 18] have addressed the
problem of pricing CoCos belonging to the Additional Tier 1 capital category. As an
illustration, let us revisit the Black-Scholes model in Sect. 3.1.

In order to emphasize the correspondence with call times, we add now an extra
index i ∈ N to the coupon structure, in such a way that a coupon cij will be paid



Pricing CoCos with a Market Trigger 205

at Tij provided τij > Tij. It will be assumed that for every i ∈ N the ordering
Ti−1 < Ti1, ... ≤ Tim := Ti holds, where we set T0 := 0. For the sake of clarity, let
us remark that in the current setting, the barriers in (18) and their parameters become

�ij(t) :=
{

Lije−(r−κ)(Tij−t), 0 ≤ t < Tij

Mij, t = Tij.

From the issuer’s point of view, the question of whether to postpone or not the
face value K payment depends on which alternative is cheaper. Hence, similarly to
the situation of Bermuda options (see for instance [37]), the discounted price of a
CoCo belonging to Additional Tier 1 capital category equals

Π̃t :=
⎧⎨
⎩

inf
θ∈Tn

E
∗
[

Z̃(n)
θ

∣∣∣FTn

]
, t = Tn ∈ {Ti, ∈ N} (a)

E
∗ [ π̃Tn+1

∣∣Ft
]
, t ∈ (Tn, Tn+1), (b)

(48)

where Tn stands for the set of stopping times taking values in {Ti, i ≥ n} and

Z̃(n)
θ =

l:Tl=θ∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij,STij >Mij} + Ke−rθ 1{τ>θ} + K

Cp
eκτ S̃τ 1{τ≤θ}.

It is important to remark that even though the general optimal stopping theory allows
us to characterize the solution to the optimization problem in (48a), this is not enough
to tackle whole pricing problem. Indeed, the solution to (48a) must be obtained in
a relatively explicit way in order to be able to give a reasonable expression for the
price in-between call dates (48b). Here we shall address the finite horizon case, i.e.,
the case where there are only finitely many call dates {T1, ..., TN } and TN < ∞.

In this case, for every fixed Tn, the solution to the optimization problem in (7.6.1)
is related to the lower Snell envelope (Ỹ (n)

k )k∈{n,...,N} of the process (X̃(n)
k )k∈{n,...,N}

given by

X̃(n)
k := Z̃(n)

Tk
= Ke−rTk 1{τ>Tk} + K

Cp
eκτ S̃τ 1{τ≤Tk} +

k∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij,STij >Mij}.

Having a finite horizon allows us to obtain (Ỹ (n)
k )k∈{n,...,N} by means of the following

backwards procedure

Ỹ (n)
k =

{
X̃(n)

N , k = N

min
{

X̃(n)
k ,E∗

[
Ỹ (n)

k+1

∣∣∣FTk

]}
, k = N − 1, ..., n.

(49)
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As it turns out, the lower Snell envelope (Ỹ (n)
k )k∈{n,...,N} can be obtained in a rather

explicit form. Indeed, for the first iteration of (49), if τ > Tn then what we have is
the raw expression

Ỹ (n)
N−1 = min

{
X̃(n)

N−1,E
∗ [ X̃(n)

N

∣∣∣FTN−1

]}

= min

{
Ke−rTN−11{τ>TN−1} + K

Cp
eκτ S̃τ 1{τ≤TN−1} +

N−1∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij , STij >Mij},

E
∗
[

Ke−rTN 1{τ>TN } + K

Cp
eκτ S̃τ 1{τ≤TN } +

N∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij , STij >Mij}
∣∣∣∣FTN−1

]}

= K

Cp
eκτ S̃τ 1{τ≤TN−1} +

N−1∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij ,STij >Mij} (50)

+ 1{τ>TN−1} min

{
Ke−rTN−1 ,

E
∗
[

Ke−rTN 1{τ>TN } + K

Cp
eκτ S̃τ 1{τ≤TN } +

m∑
j=1

c̃Nj1{τNj>TNj ,STNj >MNj}
∣∣∣∣FTN−1

]⎫⎬
⎭

= K

Cp
eκτ S̃τ 1{τ≤TN−1} +

N−1∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij ,STij >Mij} + 1{τ>TN−1} min
{

Ke−rTN−1 , π̃TN−1

}
,

where as in the previous section, π̃TN−1 denotes the price of CoCo here with maturity
TN and coupon structure (cNj, TNj, τNj)

m
j=1. Due to the share price Markovianity, the

price π̃TN−1 can be seen as function of STN−1 ; we denote this function simply by
π̃TN−1(x). Now, as discussed in Sect. 3.1, the CoCo has a positive Delta, thus the
function π̃TN−1(x) is increasing and we can find a value S∗

N−1 such that

S∗
N−1 := inf

{
x > 0 : π̃N (x) ≥ Ke−rTN−1

}
.

Hence we obtain

Ỹ (n)
N−1 = K

Cp
eκτ S̃τ 1{τ≤TN−1} +

N−1∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij ,STij >Mij}

+ Ke−rTN−11{τ>TN−1,STN−1≥S∗
N−1} + π̃TN−11{τ>TN−1,STN−1<S∗

N−1}

= Ke−rTN−11{τ>TN−1,STN−1≥S∗
N−1} + K

Cp
eκτ S̃τ 1{τ≤TN−1} +

N−1∑
i=n+1

m∑
j=1

c̃ij1{τij>Tij ,STij >Mij} (51)

+ E
∗
[

Ke−rTN 1{τ>TN ,STN−1<S∗
N−1} + K

Cp
eκτ S̃τ 1{STN−1<S∗

N−1,TN−1<τ≤TN }

m∑
j=1

c̃Nj1{τNj>TNj ,STNj >MNj ,STN−1<S∗
N−1}

∣∣∣∣FTN−1

]
.

So far we can see that basically all indicator functions appearing originally in (50),
has been augmented in (51) by an additional condition on STN−1 (i.e., STN−1 < S∗

N−1
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or STN−1 ≥ S∗
N−1). In [14] it has been shown that the computation of the Snell envelop

(Ỹ (n)
k )k∈{n,...,N} can be carried out bymeans of the above backward procedure. In fact,

it can be seen that the payoff of a CoCo having the callability feature can be written
in terms of

cij1{τij>Tij,ST0<S∗
0 ,...,STi−1<S∗

i−1,STij >Mij} at times Tij, i ≥ 1,

K1{τ>Ti,ST0<S∗
0 ,...,STi−1<S∗

i−1,STi >S∗
i } at Ti, i ≥ 1,

K

Cp
eκτ Sτ 1{�τ�≤TN ,ST0<S∗

0 ,...,S�τ�−1<S∗�τ�−1} at τ,

where �τ� is the element of {T1, ..., TN } such that �τ� − 1 < τ ≤ �τ�, and the
additional variables S∗

1 , ..., S∗
N−2 are defined by analogous reasoning to that behind

the obtainment of S∗
N−1. Here S∗

0 := ∞ and S∗
N := 0 are set by convention.

Proposition 12 If the CoCo with extension risk is active and conversion has not
occurred, then its discounted arbitrage-free price is given by

Π̃t =
∑

i,j: Tij>t

c̃ijP
∗ ( τij > Tij, ST0 < S∗

0 , ..., STi−1 < S∗
i−1, STij > Mij,

∣∣∣Ft

)

+
∑

i: Ti>t

K̃P
∗ ( τ > Ti, ST0 < S∗

0 , ..., STi−1 < S∗
i−1, STi > S∗

i

∣∣Ft
)

(52)

+
N∑

i=1

K

Cp
eκ(Ti−t)S̃tP

(S)
(
τ ≤ Ti, ST0 < S∗

0 , ..., STi−1 < S∗
i−1, STi ≥ S∗

i

∣∣Ft
)
.

Proof With the explicit description of the payoff corresponding to the CoCo with
extension risk, the result is obtained as in Proposition 2, here taking into account the
following identity

{
�τ� ≤ TN , ST0 < S∗

0 , ..., S�τ�−1 < S∗�τ�−1

}

= �N
i=1{τ ≤ Ti, ST0 < S∗

0 , ..., STi−1 < S∗
i−1, STi ≥ S∗

i }.

In view of this proposition, the obtainment of a closed-form formula for the price
CoCo with extension risk requires the knowledge of the conditional distribution
of (τ, ST0 , ST1 , ..., STi ) for i = 1, ..., N . In the Black-Scholes model, this can be
achieved by means of the following general lemma obtained in [14].

Lemma 13 Let (Bt)t≥0 be a Brownian motion with drift μ and volatility σ , and
denote by τ its first-passage time to level zero. Then, for arbitrary instants T1 <
· · · < Tn and arbitrary non-negative constants a1, ..., an, on {τ > t} the following
equation holds true
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P
(
τ ≥ Tn, BT1 < a1, ..., BTn−1 < an−1, BTn > an

∣∣Ft
)

= P
(−a1 < BT1 < a1, ..., −an−1 < BTn−1 < an−1, BTn > an

∣∣Ft
)

−e−2μσ−1BtP
(−a1 < B̄T1 < a1, ...,−an−1 < B̄Tn−1 < an−1, B̄Tn < −an

∣∣Ft
)
,

where B̄Tj = BTj − 2μ(Tj − t), j = 1, ..., n, and (Ft)t≥0 stands for the natural
filtration generated by (Bt)t≥0.
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Quantification of Model Risk in Quadratic
Hedging in Finance

Catherine Daveloose, Asma Khedher and Michèle Vanmaele

Abstract In this paper the effect of the choice of the model on partial hedging in
incomplete markets in finance is estimated. In fact we compare the quadratic hedging
strategies in a martingale setting for a claim when two models for the underlying
stock price are considered. The first model is a geometric Lévy process in which
the small jumps might have infinite activity. The second model is a geometric Lévy
process where the small jumps are replaced by a Brownianmotion which is appropri-
ately scaled. The hedging strategies are related to solutions of backward stochastic
differential equations with jumps which are driven by a Brownian motion and a
Poisson random measure. We use this relation to prove that the strategies are robust
towards the choice of the model for the market prices and to estimate the model risk.

Keywords Lévy models · Quadratic hedging · Model risk · Robustness · BSDEJs
MSC 2010 Codes: 60G51 · 91B30 · 91G80

1 Introduction

When jumps are present in the stock price model, the market is in general incomplete
and there is no self-financing hedging strategy which allows to attain the contingent
claim at maturity. In other words, one cannot eliminate the risk completely. However
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it is possible to find ‘partial’ hedging strategies which minimise some risk. One way
to determine these ‘partial’ hedging strategies is to introduce a subjective criterion
according to which strategies are optimised.

In the present paper, we consider two types of quadratic hedging strategies. The
first, called risk-minimising (RM) strategy, is replicating the option’s payoff, but it is
not self-financing (see, e.g., [19]). In such strategies, the hedging is considered under
a risk-neutral measure or equivalent martingale measure. The aim is to minimise
the risk process, which is induced by the fact that the strategy is not self-financing,
under this measure. In the second approach, called mean-variance hedging (MVH),
the strategy is self-financing and the quadratic hedging error at maturity is minimised
in mean square sense (see, e.g., [19]). Again a risk-neutral setting is assumed.

The aim in this paper is to investigate whether these quadratic hedging strategies
(RM andMVH) in incomplete markets are robust to the variation of the model. Thus
we consider two geometric Lévy processes to model the asset price dynamics. The
first model (St )t∈[0,T ] is driven by a Lévy process in which the small jumps might
have infinite activity. The second model (Sε

t )t∈[0,T ] is driven by a Lévy process in
whichwe replace the jumpswith absolute size smaller than ε > 0 by an appropriately
scaled Brownian motion. The latter model (Sε

t )t∈[0,T ] converges to the first one in
an L2-sense when ε goes to 0. The aim is to study whether similar convergence
properties hold for the corresponding quadratic hedging strategies.

Geometric Lévy processes describe well realistic asset price dynamics and are
well established in the literature (see e.g., [5]). Moreover, the idea of shifting from a
model with small jumps to another where these variations are represented by some
appropriately scaled continuous component goes back to [2]. This idea is interesting
from a simulation point of view. Indeed, the process (Sε

t )t∈[0,T ] contains a compound
Poisson process and a scaled Brownian motion which are both easy to simulate.
Whereas it is not easy to simulate the infinite activity of the small jumps in the
process (St )t∈[0,T ] (see [5] for more about simulation of Lévy processes).

The interest of this paper is the model risk. In other words, from a modelling
point of view, we may think of two financial agents who want to price and hedge an
option. One is considering (St )t∈[0,T ] as a model for the price process and the other
is considering (Sε

t )t∈[0,T ]. Thus the first agent chooses to consider infinitely small
variations in a discontinuous way, i.e. in the form of infinitely small jumps of an
infinite activity Lévy process. The second agent observes the small variations in a
continuous way, i.e. coming from a Brownian motion. Hence the difference between
both market models determines a type of model risk and the question is whether the
pricing and hedging formulas corresponding to (Sε

t )t∈[0,T ] converge to the pricing
and hedging formulas corresponding to (St )t∈[0,T ] when ε goes to zero. This is what
we intend in the sequel by robustness or stability study of the model.

In this paperwe focusmainly on theRMstrategies. These strategies are considered
under a martingale measure which is equivalent to the historical measure. Equivalent
martingale measures are characterised by the fact that the discounted asset price
processes are martingales under these measures. The problem we are facing is that
the martingale measure is dependent on the choice of the model. Therefore it is clear
that, in this paper, there will be different equivalent martingale measures for the two
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considered price models. Here we emphasise that for the robustness study, we come
back to the common underlying physical measure.

Besides, since the market is incomplete, we will also have to identify which
equivalent martingale measure, or measure change, to apply. In particular, we discuss
some specific martingale measures which are commonly used in finance and in
electricity markets: the Esscher transform, the minimal entropy martingale measure,
and the minimal martingale measure. We prove some common properties for the
mentioned martingale measures in the exponential Lévy setting in addition to those
shown in [4, 6].

To perform the described stability study, we follow the approach in [8] and we
relate the RM hedging strategies to backward stochastic differential equations with
jumps (BSDEJs). See e.g. [7, 9] for an overview about BSDEs and their applications
in hedging and in nonlinear pricing theory for incomplete markets.

Under some conditions on the parameters of the stock price process and of the
martingale measure, we investigate the robustness to the choice of the model of the
value of the portfolio, the amount of wealth, the cost and gain process in a RM
strategy. The amount of wealth and the gain process in a MVH strategy coincide
with those in the RM strategy and hence the convergence results will immediately
follow. When we assume a fixed initial portfolio value to set up a MVH strategy we
derive a convergence rate for the loss at maturity.

The BSDEJ approach does not provide a robustness result for the optimal number
of risky assets in a RM strategy as well as in aMVH strategy. In [6] convergence rates
for those optimal numbers and other quantities, such as the delta and the amount of
wealth, are computed using Fourier transform techniques.

The paper is organised as follows: in Sect. 2 we introduce the notations, define
the two martingale models for the stock price, and derive the corresponding BSDEJs
for the value of the discounted RM hedging portfolio. In Sect. 3 we study the stabil-
ity of the quadratic hedging strategies towards the choice of the model and obtain
convergence rates. In Sect. 4 we conclude.

2 Quadratic Hedging Strategies in a Martingale Setting for
Two Geometric Lévy Stock Price Models

Assume a finite time horizon T > 0. The first considered stock price process is
determined by the process L = (Lt )t∈[0,T ] which denotes a Lévy process in the
filtered complete probability space (Ω,F ,F,P) satisfying the usual hypotheses as
defined in [18]. We work with the càdlàg version of the given Lévy process. The
characteristic triplet of the Lévy process L is denoted by (a, b2, �). We consider a
stock price modelled by a geometric Lévy process, i.e. the stock price is given by
St = S0eLt , ∀t ∈ [0, T ], where S0 > 0. Let r > 0 be the risk-free instantaneous
interest rate. The value of the corresponding riskless asset equals er t for any time
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t ∈ [0, T ]. We denote the discounted stock price process by Ŝ. Hence at any time
t ∈ [0, T ] it equals

Ŝt = e−r t St = S0e
−r teLt .

It holds that

dŜt = Ŝt âdt + Ŝt bdWt + Ŝt

∫
R0

(ez − 1)Ñ (dt, dz), (1)

where W is a standard Brownian motion independent of the compensated jump
measure Ñ and

â = a − r + 1

2
b2 +

∫
R0

(
ez − 1 − z1{|z|<1}

)
�(dz).

It is assumed that Ŝ is not deterministic and arbitrage opportunities are excluded (cfr.
[21]). The aim of this paper is to study the stability of quadratic hedging strategies in
a martingale setting towards the choice of the model. Since the equivalent martingale
measure is determined by the market model, we also have to take into account the
robustness of the risk-neutralmeasures. Thereforewe consider the casewhereP is not
a risk-neutral measure, or in other words â �= 0 so that Ŝ is not a P-martingale. Then,
a change of measure, specifically determined by themarket model (1), will have to be
performed to obtain a martingale setting. Let us denote a martingale measure which
is equivalent to the historical measure P by P̃. We consider martingale measures that
belong to the class of structure preservingmartingale measures, see [14]. In this case,
the Lévy triplet of the driving process L under P̃ is denoted by (ã, b2, �̃). Theorem
III.3.24 in [14] states conditions which are equivalent to the existence of a parameter
Θ ∈ R and a function ρ(z;Θ), z ∈ R, such that

∫
{|z|<1}

|z (ρ(z;Θ) − 1)| �(dz) < ∞, (2)

and such that

ã = a + b2Θ +
∫

{|z|<1}
z (ρ(z;Θ) − 1) �(dz) and �̃(dz) = ρ(z;Θ)�(dz). (3)

For Ŝ to be a martingale under P̃, the parameter Θ should guarantee the following
equation

â0 = ã − r + 1

2
b2 +

∫
R0

(
ez − 1 − z1{|z|<1}

)
�̃(dz) = 0. (4)

From now on we denote the solution of Eq. (4)—when it exists—by Θ0 and the
equivalent martingale measure by P̃Θ0 . Notice that we obtain different martingale
measures P̃Θ0 for different choices of the function ρ(. ;Θ0). In the next section we
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present some knownmartingalemeasures for specific functionsρ(. ;Θ0) and specific
parameters Θ0 which solve (4).

The relation between the original measure P and the martingale measure P̃Θ0 is
given by

dP̃Θ0

dP

∣∣∣
Ft

= exp

(
bΘ0Wt − 1

2
b2Θ0

2t +
∫ t

0

∫
R0

log (ρ(z;Θ0)) Ñ (ds, dz)

+ t
∫
R0

(log (ρ(z;Θ0)) + 1 − ρ(z;Θ0)) �(dz)

)
.

From the Girsanov theorem (see e.g. Theorem 1.33 in [17]) we know that the
processes W Θ0 and ÑΘ0 defined by

dW Θ0
t = dWt − bΘ0dt, (5)

ÑΘ0(dt, dz) = N (dt, dz) − ρ(z;Θ0)�(dz)dt = Ñ (dt, dz) + (1 − ρ(z;Θ0)) �(dz)dt,

for all t ∈ [0, T ] and z ∈ R0, are a standard Brownian motion and a compensated
jump measure under P̃Θ0 . Moreover we can rewrite (1) as

dŜt = Ŝt bdW Θ0
t + Ŝt

∫
R0

(ez − 1)ÑΘ0(dt, dz). (6)

We consider anFT -measurable and square integrable random variable HT which
denotes the payoff of a contract. The discounted payoff equals ĤT = e−rT HT . In
case the discounted stock price process is a martingale, both, the mean-variance
hedging (MVH) and the risk-minimising strategy (RM) are related to the Galtchouk-
Kunita-Watanabe (GKW) decomposition, see [11]. In the following we recall the
GKW-decomposition of the FT -measurable and square integrable random variable
ĤT under the martingale measure P̃Θ0

ĤT = Ẽ
Θ0 [ĤT ] +

∫ T

0
ξΘ0

s dŜs + L Θ0
T , (7)

where ẼΘ0 denotes the expectation under P̃Θ0 , ξ
Θ0 is a predictable process for which

we can determine the stochastic integral with respect to Ŝ, and L Θ0 is a square
integrable P̃Θ0 -martingale withL Θ0

0 = 0, such that L Θ0 is P̃Θ0 -orthogonal to Ŝ.
The quadratic hedging strategies are determined by the process ξΘ0 . It indicates

the number of discounted risky assets to hold in the portfolio. The amount invested in
the riskless asset is different in both strategies and is determined by the self-financing
property for the MVH strategy and by the replicating condition for the RM strategy.
See [19] for more details.
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We define the process

V̂ Θ0
t = Ẽ

Θ0 [ĤT |Ft ], ∀t ∈ [0, T ],

which equals the value of the discounted portfolio for the RM strategy. The GKW-
decomposition (7) implies that

V̂ Θ0
t = V̂ Θ0

0 +
∫ t

0
ξΘ0

s dŜs + L Θ0
t , ∀t ∈ [0, T ]. (8)

Moreover since L Θ0 is a P̃Θ0 -martingale, there exist processes XΘ0 and Y Θ0(z)
such that

L Θ0
t =

∫ t

0
XΘ0

s dW Θ0
s +

∫ t

0

∫
R0

Y Θ0
s (z)ÑΘ0(ds, dz), ∀t ∈ [0, T ], (9)

and which by the P̃Θ0 -orthogonality of L Θ0 and Ŝ satisfy

XΘ0b +
∫
R0

Y Θ0(z)(ez − 1)ρ(z;Θ0)�(dz) = 0. (10)

By substituting (6) and (9) in (8), we retrieve

dV̂ Θ0
t =

(
ξ

Θ0
t Ŝt b + XΘ0

t

)
dW Θ0

t +
∫
R0

(
ξ

Θ0
t Ŝt (e

z − 1) + Y Θ0
t (z)

)
ÑΘ0(dt, dz).

Let π̂Θ0 = ξΘ0 Ŝ indicate the amount of wealth invested in the discounted risky asset
in a quadratic hedging strategy. We conclude that the following BSDEJ holds for the
RM strategy

⎧⎪⎨
⎪⎩
dV̂ Θ0

t = AΘ0
t dW Θ0

t +
∫
R0

BΘ0
t (z)ÑΘ0(dt, dz),

V̂ Θ0
T = ĤT ,

(11)

where
AΘ0 = π̂Θ0b + XΘ0 and BΘ0(z) = π̂Θ0(ez − 1) + Y Θ0(z). (12)

Since the random variable ĤT is square integrable andFT -measurable, we know by
[20] that the BSDEJ (11) has a unique solution (V̂ Θ0 , AΘ0 , BΘ0). This follows from
the fact that the drift parameter of V̂ Θ0 equals zero under P̃Θ0 and thus it is Lipschitz
continuous.
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We introduce another Lévy process Lε, for 0 < ε < 1, which is obtained by
truncating the jumps of L with absolute size smaller than ε and replacing them by
an independent Brownian motion which is appropriately scaled. The second stock
price process is denoted by Sε = S0eLε

and the corresponding discounted stock price
process Ŝε is thus given by

dŜε
t = Ŝε

t âεdt + Ŝε
t bdWt + Ŝε

t

∫
{|z|≥ε}

(ez − 1)Ñ (dt, dz) + Ŝε
t G(ε)dW̃t , (13)

for all t ∈ [0, T ] and Ŝε
0 = S0. Herein W̃ is a standard Brownian motion independent

of W ,

G2(ε) =
∫

{|z|<ε}
(ez − 1)2�(dz), and (14)

âε = a − r + 1

2

(
b2 + G2(ε)

)
+
∫

{|z|≥ε}
(
ez − 1 − z1{|z|<1}

)
�(dz).

From now on, we assume that the filtration F is enlarged with the information of
the Brownian motion W̃ and we denote the new filtration by F̃. Moreover, we also
assume absence of arbitrage in this second model. It is clear that the process Lε has
the Lévy characteristic triplet

(
a, b2 + G2(ε), 1{|·|≥ε}�

)
under the measure P.

Let P̃ε represent a structure preserving martingale measure for Ŝε. The charac-
teristic triplet of the driving process Lε w.r.t. this martingale measure is denoted

by
(

ãε, b2 + G2(ε), �̃ε

)
. From [14, Theorem III.3.24] we know that there exist a

parameter Θ ∈ R and a function ρ(z;Θ), z ∈ R, under certain conditions, such that

∫
{ε≤|z|<1}

|z(ρ(z;Θ) − 1)| �(dz) < ∞, (15)

ãε = a +
(

b2 + G2(ε)
)

Θ +
∫

{ε≤|z|<1}
z (ρ(z;Θ) − 1) �(dz), and (16)

�̃ε(dz) = 1{|z|≥ε}ρ(z;Θ)�(dz). (17)

Let us assume that Θ solves the following equation

ãε − r + 1

2

(
b2 + G2(ε)

)
+
∫
R0

(
ez − 1 − z1{|z|<1}

)
�̃ε(dz) = 0, (18)

then Ŝε is a martingale under P̃. From now onwe indicate the solution of (18)—when
it exists—as Θε and the martingale measure as P̃Θε .
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The relation between the original measure P and the martingale measure P̃Θε is
given by

dP̃Θε

dP

∣∣∣
F̃t

= exp

(
bΘεWt − 1

2
b2Θ0

2t + G(ε)ΘεW̃t − 1

2
G2(ε)Θε

2t

+
∫ t

0

∫
{|z|≥ε}

log(ρ(z;Θε))Ñ (ds, dz)

+ t
∫

{|z|≥ε}
(
log (ρ(z;Θε)) + 1 − ρ(z;Θε)

)
�(dz)

)
.

The processes W Θε , W̃ Θε , and ÑΘε defined by

dW Θε
t = dWt − bΘεdt,

dW̃ Θε
t = dW̃t − G(ε)Θεdt,

ÑΘε(dt, dz) = N (dt, dz) − ρ(z; Θε)�(dz)dt

= Ñ (dt, dz) + (1 − ρ(z; Θε))�(dz)dt, (19)

for all t ∈ [0, T ] and z ∈ {z ∈ R : |z| ≥ ε}, are two standard Brownian motions and
a compensated jump measure under P̃Θε (see e.g. Theorem 1.33 in [17]). Hence the
process Ŝε is given by

dŜε
t = Ŝε

t bdW Θε
t + Ŝε

t

∫
{|z|≥ε}

(ez − 1)ÑΘε(dt, dz) + Ŝε
t G(ε)dW̃ Θε

t . (20)

We consider an F̃T -measurable and square integrable random variable H ε
T which

is the payoff of a contract. The discounted payoff is denoted by Ĥ ε
T = e−rT H ε

T . The
GKW-decomposition of Ĥ ε

T under the martingale measure P̃Θε equals

Ĥ ε
T = Ẽ

Θε [Ĥ ε
T ] +

∫ T

0
ξΘε

s dŜε
s + L Θε

T , (21)

where Ẽ
Θε is the expectation under P̃Θε , ξΘε is a predictable process for which

we can determine the stochastic integral with respect to Ŝε, and L Θε is a square
integrable P̃Θε -martingale withL Θε

0 = 0, such that L Θε is P̃Θε -orthogonal to Ŝε.
The value of the discounted portfolio for the RM strategy is defined by

V̂ Θε
t = Ẽ

Θε [Ĥ ε
T |F̃t ], ∀t ∈ [0, T ].

From the GKW-decomposition (21) we have

V̂ Θε
t = V̂ Θε

0 +
∫ t

0
ξΘε

s dŜε
s + L Θε

t , ∀t ∈ [0, T ]. (22)
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Moreover since L Θε is a P̃Θε -martingale, there exist processes XΘε , Y Θε(z), and
ZΘε such that

L Θε
t =

∫ t

0
XΘε

s dW Θε
s +

∫ t

0

∫
{|z|≥ε}

Y Θε
s (z)ÑΘε (ds, dz) +

∫ t

0
ZΘε

s dW̃ Θε
s , ∀t ∈ [0, T ].

(23)
The P̃Θε -orthogonality of L Θε and Ŝε implies that

XΘε b +
∫

{|z|≥ε}
Y Θε(z)(ez − 1)ρ(z;Θε)�(dz) + ZΘε G(ε) = 0. (24)

Combining (20) and (23) in (22), we get

dV̂ Θε
t =

(
ξ
Θε
t Ŝε

t b + XΘε
t

)
dWΘε

t +
∫
{|z|≥ε}

(
ξ
Θε
t Ŝε

t (ez − 1) + Y Θε
t (z)

)
ÑΘε (dt, dz)

+
(
ξ
Θε
t Ŝε

t G(ε) + ZΘε
t

)
dW̃Θε

t .

Let π̂Θε = ξΘε Ŝε denote the amount of wealth invested in the discounted risky asset
in the quadratic hedging strategy. We conclude that the following BSDEJ holds for
the RM strategy

⎧⎪⎨
⎪⎩
dV̂ Θε

t = AΘε
t dW Θε

t +
∫

{|z|≥ε}
BΘε

t (z)ÑΘε(dt, dz) + CΘε
t dW̃ Θε

t ,

V̂ Θε

T = Ĥ ε
T ,

(25)

where

AΘε = π̂Θε b + XΘε , BΘε(z) = π̂Θε (ez − 1) + Y Θε(z), and (26)

CΘε = π̂Θε G(ε) + ZΘε .

Since the random variable Ĥ ε
T is square integrable and F̃T -measurable we know

by [20] that the BSDEJ (25) has a unique solution
(

V̂ Θε , AΘε , BΘε , CΘε

)
. This

results from the fact that the drift parameter of V̂ Θε equals zero under P̃Θε and thus
is Lipschitz continuous.

3 Robustness of the Quadratic Hedging Strategies

The aim of this section is to study the stability of the quadratic hedging strategies
to the variation of the model, where we consider the two stock price models defined
in (1) and (13). We study the stability of the RM strategy extensively and at the end
of this section we come back to the MVH strategy. Since we work in the martingale
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setting, we first present some specific martingale measures which are commonly
used in finance and in electricity markets. Then we discuss some common properties
which are fulfilled by these measures. This is the topic of the next subsection.

3.1 Robustness of the Martingale Measures

Recall from the previous section that the martingale measures P̃Θ0 and P̃Θε are deter-
mined via the functions ρ(. ;Θ0), ρ(. ;Θε) and the parameters Θ0, Θε, respectively.
We present the following assumptions on these characteristics.

Assumptions 1 For Θ0, Θε, ρ(. ;Θ0), and ρ(. ;Θε) satisfying Eqs. (2)–(4), and
Eqs. (15)–(18) we assume the following, where C denotes a positive constant and
Θ ∈ {Θ0,Θε}.
(i) Θ0 and Θε exist and are unique.
(ii) It holds that

|Θ0 − Θε| ≤ CG̃2(ε),

where G̃(ε) = max(G(ε), σ (ε)). Herein σ(ε) equals the standard deviation of
the jumps of L with size smaller than ε, i.e.

σ 2(ε) =
∫

{|z|<ε}
z2�(dz).

(iii) On the other hand, Θε is uniformly bounded in ε, i.e.

|Θε| ≤ C.

(iv) For all z in {|z| < 1} it holds that

|ρ(z;Θ)| ≤ C.

(v) We have ∫
{|z|≥1}

ρ4(z;Θ)�(dz) ≤ C.

(vi) It is guaranteed that

∫
R0

(
1 − ρ(z;Θ)

)2
�(dz) ≤ C.
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(vii) It holds for k ∈ {2, 4} that
∫
R0

(
ρ(z;Θ0) − ρ(z;Θε)

)k
�(dz) ≤ CG̃2k(ε).

Widely used martingale measures in the exponential Lévy setting are the Esscher
transform (ET), minimal entropy martingale measure (MEMM), and minimal mar-
tingale measure (MMM), which are specified as follows.

• In order to define the ET we assume that
∫

{|z|≥1}
eθ z�(dz) < ∞, ∀θ ∈ R. (27)

The Lévy measures under the ET are given in (3) and (17) where ρ(z;Θ) = eΘz .
The ET for the first model is then determined by the parameter Θ0 satisfying (4).
For the second model the ET corresponds to the solution Θε of (18). See [13] for
more details.

• Let us impose that

∫
{|z|≥1}

eθ(ez−1)�(dz) < ∞, ∀θ ∈ R, (28)

and that ρ(z;Θ) = eΘ(ez−1) in the Lévy measures. Then the solution Θ0 of
Eq. (4) determines the MEMM for the first model, and Θε being the solution of
(18) characterises the MEMM for the second model. The MEMM is studied in
[12].

• Let us consider the assumption

∫
{z≥1}

e4z�(dz) < ∞. (29)

The MMM implies that ρ(z;Θ) = Θ(ez − 1) − 1 in the Lévy measures and the
parameters Θ0 and Θε are the solutions of (4) and (18). More information about
the MMM can be found in [1, 10].

In [4, 6] it was shown that the ET, the MEMM, and the MMM fulfill statements (i),
(ii), (iii), and (iv) of Assumptions 1 in the exponential Lévy setting. The following
proposition shows that items (v), (vi), and (vii) of Assumptions 1 also hold for these
martingale measures.

Proposition 1 The Lévy measures given in (3) and (17) and corresponding to the
ET, MEMM, and MMM, satisfy (v), (vi), and (vii) of Assumptions 1.

Proof Recall that the Lévy measure satisfies the following integrability conditions
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∫
{|z|<1}

z2�(dz) < ∞ and
∫

{|z|≥1}
�(dz) < ∞. (30)

We show that the statement holds for the considered martingale measures.

• Under the ET it holds for Θ ∈ {Θ0,Θε} that

ρ4(z;Θ) = e4Θz ≤ e4C|z|,

because of (iii) in Assumptions 1. By the mean value theorem (MVT), there exists
a number Θ ′ between 0 and Θ such that

(
1 − ρ(z;Θ)

)2 = z2e2Θ
′zΘ2 ≤

(
1{|z|<1}e2C z2 + 1{|z|≥1}e(2C+2)z

)
C,

where we used again Assumptions 1 (iii). For k ∈ {2, 4}, we derive via the MVT
that

(
ρ(z;Θ0) − ρ(z;Θε)

)k = ekΘ0z
(
1 − e(Θε−Θ0)z

)k = ekΘ0z zkekΘ ′′z(Θ0 − Θε)
k,

where Θ ′′ is a number between 0 and Θε − Θ0. Assumptions 1 (ii) imply that

(
ρ(z;Θ0)−ρ(z;Θε)

)k ≤
(
1{|z|<1}ek(|Θ0|+C)z2 + 1{|z|≥1}ek(Θ0+1+C)z

)
CG̃2k(ε).

The obtained inequalities and integrability conditions (27) and (30) prove the
statement.

• Consider the MEMM and Θ ∈ {Θ0,Θε}. We have

ρ4(z;Θ) = e4Θ(ez−1) ≤ e4C|ez−1|,

because of (iii) in Assumptions 1. The latter assumption and the MVT imply that

(
1 − ρ(z;Θ)

)2 = (ez − 1)2e2Θ
′(ez−1)Θ2

≤
(
1{|z|<1}e2C(e+1)+2z2 + 1{|z|≥1}e(2C+2)(ez−1)

)
C.

We determine via the MVT and properties (ii) and (iii) in Assumptions 1 for
k ∈ {2, 4} that
(
ρ(z;Θ0) − ρ(z;Θε)

)k
= ekΘ0(ez−1)

(
1 − e(Θε−Θ0)(ez−1)

)k

= ekΘ0(ez−1)(ez − 1)kekΘ ′′(ez−1)(Θ0 − Θε)
k

≤
(
1{|z|<1}ek(|Θ0|(e+1)+1+C(e+1))z2 + 1{|z|≥1}ek(Θ0+1+C)(ez−1)

)
CG̃2k(ε).
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From (28) and (30) we conclude that (v), (vi), and (vii) in Assumptions 1 are in
force.

• For the MMM we have

ρ4(z;Θ) = (Θ(ez − 1) − 1
)4 ≤ C(e4z + 1).

Moreover it holds that

(
1 − ρ(z;Θ)

)2 = (ez − 1)2Θ2 ≤
(
1{|z|<1}e2z2 + 1{|z|≥1}(e2z + 1)

)
C.

We get through (ii) and (iii) in Assumptions 1 that

(
ρ(z;Θ0) − ρ(z;Θε)

)k = (ez − 1)k(Θ0 − Θε)
k

≤
(
1{|z|<1}ek z2 + 1{|z|≥1}(ekz + 1)

)
CG̃2k(ε),

for k ∈ {2, 4}. The proof is completed by involving conditions (29) and (30). �

3.2 Robustness of the BSDEJ

The aim of this subsection is to study the robustness of the BSDEJs (11) and (25).
First, we prove the L2-boundedness of the solution of theBSDEJ (11) in the following
lemma.

Lemma 1 Assume point (vi) from Assumptions 1. Let (V̂ Θ0 , AΘ0 , BΘ0) be the solu-
tion of (11). Then we have for all t ∈ [0, T ]

E

[∫ T

t
(V̂ Θ0

s )2ds

]
+E

[∫ T

t
(AΘ0

s )2ds

]
+E

[∫ T

t

∫
R0

(BΘ0
s (z))2�(dz)ds

]
≤ CE[Ĥ2

T ],

where C represents a positive constant.

Proof Via (5) we rewrite the BSDEJ (11) as follows

dV̂ Θ0
t =

(
−bΘ0AΘ0

t +
∫
R0

BΘ0
t (z)(1 − ρ(z;Θ0))�(dz)

)
dt

+ AΘ0
t dWt +

∫
R0

BΘ0
t (z)Ñ (dt, dz).

We apply the Itô formula to eβt (V̂ Θ0
t )2 and find that
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d
(
eβt (V̂ Θ0

t )2
)

= βeβt (V̂ Θ0
t )2dt + 2eβt V̂ Θ0

t

(
−bΘ0AΘ0

t +
∫
R0

BΘ0
t (z)(1 − ρ(z; Θ0))�(dz)

)
dt

+ 2eβt V̂ Θ0
t AΘ0

t dWt + eβt (AΘ0
t )2dt

+
∫
R0

eβt
((

V̂ Θ0
t− + BΘ0

t (z)
)2 − (V̂ Θ0

t− )2
)

Ñ (dt, dz) +
∫
R0

eβt (BΘ0
t (z))2�(dz)dt.

By integration and taking the expectation we recover that

E

[
eβt (V̂ Θ0

t )2
]

= E

[
eβT (V̂ Θ0

T )2
]

− βE

[∫ T

t
eβs(V̂ Θ0

s )2ds

]

− 2E

[∫ T

t
eβs V̂ Θ0

s

(
−bΘ0AΘ0

s +
∫
R0

BΘ0
s (z)(1 − ρ(z;Θ0))�(dz)

)
ds

]
(31)

− E

[∫ T

t
eβs(AΘ0

s )2ds

]
− E

[∫ T

t

∫
R0

eβs(BΘ0
s (z))2�(dz)ds

]
.

Because of the properties

for all a, b ∈ R and k ∈ R
+
0 it holds that ± 2ab ≤ ka2 + 1

k
b2 (32)

and

for all n ∈ N and for all ai ∈ R, i = 1, . . . , n we have that

(
n∑

i=1

ai

)2

≤ n
n∑

i=1

a2
i ,

(33)
the third term in the right hand side of (31) is estimated by

− 2E

[∫ T

t
eβs V̂ Θ0

s

(
−bΘ0AΘ0

s +
∫
R0

BΘ0
s (z)(1 − ρ(z; Θ0))�(dz)

)
ds

]

≤ E

[∫ T

t
eβs

{
k(V̂ Θ0

s )2 + 1

k

(
−bΘ0AΘ0

s +
∫
R0

BΘ0
s (z)(1 − ρ(z; Θ0))�(dz)

)2}
ds

]

≤ kE

[∫ T

t
eβs(V̂ Θ0

s )2ds

]
+ 2

k
b2Θ0

2
E

[∫ T

t
eβs(AΘ0

s )2ds

]

+ 2

k

∫
R0

(1 − ρ(z; Θ0))
2 �(dz)E

[∫ T

t
eβs
∫
R0

(BΘ0
s (z))2�(dz)ds

]
.

Substituting the latter inequality in (31) leads to



Quantification of Model Risk in Quadratic Hedging in Finance 225

E

[
eβt (V̂ Θ0

t )2
]

+ (β − k)E

[∫ T

t
eβs(V̂ Θ0

s )2ds

]
+
(
1 − 2

k
b2Θ0

2
)
E

[∫ T

t
eβs(AΘ0

s )2ds

]

+
(
1 − 2

k

∫
R0

(1 − ρ(z; Θ0))
2 �(dz)

)
E

[∫ T

t
eβs
∫
R0

(BΘ0
s (z))2�(dz)ds

]

≤ E

[
eβT (V̂ Θ0

T )2
]
. (34)

Let k guarantee that

1 − 2

k
b2Θ0

2 ≥ 1

2
and 1 − 2

k

∫
R0

(1 − ρ(z;Θ0))
2 �(dz) ≥ 1

2
.

Hence we choose

k ≥ 4max

(
b2Θ0

2,

∫
R0

(1 − ρ(z;Θ0))
2 �(dz)

)
> 0,

which exists because of (vi) from Assumptions 1. Besides we assume that β ≥
k + 1

2 > 0. Then for s ∈ [0, T ] it follows that 1 ≤ eβs ≤ eβT and from (34) we
achieve

E

[∫ T

t
(V̂ Θ0

s )2ds

]
+ E

[∫ T

t
(AΘ0

s )2ds

]
+ E

[∫ T

t

∫
R0

(BΘ0
s (z))2�(dz)ds

]
≤ CE[(V̂ Θ0

T )2],

which proves the claim. �

In order to study the robustness of the BSDEJs (11) and (25), we consider both
models under the enlarged filtration F̃ since we have for all t ∈ [0, T ] thatFt ⊂ F̃t .
Let us define

V̄ ε = V̂ Θ0 − V̂ Θε , Āε = AΘ0 − AΘε , B̄ε(z) = BΘ0(z) − 1{|z|≥ε} BΘε(z).

We derive from (5), (11), (19), and (25) that

dV̄ ε
t = αε

t dt + Āε
t dWt +

∫
R0

B̄ε
t (z)Ñ (dt, dz) − CΘε

t dW̃t , (35)

where

αε = −b(Θ0AΘ0 − Θε AΘε) + G(ε)ΘεCΘε (36)

+
∫
R0

(
BΘ0(z) (1 − ρ(z;Θ0)) − 1{|z|≥ε} BΘε(z) (1 − ρ(z;Θε))

)
�(dz).
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The process αε (36) plays a crucial role in the study of the robustness of the
BSDEJ. In the following lemma we state an upper bound for this process in terms of
the solutions of the BSDEJs.

Lemma 2 Let Assumptions 1 hold true. Consider αε as defined in (36). For any
t ∈ [0, T ] and β ∈ R it holds that

E

[∫ T

t
eβs(αε

s )
2ds

]

≤ C

(
G̃4(ε)

{
E

[∫ T

t
eβs(AΘ0

s )2ds

]
+ E

[∫ T

t
eβs
∫
R0

(BΘ0
s (z))2�(dz)ds

]}

+ E

[∫ T

t
eβs( Āε

s )
2ds

]
+ E

[∫ T

t
eβs
∫
R0

(B̄ε
s (z))2�(dz)ds

]

+E

[∫ T

t
eβs(CΘε

s )2ds

])
,

where C is a positive constant.

Proof Parts (ii) and (iii) of Assumptions 1 imply that

∣∣−b
(
Θ0AΘ0

s − Θε AΘε
s

)∣∣ ≤ |b||Θ0 − Θε||AΘ0
s | + |b||Θε||AΘ0

s − AΘε
s |

≤ CG̃2(ε)|AΘ0
s | + C | Āε

s |

and
|G(ε)ΘεCΘε

s | ≤ C |CΘε
s |.

From Hölder’s inequality and Assumptions 1 (vi) and (vii) it follows that

∣∣∣
∫
R0

(
BΘ0

s (z) (1 − ρ(z;Θ0)) − 1{|z|≥ε} BΘε
s (z) (1 − ρ(z;Θε))

)
�(dz)

∣∣∣
≤
∣∣∣
∫
R0

BΘ0
s (z) (ρ(z;Θ0) − ρ(z;Θε)) �(dz)

∣∣∣+
∣∣∣
∫
R0

B̄ε
s (z) (1 − ρ(z;Θε)) �(dz)

∣∣∣

≤
(∫

R0

(
ρ(z;Θ0) − ρ(z;Θε)

)2
�(dz)

)1/2 (∫
R0

(BΘ0
s (z))2�(dz)

)1/2

+
(∫

R0

(
1 − ρ(z;Θε)

)2
�(dz)

)1/2 (∫
R0

(B̄ε
s (z))2�(dz)

)1/2

≤ CG̃2(ε)

(∫
R0

(BΘ0
s (z))2�(dz)

)1/2

+ C

(∫
R0

(B̄ε
s (z))2�(dz)

)1/2

.
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We conclude that

(αε
s )

2 ≤ C

(
G̃4(ε)

{
(AΘ0

s )2 +
∫
R0

(BΘ0
s (z))2�(dz)

}

+ ( Āε
s )

2 +
∫
R0

(B̄ε
s (z))2�(dz) + (CΘε

s )2
)

.

The statement is easily deduced from this inequality. �

With these two lemmas ready for use, we state and prove the main result of this
subsection which is the robustness of the BSDEJs for the discounted portfolio value
process of the RM strategy.

Theorem 1 Assumptions 1 are in force. Let (V̂ Θ0 , AΘ0 , BΘ0) be the solution of (11)
and (V̂ Θε , AΘε , BΘε , CΘε) be the solution of (25). For some positive constant C
and any t ∈ [0, T ] we have

E

[∫ T

t
(V̂ Θ0

s − V̂ Θε
s )2ds

]
+ E

[∫ T

t
(AΘ0

s − AΘε
s )2ds

]

+ E

[∫ T

t

∫
R0

(
BΘ0

s (z) − 1{|z|≥ε} BΘε
s (z)

)2
�(dz)ds

]
+ E

[∫ T

t
(CΘε

s )2ds

]

≤ C
(
E

[
(ĤT − Ĥ ε

T )2
]

+ G̃4(ε)E[Ĥ2
T ]
)

.

Proof We apply the Itô formula to eβt (V̄ ε
t )2

d
(
eβt (V̄ ε

t )2
)

= βeβt (V̄ ε
t )2dt + 2eβt V̄ ε

t αε
t dt + 2eβt V̄ ε

t Āε
t dWt − 2eβt V̄ ε

t CΘε
t dW̃t

+ eβt ( Āε
t )

2dt + eβt (CΘε
t )2dt +

∫
R0

eβt (B̄ε
t (z))2�(dz)dt

+
∫
R0

eβt
(
(V̄ ε

t− + B̄ε
t (z))2 − (V̄ ε

t−)2
)

Ñ (dt, dz).

Integration over the interval [t, T ] and taking the expectation under P results into

E

[
eβt (V̄ ε

t )2
]

= E

[
eβT (V̄ ε

T )2
]

− βE

[∫ T

t
eβs(V̄ ε

s )2ds

]
− 2E

[∫ T

t
eβs V̄ ε

s αε
s ds

]

− E

[∫ T

t
eβs( Āε

s )
2ds

]
− E

[∫ T

t

∫
R0

eβs(B̄ε
s (z))2�(dz)ds

]

− E

[∫ T

t
eβs(CΘε

s )2ds

]
,
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or equivalently

E

[
eβt (V̄ ε

t )2
]

+ E

[∫ T

t
eβs( Āε

s )
2ds

]

+ E

[∫ T

t

∫
R0

eβs(B̄ε
s (z))2�(dz)ds

]
+ E

[∫ T

t
eβs(CΘε

s )2ds

]

= E

[
eβT (V̄ ε

T )2
]

− βE

[∫ T

t
eβs(V̄ ε

s )2ds

]
− 2E

[∫ T

t
eβs V̄ ε

s αε
s ds

]

≤ E

[
eβT (V̄ ε

T )2
]

+ (k − β)E

[∫ T

t
eβs(V̄ ε

s )2ds

]
+ 1

k
E

[∫ T

t
eβs(αε

s )
2ds

]
, (37)

where we used property (32). The combination of (37) with Lemma 2 provides

E
[
eβt (V̄ ε

t )2
]+ (β − k)E

[∫ T

t
eβs(V̄ ε

s )2ds

]
+
(
1 − C

k

)
E

[∫ T

t
eβs( Āε

s )
2ds

]

+
(
1 − C

k

)
E

[∫ T

t
eβs
∫
R0

(B̄Θε
s (z))2�(dz)ds

]
+
(
1 − C

k

)
E

[∫ T

t
eβs(CΘε

s )2ds

]

≤ E

[
eβT (V̄ ε

T )2
]

+ C

k
G̃4(ε)

{
E

[∫ T

t
eβs(AΘ0

s )2ds

]
(38)

+E

[∫ T

t
eβs
∫
R0

(BΘ0
s (z))2�(dz)ds

]}
.

Let us choose k and β such that 1 − C
k ≥ 1

2 and β − k ≥ 1
2 . This means we choose

k ≥ 2C > 0 andβ ≥ 1
2 + k > 0. Thus for any s ∈ [t, T ] it holds that 1 < eβs ≤ eβT .

We derive from (38) that

E

[∫ T

t
(V̄ ε

s )2ds

]
+ E

[∫ T

t
( Āε

s )
2ds

]

+ E

[∫ T

t

∫
R0

(B̄Θε
s (z))2�(dz)ds

]
+ E

[∫ T

t
(CΘε

s )2ds

]

≤ C

(
E
[
(V̄ ε

T )2
]+ G̃4(ε)

{
E

[∫ T

t
(AΘ0

s )2ds

]
+ E

[∫ T

t

∫
R0

(BΘ0
s (z))2�(dz)ds

]})
.

By Lemma 1 we conclude the proof. �

This main result leads to the following theorem concerning the robustness of the
discounted portfolio value process of the RM strategy.

Theorem 2 Assume Assumptions 1. Let V̂ Θ0 , V̂ Θε be part of the solution of (11),
(25) respectively. Then we have



Quantification of Model Risk in Quadratic Hedging in Finance 229

E

[
sup

0≤t≤T
(V̂ Θ0

s − V̂ Θε
s )2

]
≤ C

(
E[(ĤT − Ĥ ε

T )2] + G̃4(ε)E[Ĥ2
T ]
)

,

for a positive constant C.

Proof Integration of the BSDEJ (35) results into

V̄ ε
t = V̄ ε

T −
∫ T

t
αε

s ds −
∫ T

t
Āε

sdWs −
∫ T

t

∫
R0

B̄ε
s (z)Ñ (ds, dz) +

∫ T

t
CΘε

s dW̃s .

By property (33) we arrive at

E

[
sup

0≤t≤T
(V̄ ε

t )2

]

≤ 5

⎛
⎝E [(V̄ ε

T )2
]

+ E

[∫ T

0
(αε

s )2ds

]
+ E

⎡
⎣ sup
0≤t≤T

(∫ T

t
Āε

sdWs

)2⎤
⎦

+E

⎡
⎣ sup
0≤t≤T

(∫ T

t

∫
R0

B̄ε
s (z)Ñ (ds, dz)

)2⎤
⎦+ E

⎡
⎣ sup
0≤t≤T

(∫ T

t
CΘε

s dW̃s

)2⎤
⎦
⎞
⎠ .

Burkholder’s inequality (see e.g., Theorem 3.28 in [15]) guarantees the existence of
a positive constant C such that

E

[
sup

0≤t≤T

(∫ T

t
Āε

sdWs

)2]
≤ CE

[∫ T

0
( Āε

s )
2ds

]
,

E

[
sup

0≤t≤T

(∫ T

t

∫
R0

B̄ε
s (z)Ñ (ds, dz)

)2]
≤ CE

[∫ T

0

∫
R0

(B̄ε
s (z))2�(dz)ds

]
,

E

[
sup

0≤t≤T

(∫ T

t
CΘε

s dW̃s

)2]
≤ CE

[∫ T

0
(CΘε

s )2ds

]
.

Application of Lemma 2 for t = 0, β = 0, Lemma 1, and Theorem 1 completes the
proof. �

3.3 Robustness of the Risk-Minimising Strategy

Theorem 2 in the previous subsection concerns the robustness result of the value
process of the discounted portfolio in the RM strategy. Before we present the stability
of the amount of wealth in the RM strategy, we study the relation between π̂Θ0

(resp. π̂Θε ) and the solution of the BSDEJ of type (11) (resp. (25)) in the first
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(resp. second) model. Consider the processes AΘ0 and BΘ0(z) defined in (12), then
it holds that

AΘ0b +
∫
R0

BΘ0(z)(ez − 1)ρ(z; Θ0)�(dz)

= π̂Θ0b2 + XΘ0b +
∫
R0

(
π̂Θ0(ez − 1)2ρ(z; Θ0) + Y Θ0(z)(ez − 1)ρ(z; Θ0)

)
�(dz)

= π̂Θ0

{
b2 +

∫
R0

(ez − 1)2ρ(z; Θ0)�(dz)

}

+ XΘ0b +
∫
R0

Y Θ0(z)(ez − 1)ρ(z; Θ0)�(dz).

From property (10) we attain that

π̂Θ0 = 1

κ0

(
AΘ0b +

∫
R0

BΘ0(z)(ez − 1)ρ(z;Θ0)�(dz)

)
, (39)

where κ0 = b2 + ∫
R0

(ez − 1)2ρ(z;Θ0)�(dz). Similarly for the second setting we

have for the processes AΘε , BΘε(z), and CΘε defined in (26) that

AΘε b +
∫

{|z|≥ε}
BΘε(z)(ez − 1)ρ(z;Θε)�(dz) + CΘε G(ε)

= π̂Θε

{
b2 +

∫
{|z|≥ε}

(ez − 1)2ρ(z;Θε)�(dz) + G2(ε)

}

+ XΘε b +
∫

{|z|≥ε}
Y Θε(z)(ez − 1)ρ(z;Θε)�(dz) + ZΘε G(ε).

Property (24) leads to

π̂Θε = 1

κε

(
AΘε b +

∫
{|z|≥ε}

BΘε(z)(ez − 1)ρ(z;Θε)�(dz) + CΘε G(ε)

)
, (40)

where κε = b2 + ∫{|z|≥ε}(e
z − 1)2ρ(z;Θε)�(dz) + G2(ε).

We introduce the following additional assumption on the Lévy measure which we
need for the robustness results studied later.

Assumption 2 For the Lévy measure � the following integrability condition holds

∫
{z≥1}

e4z�(dz) < ∞.
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Note that the latter assumption, combined with (30), implies for k ∈ {2, 4} that
∫
R0

(ez−1)k�(dz) ≤ C

(∫
{|z|<1}

z2�(dz) +
∫

{|z|≥1}
�(dz) +

∫
{z≥1}

e4z�(dz)

)
< ∞.

(41)
Moreover Assumption 2 is fulfilled for the considered martingale measures
described in Sect. 3.1. Indeed, consider the ET, applying (27) for θ = 4 and restrict-
ing the integral over {z ≥ 1} implies Assumption 2. On the set {z ≥ 1} it holds that
z ≤ ez − 1 and therefore Assumption 2 follows from (28) by choosing θ = 4. For
the MMM, condition (29) corresponds exactly to Assumption 2.

Theorem 3 Impose Assumptions 1 and 2. Let the processes π̂Θ0 and π̂Θε denote
the amounts of wealth in a RM strategy. There is a positive constant C such that for
any t ∈ [0, T ]

E

[∫ T

t
(π̂Θ0

s − π̂Θε
s )2ds

]
≤ C

(
E[(ĤT − Ĥ ε

T )2] + G̃4(ε)E[Ĥ2
T ]
)

.

Proof Consider the amounts of wealth in (39) and (40). Let us denote π̂Θ0 = 1
κ0

Υ 0

and π̂Θε = 1
κε

Υ ε. Then it holds that

(
π̂Θ0 − π̂Θε

)2 ≤ 2

((
κ0 − κε

κ0κε

)2

(Υ 0)2 + 1

κ2
ε

(Υ 0 − Υ ε)2

)
.

Herein we have because of the Hölder’s inequality, (14), (41), and properties (iv) and
(vii) in Assumptions 1 that

(
κ0 − κε

κ0κε

)2

≤ 3

b8

((∫
{|z|<ε}

(ez − 1)2ρ(z;Θ0)�(dz)

)2

+
(∫

{|z|≥ε}
(ez − 1)2(ρ(z;Θ0) − ρ(z;Θε))�(dz)

)2
+ G4(ε)

)

≤ 3

b8

(
C

(∫
{|z|<ε}

(ez − 1)2�(dz)

)2

+
∫
R0

(ez − 1)4�(dz)
∫
R0

(ρ(z;Θ0) − ρ(z;Θε))
2 �(dz) + G4(ε)

⎞
⎠

≤ CG̃4(ε).
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On the other hand it is clear from (39) and (40) that

(Υ 0 − Υ ε)2

≤ 3
(
( Āε)2b2 + (CΘε)2G2(ε)

+
(∫

R0

(BΘ0(z)(ez − 1)ρ(z; Θ0) − 1{|z|≥ε}BΘε(z)(ez − 1)ρ(z; Θε))�(dz)

)2)
.

Herein we derive via Hölder’s inequality, (30), (41), and points (iv), (v), and (vii) in
Assumptions 1 that

(∫
R0

(BΘ0(z)(ez − 1)ρ(z;Θ0) − 1{|z|≥ε} BΘε (z)(ez − 1)ρ(z;Θε))�(dz)

)2

=
(∫

R0

(BΘ0(z)(ρ(z;Θ0) − ρ(z;Θε))(e
z − 1) + B̄ε(z)ρ(z;Θε)(e

z − 1))�(dz)

)2

≤
∫
R0

(BΘ0(z))2�(dz)
∫
R0

(ρ(z;Θ0) − ρ(z;Θε))
2(ez − 1)2�(dz)

+
∫
R0

(B̄ε(z))2�(dz)
∫
R0

ρ2(z;Θε)(e
z − 1)2�(dz)

≤
∫
R0

(BΘ0(z))2�(dz)

(∫
R0

(ρ(z;Θ0) − ρ(z;Θε))
4�(dz)

) 1
2
(∫

R0

(ez − 1)4�(dz)

) 1
2

+
∫
R0

(B̄ε(z))2�(dz)

(∫
{|z|≥1}

ρ4(z;Θε)�(dz)
∫

{|z|≥1}
(ez − 1)4�(dz)

) 1
2

+ C
∫
R0

(B̄ε(z))2�(dz)
∫

{|z|<1}
z2�(dz)

≤ CG̃4(ε)

∫
R0

(BΘ0(z))2�(dz) + C
∫
R0

(B̄ε(z))2�(dz).

The results above show that

(
π̂

Θ0
t − π̂

Θε
t

)2 ≤ C

(
( Āε

t )
2 +

∫
R0

(B̄ε
t (z))2�(dz) + (CΘε

t )2

+ G̃4(ε)

{
(AΘ0

t )2 +
∫
R0

(BΘ0
t (z))2�(dz)

})
.
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Therefore

E

[∫ T

t
(π̂Θ0

s − π̂Θε
s )2ds

]

≤ C

(
E

[∫ T

t
( Āε

s )
2ds

]
+ E

[∫ T

t

∫
R0

(B̄ε
s (z))2�(dz)ds

]
+ E

[∫ T

t
(CΘε

s )2ds

]

+ G̃4(ε)

{
E

[∫ T

t
(AΘ0

s )2ds

]
+ E

[∫ T

t

∫
R0

(BΘ0
s (z))2�(dz)ds

]})
.

By Lemma 1 and Theorem 1 we conclude the proof. �

The trading in the risky assets is gathered in the gain processes defined by ĜΘ0
t =∫ t

0 ξ
Θ0
s dŜs and ĜΘε

t = ∫ t
0 ξ

Θε
s dŜε

s . The following theorem shows the robustness of
this gain process.

Theorem 4 Under Assumptions 1 and 2, there exists a positive constant C such that
for any t ∈ [0, T ]

E

[(
ĜΘ0

t − ĜΘε
t

)2] ≤ C
(
E[(ĤT − Ĥ ε

T )2] + G̃2(ε)E[Ĥ2
T ]
)

.

Proof From (5) and (6) we know that

ξΘ0
s dŜs = ξΘ0

s ŜsbdW Θ0
s + ξΘ0

s Ŝs

∫
R0

(ez − 1)ÑΘ0(ds, dz)

= π̂Θ0
s

((
−b2Θ0 +

∫
R0

(ez − 1) (1 − ρ(z;Θ0)) �(dz)

)
ds

+ bdWs +
∫
R0

(ez − 1)Ñ (ds, dz)

)
.

In the other setting we have from (19) and (20) that

ξΘε
s dŜε

s = ξΘε
s Ŝε

s bdW Θε
s + ξΘε

s Ŝε
s

∫
{|z|≥ε}

(ez − 1)ÑΘε(ds, dz) + ξΘε
s Ŝε

s G(ε)dW̃ Θε
s

= π̂Θε
s

((
−b2Θε +

∫
{|z|≥ε}

(ez − 1) (1 − ρ(z;Θε)) �(dz) − G2(ε)Θε

)
ds

+ bdWs +
∫

{|z|≥ε}
(ez − 1)Ñ (ds, dz) + G(ε)dW̃s

)
.
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We derive from the previous SDEs that

ĜΘ0
t − ĜΘε

t =
∫ t

0
ξΘ0

s dŜs −
∫ t

0
ξΘε

s dŜε
s

=
(

−b2Θ0 +
∫
R0

(ez − 1) (1 − ρ(z;Θ0)) �(dz)

)∫ t

0
π̂Θ0

s ds

−
(

−b2Θε +
∫

{|z|≥ε}
(ez − 1) (1 − ρ(z;Θε)) �(dz) − G2(ε)Θε

)∫ t

0
π̂Θε

s ds

+ b
∫ t

0
(π̂Θ0

s − π̂Θε
s )dWs +

∫ t

0

∫
R0

(
π̂Θ0

s (ez − 1) − π̂Θε
s 1{|z|≥ε}(ez − 1)

)
Ñ (ds, dz)

− G(ε)

∫ t

0
π̂Θε

s dW̃s .

Via the Cauchy-Schwartz inequality and the Itô isometry we obtain that

E

[(
ĜΘ0

t − ĜΘε
t

)2]

≤ C

(
E

[∫ t

0
(π̂Θ0

s )2ds

]{(
−b2Θ0 +

∫
R0

(ez − 1) (1 − ρ(z;Θ0)) �(dz)

)

−
(

−b2Θε +
∫

{|z|≥ε}
(ez − 1) (1 − ρ(z;Θε)) �(dz) − G2(ε)Θε

)}2

+ E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

]

×
(

−b2Θε +
∫

{|z|≥ε}
(ez − 1) (1 − ρ(z;Θε)) �(dz) − G2(ε)Θε

)2

+ b2E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

]
+ G2(ε)E

[∫ t

0
(π̂Θε

s )2ds

]

+E

[∫ t

0

∫
R0

(
π̂Θ0

s (ez − 1) − π̂Θε
s 1{|z|≥ε}(ez − 1)

)2
�(dz)ds

])
,

wherein

E

[∫ t

0

∫
R0

(
π̂Θ0

s (ez − 1) − π̂Θε
s 1{|z|≥ε}(ez − 1)

)2
�(dz)ds

]

≤ 2E

[∫ t

0

∫
R0

(
(π̂Θ0

s )2(ez − 1)21{|z|<ε} + (π̂Θ0
s − π̂Θε

s )2(ez − 1)21{|z|≥ε}
)
�(dz)ds

]

≤ 2

(∫
{|z|<ε}

(ez − 1)2�(dz)E

[∫ t

0
(π̂Θ0

s )2ds

]

+
∫
R0

(ez − 1)2�(dz)E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

])
,
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and

E

[∫ t

0
(π̂Θε

s )2ds

]
≤ 2E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

]
+ 2E

[∫ t

0
(π̂Θ0

s )2ds

]
.

By relation (14), Assumptions 1, (39), (41), Lemma 1, and Theorem 3 we prove the
statement. �

The following result shows the robustness of the process L Θ appearing in the
GKW-decomposition. This plays an important role in the stability of the cost process
of the RM strategy.

Theorem 5 Let Assumptions 1 and 2 hold true. Let the processes L Θ0 and L Θε

be as in (9) and (23), respectively. For any t ∈ [0, T ] it holds that

E[(L Θ0
t − L Θε

t )2] ≤ C
(
E[(ĤT − Ĥ ε

T )2] + G̃2(ε)E[Ĥ2
T ]
)

,

for a positive constant C.

Proof By (5) we can rewrite (9) as

dL Θ0
t =

(
−bΘ0XΘ0

t +
∫
R0

Y Θ0
t (z)(1 − ρ(z;Θ0))�(dz)

)
dt

+ XΘ0
t dWt +

∫
R0

Y Θ0
t (z)Ñ (dt, dz).

and similarly by (19) we obtain for (23)

dL Θε
t =

(
−bΘε XΘε

t +
∫

{|z|≥ε}
Y Θε

t (z)(1 − ρ(z;Θε))�(dz) − G(ε)Θε ZΘε
t

)
dt

+ XΘε
t dWt +

∫
{|z|≥ε}

Y Θε
t (z)Ñ (dt, dz) + ZΘε

t dW̃t .

Hence we recover that

d(L Θ0
t − L Θε

t ) = γ ε
t dt + X̄ε

t dWt +
∫
R0

Ȳ ε
t (z)Ñ (dt, dz) − ZΘε

t dW̃t ,

where

γ ε = −b(Θ0XΘ0 − Θε XΘε) + G(ε)Θε ZΘε

+
∫
R0

(
Y Θ0(z)(1 − ρ(z;Θ0)) − 1{|z|≥ε}Y Θε(z)(1 − ρ(z;Θε))

)
�(dz),

X̄ε = XΘ0 − XΘε ,

Ȳ ε(z) = Y Θ0(z) − 1{|z|≥ε}Y Θε(z).
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By integration over [0, t] and taking the square we retrieve using (33) that

(L Θ0
t − L Θε

t )2 ≤ C

((∫ t

0
γ ε

s ds

)2

+
(∫ t

0
X̄ε

s dWs

)2

+
(∫ t

0

∫
R0

Ȳ ε
s (z)Ñ (ds, dz)

)2

+
(∫ t

0
ZΘε

s dW̃s

)2
)

.

Via the Cauchy-Schwartz inequality and the Itô isometry it follows that

E[(L Θ0
t − L Θε

t )2] ≤ C

(
E

[∫ t

0
(γ ε

s )2ds

]
+ E

[∫ t

0
(X̄ε

s )
2ds

]

+E

[∫ t

0

∫
R0

(Ȳ ε
s (z))2�(dz)ds

]
+ E

[∫ t

0
(ZΘε

s )2ds

])
.

Concerning the term E

[∫ t
0 (γ ε

s )2ds
]
we derive through (ii) and (iii) in Assumptions

1 that

E

[∫ t

0

(
Θ0XΘ0

s − Θε XΘε
s

)2
ds

]

≤ 2

(
E

[∫ t

0
(Θ0 − Θε)

2(XΘ0
s )2ds

]
+ E

[∫ t

0
Θε

2(XΘ0
s − XΘε

s )2ds

])

≤ C

(
G̃4(ε)E

[∫ t

0
(XΘ0

s )2ds

]
+ E

[∫ t

0
(X̄ε

s )
2ds

])

and via (vi) and (vii) in Assumptions 1 it follows that

E

[∫ t

0

{∫
R0

(
Y Θ0

s (z) (1 − ρ(z;Θ0)) − 1{|z|≥ε}Y Θε
s (z) (1 − ρ(z;Θε))

)
�(dz)

}2
ds

]

≤
∫
R0

(ρ(z;Θ0) − ρ(z;Θε))
2 �(dz)E

[∫ t

0

∫
R0

(Y Θ0
s (z))2�(dz)ds

]

+
∫
R0

(1 − ρ(z;Θε))
2 �(dz)E

[∫ t

0

∫
R0

(Ȳ ε
s (z))2�(dz)ds

]

≤ C

(
G̃4(ε)E

[∫ t

0

∫
R0

(Y Θ0
s (z))2�(dz)ds

]
+ E

[∫ t

0

∫
R0

(Ȳ ε
s (z))2�(dz)ds

])
.
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Thus we obtain that

E[(L Θ0
t − L Θε

t )2]
≤ C

(
G̃4(ε)

{
E

[∫ t

0
(XΘ0

s )2ds

]
+ E

[∫ t

0

∫
R0

(Y Θ0
s (z))2�(dz)ds

]}

+E

[∫ t

0
(X̄ε

s )
2ds

]
+ E

[∫ t

0

∫
R0

(Ȳ ε
s (z))2�(dz)ds

]
+ E

[∫ t

0
(ZΘε

s )2ds

])
.

(42)

Let us consider the terms appearing in the latter expression separately.

• Definition (12) implies that

E

[∫ t

0
(XΘ0

s )2ds

]
≤ 2

(
E

[∫ t

0
(AΘ0

s )2ds

]
+ b2E

[∫ t

0
(π̂Θ0

s )2ds

])

and

E

[∫ t

0

∫
R0

(Y Θ0
s (z))2�(dz)ds

]

≤ 2

(
E

[∫ t

0

∫
R0

(BΘ0
s (z))2�(dz)ds

]
+
∫
R0

(ez − 1)2�(dz)E

[∫ t

0
(π̂Θ0

s )2ds

])
.

• Combining (12) and (26) in

X̄ε
t = XΘ0

t − XΘε
t = Āε

t − (π̂
Θ0
t − π̂

Θε
t )b,

it easily follows that

E

[∫ t

0
(X̄ε

s )
2ds

]
≤ C

(
E

[∫ t

0
( Āε

s )
2ds

]
+ E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

])
.

• Similarly, from (12) and (26) we find

Ȳ ε
t (z) = Y Θ0

t (z) − Y Θε
t (z) = B̄ε

t (z) − (π̂
Θ0
t − π̂

Θε
t )(ez − 1).

Hence

E

[∫ t

0

∫
R0

(Ȳ ε
s (z))2�(dz)ds

]

≤ 2

(
E

[∫ t

0

∫
R0

(B̄ε
s (z))2�(dz)ds

]
+
∫
R0

(ez − 1)2�(dz)E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

])
.
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• From (26), the estimate

(ZΘε
t (z))2 ≤ C

(
(CΘε

t )2 + (π̂
Θ0
t − π̂

Θε
t )2G2(ε) + (π̂

Θ0
t )2G2(ε)

)

leads to

E

[∫ t

0
(ZΘε

s (z))2ds

]
≤ C

(
E

[∫ t

0
(CΘε

s )2ds

]
+ G2(ε)E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

]

+ G2(ε)E

[∫ t

0
(π̂Θ0

s )2ds

])
.

• Because of (39) and (vi) in Assumptions 1 we notice that

E

[∫ t

0
(π̂Θ0

s )2ds

]
≤ C

(
E

[∫ t

0
(AΘ0

s )2ds

]
+ E

[∫ t

0

∫
R0

(BΘ0
s (z))2�(dz)ds

])
.

Using (41) and the combination of the above inequalities in (42) show that

E[(L Θ0
t − L Θε

t )2] ≤ C

(
G̃2(ε)

{
E

[∫ t

0
(AΘ0

s )2ds

]
+ E

[∫ t

0

∫
R0

(BΘ0
s (z))2�(dz)ds

]}

+ E

[∫ t

0
( Āε

s )
2ds

]
+ E

[∫ t

0

∫
R0

(B̄ε
s (z))2�(dz)ds

]

+E

[∫ t

0
(CΘε

s )2ds

]
+ E

[∫ t

0
(π̂Θ0

s − π̂Θε
s )2ds

])
.

Finally by Lemma 1 and Theorems 1 and 3 we conclude the proof. �

The cost processes of the quadratic hedging strategy for ĤT , Ĥ ε
T are defined by

K Θ0 = L Θ0 + V̂ Θ0
0 and K Θε = L Θε + V̂ Θε

0 . The upcoming result concerns the
robustness of the cost process and follows directly from the previous theorem.

Corollary 1 Under Assumptions 1 and 2, there exists a positive constant C such
that it holds for all t ∈ [0, T ] that

E[(K Θ0
t − K Θε

t )2] ≤ C
(
E[(ĤT − Ĥ ε

T )2] + G̃2(ε)E[Ĥ2
T ]
)

.

Proof Notice that

E[(K Θ0
t − K Θε

t )2] ≤ 2
(
E[(L Θ0

t − L Θε
t )2] + E[(V̂ Θ0

0 − V̂ Θε

0 )2]
)

,
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wherein

E[(V̂ Θ0
0 − V̂ Θε

0 )2] ≤ E

[
sup

0≤t≤T
(V̂ Θ0

t − V̂ Θε
t )2

]
.

Theorems 2 and 5 complete the proof. �

3.4 Robustness Results for the Mean-Variance Hedging

Since the optimal numbers ξΘ0 and ξΘε of risky assets are the same in the RM and
the MVH strategy, the amounts of wealth π̂Θ0 and π̂Θε and the gain processes ĜΘ0

and ĜΘε also coincide for both strategies. Therefore we conclude that the robustness
results of the amount of wealth and gain process also hold true for theMVH strategy,
see Theorems 3 and 4.

The cost for a MVH strategy is not the same as for the RM strategy. However,
under the assumption that a fixed starting amount Ṽ0 is available to set up a MVH
strategy, we derive a robustness result for the loss at time of maturity. For the models
(1) and (13), it holds that the losses at time of maturity T are given by

LΘ0 = ĤT − Ṽ0 −
∫ T

0
ξΘ0

s dŜs,

LΘε = Ĥ ε
T − Ṽ0 −

∫ T

0
ξΘε

s dŜε
s .

When Assumptions 1 and 2 are imposed, we derive via Theorem 4 that

E[(LΘ0 − LΘε)2] ≤ C
(
E[(ĤT − Ĥ ε

T )2] + G̃2(ε)E[Ĥ2
T ]
)

,

for a positive constant C .
Note that we cannot draw any conclusions from the results above about the robust-

ness of the value of the discounted portfolio for theMVHstrategy, since the portfolios
are strictly different for both strategies.

4 Conclusion

Two different geometric Lévy stock price models were considered in this paper. We
proved that the RM and the MVH strategies in a martingale setting are stable against
the choice of the model. To this end the two models were considered under different
risk-neutral measures that are dependent on the specific pricemodels. The robustness
results are derived through the use of BSDEJs and the obtained L2-convergence rates
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are expressed in terms of estimates of the formE[(ĤT − Ĥ ε
T )2]. The latter estimate is

a well studied quantity, see [3, 16]. In the current paper, we considered two possible
models for the price process. Starting from the initial model (1) other models could
be constructed by truncating the small jumps and possibly rescaling the original
Brownian motion (cfr. [8]). Similar robustness results hold for quadratic hedging
strategies in a martingale setting in these other models.

In [8] a semimartingale setting was considered and conditions had to be imposed
to guarantee the existence of the solutions to the BSDEJs. In this paper however,
we considered a martingale setting and, since there is no driver in the BSDEJs,
the existence of the solution to the BSDEJs was immediately guaranteed. On the
other hand, since the two models were considered under two different martingale
measures, we had to fall back on the common historical measure for the robustness
study. Therefore, a robustness study of the martingale measures had to be performed
and additional terms made some computations more involved compared to the semi-
martingale setting studied in [8].

In this approach based on BSDEJs we could not find explicit robustness results for
the optimal number of risky assets. Thereforewe refer to [6],where a robustness study
is performed in amartingale and semimartingale setting based on Fourier transforms.
Note that in [6] robustness was mainly studied in the L1-sense and the authors noted
that their results can be extended into L2-convergence, whereas L2-robustness results
are explicitly derived in the current paper.
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Risk-Sensitive Mean-Field Type Control
Under Partial Observation

Boualem Djehiche and Hamidou Tembine

Abstract We establish a stochastic maximum principle (SMP) for control problems
of partially observed diffusions of mean-field type with risk-sensitive performance
functionals.

Keywords Time inconsistent control · Maximum principle · Mean-field SDE ·
Risk-sensitive control · Partial observation
AMS subject classification: 93E20 · 60H30 · 60H10 · 91B28.

1 Introduction

In optimal control problems for diffusions of mean-field type the performance func-
tional, drift and diffusion coefficient depend not only on the state and the control but
also on the probability distribution of the state-control pair. The mean-field coupling
makes the control problem time-inconsistent in the sense that the Bellman Princi-
ple is no longer valid, which motivates the use of the stochastic maximum (SMP)
approach to solve this type of optimal control problems instead of trying extensions of
the dynamic programming principle (DPP). This class of control problems has been
studied by many authors including [1, 2, 5, 7, 15, 20]. The performance functionals
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considered in these papers have been of risk-neutral type i.e. the running cost/profit
terms are expected values of stage-additive payoff functions. Not all behavior, how-
ever, can be captured by risk-neutral performance. One way of capturing risk-averse
and risk-seeking behaviors is by exponentiating the performance functional before
expectation (see [17]).

The first paper that we are aware of and which deals with risk-sensitive optimal
control in a mean field context is [24]. Using a matching argument, the authors
derive a verification theorem for a risk-sensitive mean-field game whose underlying
dynamics is a Markov diffusion. This matching argument freezes the mean-field
coupling in the dynamics, which yields a standard risk-sensitive HJB equation for
the value-function. The mean-field coupling is then retrieved through the Fokker-
Planck equation satisfied by the marginal law of the optimal state.

In a recent paper [11], the authors have established a risk-sensitive SMP for
mean-field type control. The risk-sensitive control problem was first reformulated
in terms of an augmented state process and terminal payoff problem. An intermedi-
ate stochastic maximum principle was then obtained by applying the SMP of ([5],
Theorem 2.1.) for loss functionals without running cost but with augmented state
in higher dimension and complete observation of the state. Then, the intermediate
first- and second-order adjoint processes are transformed into a simpler form using
a logarithmic transformation derived in [12].

Optimal control of partially observed diffusions (withoutmean-field coupling) has
been studied by many authors including the non-exhaustive references [3, 4, 8–10,
13, 14, 16, 19, 21, 23, 26, 27], using both the DPP and SMP approaches. Reference
[23] derives an SMP for the most general model of optimal control of partially
observed diffusions under risk-neutral performance functionals. Recently,Wang et al.
[25], extended the SMP for partially observable optimal control of diffusions for risk-
neutral performance functionals of mean-field type.

The purpose of this paper is to establish a stochastic maximum principle for a
class of risk-sensitive mean-field type control problems under partial observation.
Following the above mentioned papers of optimal control under partial observation,
in particular [23], our strategy is to transform the partially observable control problem
into a completely observable one and then apply the approach suggested in [11] to
derive a suitable risk-sensitive SMP. To the best to our knowledge, the risk-sensitive
maximum principle under partial observation without passing through the DPP, and
in particular, for mean-field type controls was not established in earlier works.

The paper is organized as follows. In Sect. 2, we present the model and state the
partially observable risk-sensitive SMP which constitutes the main result, whose
proof is given in Sect. 3. Finally, in Sect. 4, we apply the risk-sensitive SMP to
the linear-exponential-quadratic setup under partial observation. To streamline the
presentation, we only consider the one-dimensional case. The extension to the mul-
tidimensional case is by now straightforward. Furthermore, we consider diffusion
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models where the control enters only the drift coefficient, which leads to an SMP
with only one pair of adjoint processes. The general Peng-type SMP can be derived
following e.g. [11, 23].

2 Statement of the Problem

Let T > 0 be a fixed time horizon and (Ω,F , lF, lP) be a given filtered probability
space on which there are defined two independent standard one-dimensional Brown-
ian motions W = {Ws}s≥0 and Y = {Ys}s≥0. Let FW

t and F Y
t be the lP-completed

natural filtrations generated by W and Y , respectively. Set lFY := {F Y
t , 0 ≤ s ≤ T }

and lF := {Fs, 0 ≤ s ≤ T }, where, Ft = FW
t ∨ F Y

t .

We consider amean-field type version the stochastic controlled systemwith partial
observation considered in [23] which is an extension of the model considered by
[4, 14] to which we refer for further details.

The model is defined as follows.

(i) An admissible control u is an lFY -adapted process with values in a non-empty
subset (not necessarily convex) U of lR and satisfies E[∫ T

0 |u(t)|2dt] < ∞. We
denote the set of all admissible controls by U . The control u is called partially
observable.

(i i) Given a control process u ∈ U , we consider the signal-observation pair
(xu, Y ) which satisfies the following SDE of mean-field type

⎧⎨
⎩

dxu(t) = b(t, xu(t), E[xu(t)], u(t))dt + σ(t, xu(t), E[xu(t)])dWt

+ α(t, xu(t), E[xu(t)])dW̃ u
t , xu(0) = x0,

dYt = β(t, xu(t))dt + dW̃ u
t , Y0 = 0,

(1)

where,
b(t, x, m, u) : [0, T ] × lR × lR × U −→ lR,

α(t, x, m), σ (t, x, m) : [0, T ] × lR × lR −→ lR

and β(t, x) : [0, T ] × lR −→ lR are Borel measurable function.

In this model, the observation process Y , which carries out the controls u, is assumed
to be a given Brownian motion independent of W and is supposed to admit a decom-
position as a trend

∫ ·
0 β(t, xu(t))dt (a functional of the state process xu) corrupted

by a process W̃ u which are a priori not observable. The case α = 0 corresponds to
the model considered in [4, 14]. A more general model of the function β would be
to let it depend on the control u and be of mean-field type. To keep the presentation
simpler, we skip this case in this paper. But, the main results do extend to this case.
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Before we formulate the control problem, we show that the system (1) has a weak
solution. Introduce the density process defined on (Ω,F , lF, lP) by

ρu(t) := exp

{∫ t

0
β(s, xu(s))dYs − 1

2

∫ t

0
|β(s, xu(s))|2ds

}
,

which solves the linear SDE

dρu(t) = ρu(t)β(t, xu(t))dYt , ρu(0) = 1.

Assuming the function β bounded (see Assumption 1, below), ρ is a uniformly
integrable martingale such that, for every p ≥ 2,

E[ sup
0≤t≤T

ρ
p
t ] ≤ C, (2)

where, C is a constant which depends only on the bound of β, p and T . Define
dlPu = ρu(T )dlP. By Girsanov’s Theorem, lPu is a probability measure. Moreover,
W̃ u is a lPu-standard Brownian motion independent of W . This in turn entails that
(lPu, xu, Y, W, W̃ u) is a weak solution of (1).

The objective is to characterize admissible controls which minimize the risk-
sensitive cost functional given by

J θ (u(·)) = Eu
[
exp

(
θ

[∫ T

0
f (t, xu(t), Eu[xu(t)], u(t)) dt + h(xu(T ), Eu[xu(T )])

])]
,

where, θ is the risk-sensitivity index,

f (t, x, m, u) : [0, T ] × lR × lR × U −→ lR,

h(x, m) : lR × lR −→ lR.

Any ū(·) ∈ U which satisfies

J θ (ū(·)) = inf
u(·)∈U

J θ (u(·)) (3)

is called a risk-sensitive optimal control under partial observation.
Let ΨT = ∫ T

0 f (t, x(t), Eu[x(t)], u(t))dt + h(x(T ), Eu[x(T )]) and consider
the payoff functional given by

Ψ̃θ := 1

θ
log EueθΨT .

When the risk-sensitive index θ is small, the loss functional Ψ̃θ can be expanded as

Eu[ΨT ] + θ

2
varu(ΨT ) + O(θ2),
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where, varu(ΨT ) denotes the variance of ΨT w.r.t. lPu . If θ < 0 , the variance of ΨT ,
as a measure of risk, improves the performance Ψ̃θ , in which case the optimizer is
called risk seeker. But, when θ > 0, the variance of ΨT worsens the performance
Ψ̃θ , in which case the optimizer is called risk averse. The risk-neutral loss functional
Eu[ΨT ] can be seen as a limit of risk-sensitive functional Ψ̃θ when θ → 0.

Since dlPu = ρu(T )dlP, the associated risk-sensitive cost functional becomes

J θ (u(·)) = E

[
ρu(T )e

θ
[∫ T

0 f (t,xu(t),E[ρu(t)xu(t)],u(t)) dt+h(xu(T ),E[ρu(T )xu(T )])
]]

,

(4)
where, on (Ω,F , lF, lP), the process (ρu, xu) satisfies the following dynamics:

⎧⎪⎪⎨
⎪⎪⎩

dρu(t) = ρu(t)β(s, xu(s))dYt ,

dxu(t) = {b(t, xu(t), E[xu(t)], u(t)) − α(t, xu(t), E[xu(t)])β(t, xu(t))} dt
+ σ(t, xu(t), E[xu(t)])dWt + α(t, xu(t), E[xu(t)])dYt ,

ρu(0) = 1, xu(0) = x0.
(5)

Wehave recast the partially observable control problem into the following completely
observable control problem: Minimize J θ (u(·)) defined by (4) subject to (5).

The main result of this paper is a stochastic maximum principle (SMP) in terms of
necessary optimality conditions for the problem (3) subject to (5).

We will only consider the case where the risk-sensitive parameter is positive, θ > 0.
The case θ < 0 can be treated in a similar fashion by considering θ = −θ̄ , θ̄ > 0,
and f̄ = − f, h̄ = −h in the performance functional (4).

We will make the following assumption.

Assumption 1 The functions b, σ, α, β, f, h are twice continuously differentiable
with respect to (x, m). Moreover, these functions and their first derivatives with
respect to (x, m) are bounded and continuous in (x, m, u).

To keep the presentation less technical, we impose these assumptions although they
are restrictive and can be made weaker.
Under these assumptions, in view of Girsanov’s theorem and [18], Proposition1.2.,
for each u ∈ U , the SDE (5) admits a unique weak solution (ρu, xu).
We now state an SMP to characterize optimal controls ū(·) ∈ U which minimize
(4), subject to (5). Let (ρ̄, x̄) := (ρ ū, xū) denote the corresponding state process,
defined as the solution of (5).

http://dx.doi.org/10.1007/978-3-319-23425-0_1
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We introduce the following notation.

X :=
(

ρ

x

)
, X̄ :=

(
ρ̄

x̄

)
, X0 = X̄0 :=

(
1
x0

)
, Bt :=

(
Yt

Wt

)
,

F(t, X, m, u) :=
(
0
c(t, x, m, u)

)
, G(t, X, m) :=

(
ρβ(t, x) 0
α(t, x, m) σ (t, x, m)

)
,

c(t, x, m, u) := b(t, x, m, u) − α(t, x, m)β(t, x), φ(X) := x, φ̃(X) := ρx,

φ(X̄) := x̄, φ̃(X̄) := ρ̄ x̄ .

(6)
We define the risk-neutral Hamiltonian as follows. For (p, q) ∈ lR2 × lR2×2,

H(t, X, m, p, q, u) := 〈F(t, X, m, u), p〉+ tr(G∗(t, X, m)q)− f (t, x, m, u), (7)

where, ′∗′ denotes the transposition operation of a matrix or a vector.

We also introduce the risk-sensitive Hamiltonian: (p, q, 
) ∈ lR2 × lR2×2 × lR2,

H θ (t, X, m, u, p, q, 
) := 〈F(t, X, m, u), p〉 − f (t, x, m, u)

+ tr(G∗(t, X, m)(q + θ
p∗)). (8)

We have H = H0.

Setting


 :=
(


1

2

)
, p :=

(
p1
p2

)
, q :=

(
q11 q12
q21 q22

)
,

the explicit form of the Hamiltonian (8) reads

H θ (t, X, m, u, p, q, 
) := c(t, x, m, u)p2 − f (t, x, m, u) + ρβ(t, x)(q11 + θ
1 p1)
+ α(t, x, m)(q21 + θ
2 p1) + σ(t, x, m)(q22 + θ
2 p2).

Setting θ = 0, we obtain the explicit form of the Hamiltonian (7):

H(t, X, m, u, p, q) := c(t, x, m, u)p2 − f (t, x, m, u) + ρβ(t, x)q11
+ α(t, x, m)q21 + σ(t, x, m)q22.

With the obvious notation for the derivatives of the functions b, α, β, σ, f, h, w.r.t.
the arguments x and m, we further set

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Hθ
x (t, X, m, u, p, q) := cx (t, x, m, u)p2 − fx (t, x, m, u) + ρβx (t, x)(q11 + θ
1 p1)

+ αx (t, x, m)(q21 + θ
2 p1) + σx (t, x, m)(q22 + θ
2 p2),
Ȟθ

m(t, X, m, u, p, q) := cm(t, x, m, u)p2 + αm(t, x, m)(q21 + θ
2 p1)
+ σm(t, x, m)(q22 + θ
2 p2),

Hθ
ρ (t, X, m, u, p, q) := β(t, x)(q11 + θ
1 p1).
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With this notation, the system (5) can be rewritten in the following compact form

{
d X (t) = F(t, X (t), E[φ(X (t))], u(t))dt + G(t, X (t), E[φ(X (t))])d Bt ,

X (0) = X0.
(9)

We define the risk-neutral Hamiltonian associated with random variables X such that
φ(X) and φ̃(X) are L1(Ω,F , lP) as follows (with the obvious abuse of notation):
For (p, q) ∈ lR2 × lR2×2,

H(t, X, p, q, u) := 〈F(t, X, E[φ(X)], u), p〉 − f (t, x, E[φ̃(X)], u)

+ tr(G∗(t, X, E[φ(X)])q).
(10)

We also introduce the risk-sensitive Hamiltonian: (p, q, 
) ∈ lR2 × lR2×2 × lR2,

H θ (t, X, u, p, q, 
) := 〈F(t, X, E[φ(X)], u), p〉 − f (t, x, E[φ̃(X)], u)

+ tr(G∗(t, X, E[φ(X)])(q + θ
p∗)). (11)

For g ∈ {b, c, σ, α, β} and u ∈ U , we set

gx (t) := gx (t, x̄(t), E[x̄(t)], ū(t)), gm(t) := gm(t, x̄(t), E[x̄(t)], ū(t)) (12)

and
{

fx (t) := fx (t, x̄(t), E[ρ̄(t)x̄(t)], ū(t)), fm(t) := fm(t, x̄(t), E[ρ̄(t)x̄(t)], ū(t)),
hx (t) := hx (x̄(t), E[ρ̄(t)x̄(t)]), hm(t) := hm(x̄(t), E[ρ̄(t)x̄(t)]).

(13)
Let

ψθ
T := ρ̄(T ) exp θ

[∫ T

0
f (t, x̄(t), E[ρ̄(t)x̄(t)], ū(t))dt + h(x̄(T ), E[ρ̄(T )x̄(T )])

]
.

We introduce the adjoint equations involved in the risk-sensitive SMP for our
control problem.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d p̂(t) = −
(

H θ
ρ (t) + 1

vθ (t)
E[vθ (t)Ȟ θ

m(t)] − x̄(t)
vθ (t)

E[vθ (t) fm(t)]
H θ

x (t) + 1
vθ (t)

E[vθ (t)Ȟ θ
m(t)] − ρ̄(t)

vθ (t)
E[vθ (t) fm(t)]]

)
dt

+ q̂(t)(−θ
(t)dt + d Bt ),

dvθ (t) = θvθ (t)〈
(t), d Bt 〉,
p̂(T ) = −

(
(θρ̄(T ))−1

hx (T )

)
−
(

x̄(T )

ρ̄(T )

)
1

ψθ
T

E[ψθ
T hm(T )],

vθ (T ) = ψθ
T ,

(14)

where, in view of (2) and (13), for k ∈ {ρ, x},
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H θ
k (t) := 〈Fk(t, X̄(t), E[φ(X̄(t))], ū(t)), p̂(t)〉 − fk(t, x̄(t), E[φ̃(X̄(t))], ū(t))

+ tr(G∗
k(t, X̄(t), E[φ(X̄(t))])(q̂(t) + θ
 p̂∗(t))

and

Ȟ θ
m(t) := 〈Fm(t, X̄(t), E[φ(X̄(t))], ū(t)), p̂(t)〉

+ tr(G∗
m(t, X̄(t), E[φ(X̄(t))])(q̂(t) + θ
 p̂∗(t)).

We note that the processes ( p̂, q̂, 
) may depend on the sensitivity index θ . To ease
notation, we omit to make this dependence explicit.

Below, we will show that, under Assumption 1, (14) admits a unique lF-adapted
solution ( p̂, q̂, v̂θ , 
) such that

E

[
sup

t∈[0,T ]
| p̂(t)|2 + sup

t∈[0,T ]
|vθ (t)|2 +

∫ T

0

(
|q̂(t)|2 + |
(t)|2

)
dt

]
< ∞. (15)

Moreover,

Lemma 1 The process defined on (Ω,F , lF, lP) by

Lθ
t := vθ (t)

vθ (0)
= exp

(∫ t

0
θ〈
(s), d Bs〉 − θ2

2

∫ t

0
|
(s)|2ds

)
, 0 ≤ t ≤ T, (16)

is a uniformly integrable lF-martingale.

The process Lθ defines a new probability measure lPθ equivalent to lP by setting
Lθ

t := dlPθ

dlP |Ft . By Girsanov’s theorem, the process Bθ
t := Bt − θ

∫ t
0 
(s)ds, 0 ≤

t ≤ T is a lPθ -Brownian motion.

The following theorem is the main result of the paper. Let Eθ [ · ] denote the expec-
tation w.r.t. lPθ .

Theorem 1 (Risk-sensitive maximum principle) Let Assumption 1 hold. If the
process (ρ̄(·), x̄(·), ū(·)) is an optimal solution of the risk-sensitive control problem
(3)–(5), then there are two pairs of lF-adapted processes (vθ , 
) and ( p̂, q̂) which
satisfy (14)–(15), such that

Eθ [H θ (t, ρ̄(t), x̄(t), p̂(t), q̂(t), 
(t), u) − H θ (t, ρ̄(t), x̄(t), p̂(t), q̂(t), 
(t), ū(t))|F Y
t ] ≤ 0,

for all u ∈ U, almost every t and lPθ−almost surely.

Remark 1 The boundedness assumption of the involved coefficients and their deriv-
atives imposed in Assumption 1, in Theorem 1, guarantees the solvability of the
system of forward-backward SDEs (5) and (14). In fact Theorem 1 applies provided
we can solve system of forward-backward SDEs (5) and (14). A typical example of
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such a situation is the classical Linear-Quadratic (LQ) control problem (see Sect. 4
below), in which the involved coefficients are at most quadratic, but not necessarily
bounded.

3 Proof of the Main Result

In this section we give a proof of Theorem 1 here presented in several steps.

3.1 An Intermediate SMP for Mean-Field Type Control

In this subsection we first reformulate the risk-sensitive control problem associated
with (4)–(5) in terms of an augmented state process and terminal payoff problem.
An intermediate stochastic maximum principle is then obtained by applying the
SMP obtained in ([1], Theorem 3.1 or [5], Theorem 2.1) for loss functionals without
running cost. Then, we transform the intermediate first-order adjoint processes to a
simpler form. The mean-field type control problem for the cost functional (4) under
the dynamics (5) is equivalent to

inf
u(·)∈U

E
[
ρ(T )eθ[h(x(T ),E[ρ(T )x(T )])+ξ(T )]

]
, (17)

subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dρ(t) = ρ(t)β(t, x(t))dYt ,

dx(t) = {b(t, x(t), E[x(t)], u(t)) − α(t, x(t), E[x(t)])β(t, x(t))} dt
+ σ(t, x(t), E[x(t)])dWt + α(t, x(t), E[x(t)])dYt ,

dξ = f (t, x(t), E[ρ(t)x(t)], u(t))dt,
ρ(0) = 1, x(0) = x0, ξ(0) = 0.

(18)

We introduce the following notation.

R :=
⎛
⎝ρ

x
ξ

⎞
⎠ =

(
X
ξ

)
, R̄ :=

⎛
⎝ ρ̄

x̄
ξ̄

⎞
⎠ =

(
X̄
ξ̄

)
, R0 = R̄0 :=

(
X0,

0

)
,

Γ (t, R, m) :=
(

G(t, X, m, u)

0

)
,

φ(R) = φ(X) = x, φ̃(R) = φ̃(X) = ρx, φ(R̄) = φ(X̄) = x̄, φ̃(R̄) = φ̃(X̄) = ρ̄ x̄ .
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With this notation, the system (18) can be rewritten in the following compact form

⎧⎨
⎩

d R(t) =
(

F(t, R(t), E[φ(R(t))], u(t))
f (t, R(t), E[φ̃(R(t))], u(t))

)
dt + Γ (t, R(t), E[φ(R(t))])d Bt ,

R(0) = R0

and the risk-sensitive cost functional (4) becomes

J θ (u(·)) := E[�
(

R(T ), E[φ̃(R(T ))]
)
],

where,

�(R(T ), E[φ(R(T ))]) := ρ(T ) exp (θh(x(T ), E[ρ(T )x(T )]) + θξ(T )) .

We define the Hamiltonian associated with random variables R such that φ(R) ∈
L1(Ω,F , lP) as follows. For (p, q) ∈ lR3 × lR3×3,

He(t, R, p, q, u) := 〈
(

F(t, R(t), E[φ(R(t))], u(t))
f (t, R(t), E[φ̃(R(t))], u(t))

)
, p〉

+ tr(Γ ∗(t, R, E[φ(R)])q),

(19)

where, Γ ∗ denotes the transpose of the matrix Γ .

Setting

p :=
⎛
⎝ p1

p2
p3

⎞
⎠ , q :=

⎛
⎝q11 q12

q21 q22
q31 q32

⎞
⎠ , (20)

the explicit form of the Hamiltonian (19) reads

He(t, ρ, x, ξ, p, q, u) := He(t, R, p, q, u) = c(t, x, E[x], u)p2 + f (t, x, E[ρx], u)p3
+σ(t, x, E[x])q22 + ρβ(t, x)q11 + α(t, x, E[x])q21.

In view of (12), we set

⎧⎨
⎩

He
x (t) := cx (t)p2(t) + fx (t)p3(t) + σx (t)q22(t) + ρ̄(t)βx (t)q11(t) + αx (t)q21(t),

Ȟ e
m(t) := cm(t)p2(t) + fm(t)p3(t) + σm(t)q22(t) + αm(t)q21(t),

He
ρ (t) = β(t, x̄(t))q11(t).

We may apply the SMP for risk-neutral mean-field type control (cf. [1], Theorem
3.1 or [5], Theorem 2.1) to the augmented state dynamics (ρ, x, ξ) to derive the first
order adjoint equation:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dp(t) = −
⎛
⎝ He

ρ (t) + E[Ȟ e
m(t)] + x̄(t)E[ fm(t)p3(t)]

He
x (t) + E[Ȟ e

m(t)] + ρ̄(t)E[ fm(t)p3(t)]
0

⎞
⎠ dt + q(t)d Bt ,

p(T ) = −θψθ
T

⎛
⎝ (θρ̄(T ))−1

hx (T )

1

⎞
⎠ − θ

⎛
⎝ x̄(T )

ρ̄(T )

0

⎞
⎠ E[ψθ

T hm(T )].
(21)

This is a system of linear backward SDEs of mean-field type which, in view of
([6], Theorem 3.1), under Assumption 1, admits a unique lF-adapted solution (p, q)

satisfying

E

[
sup

t∈[0,T ]
|p(t)|2 +

∫ T

0
|q(t)|2dt

]
< ∞, (22)

where, | · | denotes the usual Euclidean norm with appropriate dimension.

We may apply the SMP for SDEs of mean-field type control from ([1], Theorem
3.1 or [5], Theorem 2.1) together with the SMP for risk-neutral partially observable
SDEs derived in ([23], Theorem 2.1) to obtain the following SMP.

Proposition 1 Let Assumption 1 hold. If (R̄(·), ū(·)) is an optimal solution of the
risk-neutral control problem (17) subject to the dynamics (18), then there is a unique
pair of lF-adapted processes (p, q) which satisfies (21)–(22) such that

E[He(t, R̄(t), p(t), q(t), u) − He(t, R̄(t), p(t), q(t), ū(t))|F Y
t ] ≤ 0,

for all u ∈ U, almost every t and lP−almost surely.

3.2 Transformation of the First Order Adjoint Process

Although the result of Proposition 1 is a good SMP for the risk-sensitive mean-field
type control with partial observations, augmenting the state process with the third
component ξ yields a system of three adjoint equations that appears complicated to
solve in concrete situations. In this section we apply the transformation of the adjoint
processes (p, q) introduced in [11] in such a way to get rid of the third component
(p3, q31, q32) in (21) and express the SMP in terms of only two adjoint process that
we denote ( p̂, q̂), where

p̂ :=
(

p̂1
p̂2

)
, q̂ :=

(
q̂1
q̂2

)
, q̂i := (q̂i1, q̂i2), i = 1, 2. (23)
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Indeed, noting that from (21), we have dp3(t) = 〈q3(t), d Bt 〉 and p3(T ) = −θψθ
T ,

the explicit solution of this backward SDE is

p3(t) = −θ E[ψθ
T | Ft ] = −θvθ (t), (24)

where,
vθ (t) := E[ψθ

T | Ft ], 0 ≤ t ≤ T .

In particular, we have vθ (0) = E[ψθ
T ]. Therefore, in view of (24), it would be natural

to choose a transformation of (p, q) into an adjoint process ( p̂, q̂) , where,

p̂ :=
⎛
⎝ p̂1

p̂2
p̂3

⎞
⎠ , q̂ :=

⎛
⎝ q̂11 q̂12

q̂21 q̂22
q̂31 q̂32

⎞
⎠ ,

such that

p̂3(t) = p3(t)

θvθ (t)
= −1, 0 ≤ t ≤ T . (25)

This would imply that, for almost every 0 ≤ t ≤ T ,

q̂3(t) = (q̂31(t), q̂32(t)) = 0, lP − a.s., (26)

which in turn would reduce the number of adjoint processes to those of the form
given by (23).

We consider the following transform:

p̂(t) := 1

θvθ (t)
p(t), 0 ≤ t ≤ T . (27)

In view of (21), we have

p̂(T ) = −
⎛
⎝ (θρ̄(T ))−1

hx (T )

1

⎞
⎠ −

⎛
⎝ x̄(T )

ρ̄(T )

0

⎞
⎠ 1

ψθ
T

E[ψθ
T hm(T )]. (28)

We should identify the processes α̂ and q̂ such that

d p̂(t) = −α̂(t)dt + q̂(t)d Bt , (29)

for which (25) and (26) are satisfied.
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In order to investigate the properties of these new processes ( p̂, q̂), the following
properties of the genericmartingale vθ , used in [11], are essential.We reproduce them
here for the sake of completeness. Since, by Assumption 1, f and h are bounded by
some constant C > 0, we have

0 < e−(1+T )Cθρ(T ) ≤ ψθ
T ≤ e(1+T )Cθρ(T ).

Therefore, vθ is a uniformly integrable lF-martingale satisfying

0 < e−(1+T )Cθρ(t) ≤ vθ (t) ≤ e(1+T )Cθρ(t), 0 ≤ t ≤ T .

Hence, in view of (2), we have

E[ sup
0≤t≤T

|vθ (t)|2] ≤ C. (30)

Furthermore, the martingale vθ enjoys the following useful logarithmic transform
established in ([12], Proposition 3.1)

vθ (t) = exp

(
θ Zt + θ

∫ t

0
f (s, x̄(s), E[ρ̄(s)x̄(s)], ū(s))ds

)
, 0 ≤ t ≤ T, (31)

and
vθ (0) = E[ψθ

T ] = exp(θ Z0).

Moreover, the process Z is the first component of the lF-adapted pair of processes
(Z , 
) which is the unique solution to the following quadratic BSDE:

⎧⎨
⎩

d Zt = −{ f (t, x̄(t), E[ρ̄(s)x̄(s)], ū(t)) + θ
2 |
(t)|2}dt + 〈
(t), d Bt 〉,

ZT = 1
θ
ln ρ̄(T ) + h(x̄T , E[ρ̄(T )x̄(T )]).

(32)

where, 
(t) = (
1(t), 
2(t)) satisfies

E

[∫ T

0
|
(t)|2dt

]
< ∞. (33)

In particular, vθ solves the following linear backward SDE

dvθ (t) = θvθ (t)〈
(t), d Bt 〉, vθ (T ) = ψθ
T . (34)
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Hence,

Proof of Lemma 1. In view of (30),

vθ (t)

vθ (0)
= exp

(∫ t

0
θ〈
(s), d Bs〉 − θ2

2

∫ t

0
|
(s)|2ds

)
:= Lθ

t , 0 ≤ t ≤ T, (35)

is a uniformly integrable lF-martingale. �
To identify the processes α̃ and q̃ such that

d p̂(t) = −α̂(t)dt + q̂(t)d Bt ,

we may apply Itô’s formula to the process p(t) = θvθ p̃(t), use (21) and (34) and
identify the coefficients. We obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α̂(t) = 1
θvθ (t)

⎛
⎝ He

ρ (t) + E[Ȟ e
m(t)] + x̄(t)E[ fm(t)p3(t)]

He
x (t) + E[Ȟ e

m(t)] + ρ̄(t)E[ fm(t)p3(t)]
0

⎞
⎠ + θ q̂(t)
(t),

q̂(t) = 1
θvθ (t)

q(t) − θ p̂(t)
(t).

(36)

Therefore,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d p̂(t) = − 1
θvθ (t)

⎛
⎝ He

ρ (t) + E[Ȟ e
m(t)] + x̄(t)E[ fm(t)p3(t)]

He
x (t) + E[Ȟ e

m(t)] + ρ̄(t)E[ fm(t)p3(t)]
0

⎞
⎠ dt + q̂(t)d Bθ

t ,

q̂(t) = 1
θvθ (t)

q(t) − θ p̂(t)
(t),

dvθ (t) = θvθ (t)〈
(t), d Bt 〉,

p̂(T ) = −
⎛
⎝ (θρ̄(T ))−1

hx (T )

1

⎞
⎠ −

⎛
⎝ x̄(T )

ρ̄(T )

0

⎞
⎠ 1

ψθ
T

E[ψθ
T hm(T )],

vθ (T ) = ψθ
T ,

(37)

where, Bθ
t := Bt −θ

∫ t
0 
(s)ds, 0 ≤ t ≤ T , which is, in view of (35) and Girsanov’s

Theorem, a lPθ -Brownian motion, where dlPθ

dlP

∣∣∣
Ft

:= Lθ
t .

In particular,

d p̂3(t) = 〈q̂3(t),−θ
(t)dt + d Bt 〉, p̂3(T ) = −1.
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Therefore, noting that p̂3(t) := [θvθ (t)]−1 p3(t) is square-integrable, we obtain

p̂3(t) = EP
θ [ p̂3(T )|Ft ] = −1.

Thus, its quadratic variation becomes
∫ T
0 |q̂3(t)|2dt = 0, P

θ − a.s. This implies
that, for almost every 0 ≤ t ≤ T , q̂3(t) = 0, P

θ and P − a.s.

Hence, we can drop the last components from the adjoint processes ( p̂, q̂) and only
consider (keeping the same notation)

p̂ :=
(

p̂1
p̂2

)
, q̂ :=

(
q̂11 q̂12
q̂21 q̂22

)
,

for which (37) reduces to the risk-sensitive adjoint equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d p̂(t) = − 1
θvθ (t)

(
He

ρ (t) + E[Ȟ e
m(t)] − x̄(t)E[ fm(t)]

He
x (t) + E[Ȟ e

m(t)] − ρ̄(t)E[ fm(t)]

)
dt + q̂(t)d Bθ

t ,

q̂(t) = 1
θvθ (t)

q(t) − θ p̂(t)
(t),

dvθ (t) = θvθ (t)〈
(t), d Bt 〉,
p̂(T ) = −

(
(θρ̄(T ))−1

hx (T )

)
−
(

x̄(T )

ρ̄(T )

)
1

ψθ
T

E[ψθ
T hm(T )],

vθ (T ) = ψθ
T .

(38)

In view of the uniqueness of lF-adapted pairs (p, q), solution of (21), and the pair
(vθ , 
) obtained satisfying (33) and (34), the solution of the system of backward
SDEs (38) is unique and satisfies (15).

3.3 Risk-Sensitive Stochastic Maximum Principle

We may use the transform (27) and (36) to obtain the explicit form (11) of the
risk-sensitive Hamiltonian H θ defined by

H θ (t, X̄(t), p̂(t), q̂(t), 
(t), u) := 1

θvθ (t)
He(t, R̄(t), p(t), q(t), u), (39)

where, He is defined by (19).
Let

δHe(t) := He(t, R̄(t), p(t), q(t), u) − He(t, R̄(t), p(t), q(t), ū(t))
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and

δH θ (t) = H θ (t, X̄(t), p̂(t), q̂(t), 
(t), u) − H θ (t, X̄(t), p̂(t), q̂(t), 
(t), ū(t)).

We have

E[δHe(t)|F Y
t ] = θ E[vθ (t)δH θ (t)|F Y

t ] = θvθ (0)Eθ [δH θ (t)|F Y
t ],

where, we recall that vθ (t)/vθ (0) = Lθ
t = dlPθ /dlP|Ft .

Now, since θ > 0 and vθ (0) = E[ψθ
T ] > 0, the variational inequality (1) translates

into

Eθ [H θ (t, ρ̄(t), x̄(t), p̂(t), q̂(t), 
(t), u) − H θ (t, ρ̄(t), x̄(t), p̂(t), q̂(t), 
(t), ū(t))|F Y
t ] ≤ 0.

for all u ∈ U, almost every t and lPθ−almost surely. This finishes the proof of
Theorem 1.

4 Illustrative Example: Linear-Quadratic Risk-Sensitive
Model Under Partial Observation

To illustrate our approach, we consider a one-dimensional linear diffusionwith expo-
nential quadratic cost functional. Perhaps, the easiest example of a linear-quadratic
(LQ) risk-sensitive control problem with mean-field coupling is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

infu(·)∈U Eue
θ
[
1
2

∫ T
0 u2(t)dt+ 1

2 x2(T )+μEu [x(T )]
]
,

subject to
dx(t) = (ax(t) + bu(t)) dt + σdWt + αdW̃ u

t ,

dYt = βx(t)dt + dW̃ u
t ,

x(0) = x0, Y0 = 0,

where, a, b, α, β, μ and σ are real constants.

In this section we will illustrate our approach by only considering the LQ risk-
sensitive control under partial observation without the mean-field coupling i.e. (μ =
0) so that our result can be compared with [8] where a similar example (in many
dimensions) is studied using the Dynamic Programming Principle. The case μ �= 0
can treated in a similar fashion (cf. [11]).
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We consider the linear-quadratic risk-sensitive control problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

infu(·)∈U Eue
θ
[
1
2

∫ T
0 u2(t)dt+ 1

2 x2(T )
]
,

subject to
dx(t) = (ax(t) + bu(t)) dt + σdWt + αdW̃ u

t ,

dYt = βx(t)dt + dW̃ u
t ,

x(0) = x0, Y0 = 0,

(40)

where, a, b, α, β and σ are real constants.

An admissible process (ρ̄(·), x̄(·), ū(·)) satisfying the necessary optimality condi-
tions of Theorem 1 is obtained by solving the following system of forward-backward
SDEs (cf. (5) and (14)) (see Remark 1, above).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρ̄(t) = βρ̄(t)x̄(t)dYt ,

dx̄(t) = {cx̄(t) + bū(t)} dt + σdWt + αdYt ,

dp(t) = −
(

H θ
ρ (t)

H θ
x (t)

)
dt + q(t)(−θ
(t)dt + d Bt ),

dvθ (t) = θvθ (t)〈
(t), d Bt 〉,
p(T ) = −

(
(θρ̄(T ))−1

x̄(T )

)
,

vθ (T ) = ψθ
T ,

ρ̄(0) = 1, x̄(0) = x0,

(41)

where,

c := a − αβ, Bt :=
(

Yt

Wt

)
, 
 :=

(

1

2

)
, p :=

(
p1
p2

)
, q :=

(
q11 q12
q21 q22

)
,

ψθ
T := ρ̄(T )e

θ
[
1
2

∫ T
0 ū2(t)dt+ 1

2 x̄2(T )
]
,

and the associated risk-sensitive Hamiltonian is

H θ (t, ρ, x, u, p, q, 
) := (cx + bu)p2 − 1
2u2 + ρβx(q11 + θ
1 p1)

+α(q21 + θ
2 p1) + σ(q22 + θ
2 p2).
(42)

In general the solution (vθ , 
) primarily gives the correct form of the process 
which
may be a function of the optimal control ū. Inserting 
 in the BSDE satisfied by
(p, q) in the system (41) and solving for (p, q), we arrive at the characterization the
optimal control of our problem.
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For the LQ-control problem it turns out that by considering the BSDE satisfied by
(vθ , 
), we will find an explicit form of the optimal control ū. Indeed, by (31), this
is equivalent to consider the BSDE satisfied by (Z , 
):

{
d Zt = −{ 12 ū2(t) + θ

2 |
(t)|2}dt + 〈
(t), d Bt 〉,
ZT = 1

θ
ln ρ̄(T ) + 1

2 x̄2T .

Since ū isF Y
t , the form of ZT suggests that we characterize ū and 
 such that

Eθ [Zt |F Y
t ] = Eθ [γ (t)

2
x̄2(t) + 1

θ
ln ρ̄(t) + η(t)|F Y

t ], 0 ≤ t ≤ T,

where, γ and η are deterministic functions such that γ (T ) = 1 and η(T ) = 0. In
view of the SDEs satisfied by (ρ̄, x̄) in (41), applying Itô’s formula and identifying
the coefficients, we get


1(t) = (αγ (t) + β/θ)x̄(t), 
2(t) = σγ (t)x̄(t) (43)

and

Eθ [ 12
(
γ̇ (t) + 2(c + αβ)γ (t) + (θ(σ 2 + α2) − b2)γ 2(t)

)
x̄2(t)|F Y

t ]
+Eθ [η̇(t) + 1

2 (σ
2 + α2)γ (t) + (ū(t) + bγ (t)x̄(t))2|F Y

t ] = 0.

Hence,

{
γ̇ (t) + 2(c + αβ)γ (t) + (θ(σ 2 + α2) − b2)γ 2(t) = 0, γ (T ) = 1,
η̇(t) + 1

2 (σ
2 + α2)γ (t) = 0, η(T ) = 0,

(44)

where, the first equation is the risk-sensitive Riccati equation, and

Eθ [(ū(t) + bγ (t)x̄(t))2|F Y
t ] = 0.

By the conditional Jensen’s inequality, we have

∣∣∣Eθ [ū(t) + bγ (t)x̄(t)|F Y
t ]
∣∣∣2 ≤ Eθ [(ū(t) + bγ (t)x̄(t))2|F Y

t ].

Therefore, the optimal control is

ū(t) = −bγ (t)Eθ [x̄(t)|F Y
t ], (45)

and the optimal dynamics solves the linear SDE

dx̄(t) =
(

cx̄(t) − b2γ (t)Eθ [x̄(t)|F Y
t ]
)

dt + σdWt + αdYt , x̄(0) = x0, (46)
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where, by the filter equation of Theorem 8.1 in [22], πt (x̄) := Eθ [x̄(t)|F Y
t ] is the

solution of the SDE on (Ω,F , lF, lPθ ):

πt (x̄) = x0 +
∫ t

0
(c − b2γ (s))πs(x̄)ds +

∫ t

0

(
α + (θαγ (t) + β)

[
πs(x̄2) − π2

s (x̄)
])

dȲ θ
s ,

where, Ȳ θ
t = Yt −

∫ t
0 (θαγ (s)+β)πs(x̄)ds is an (Ω,F , lFY , lPθ )-Brownian motion.

Inserting the form (43) of 
 in the BSDE satisfied by (p, q) in the system (41) and
solving for (p, q), we arrive at the same characterization the optimal control of our
problem, obtained as a maximizer of the associated H θ given by (42). We sketch the
main steps and omit the details.

We have

H θ
u = bp2 − u, H θ

ρ = βx(q11 + θ
1 p1), H θ
x = cp2 + βρ(q11 + θ
1 p1).

The BSDE satisfied by (p, q) then reads

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dp1(t) = −{q11(t)(β x̄(t) + θ
1(t)) + θ(
1(t)p1(t)x̄(t) + q12(t)
2(t))} dt
+ q11(t)dYt + q12(t)dWt ,

dp2(t) = −{cp2(t) + βρ(t)(q11(t) + θ
1(t)p1(t))} dt
+ θ(q21
1(t) + q22
2(t))dt + q21(t)dYt + q22(t)dWt ,

p1(T ) = − 1
θρ̄(T )

, p2(T ) = −x̄(T ).

(47)

In view of Theorem 1, if ū is an optimal control of the system (40), it is necessary
that

Eθ [bp2(t) − ū(t)|F Y
t ] = 0.

This yields
ū(t) = bEθ [p2(t)|F Y

t ].

The associated state dynamics x̄ solves then the SDE

dx̄(t) =
{

cx̄(t) + b2Eθ [p2(t)|F Y
t ]
}

dt + σdWt + αdYt .

It remains to compute Eθ [p2(t)|F Y
t ]. Indeed, inserting the form (43) of 
 in the

BSDE satisfied by (p, q) in the system (47), by Itô’s formula and identifying the
coefficients, it is easy to check that (p1(t), q11(t), q12(t)) given by

p1(t) := − 1

θρ̄(t)
, q11(t) := β

θ

x̄(t)

ρ̄(t)
, q12(t) := 0

solves the first adjoint equation in (47). Furthermore, since p2(T ) = −x̄(T ), setting
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Eθ [p2(t)|F Y
t ] = −λ(t)Eθ [x̄(t)|F Y

t ],

where, λ is a deterministic function such that λ(T ) = 1, and identifying the coeffi-
cients, we find that λ satisfies the risk-sensitive Riccati equation in (44). Moreover,

q21(t) = −σλ(t), q22(t) = −αλ(t).

By uniqueness of the solution of the risk-sensitive Riccati equation in (44), it follows
that λ = γ . Therefore,

Eθ [p2(t)|F Y
t ] = −γ (t)Eθ [x̄(t)|F Y

t ], q21(t) = −σγ (t), q22(t) = −αγ (t).

Summing up: the optimal control of the LQ-problem (41) is

ū(t) = −bγ (t)Eθ [x̄(t)|F Y
t ], (48)

where, γ solves the risk-sensitive Riccati equation

γ̇ (t) + 2(c + αβ)γ (t) + (θ(σ 2 + α2) − b2)γ 2(t) = 0, γ (T ) = 1. (49)

The optimal dynamics solves the linear SDE

dx̄(t) =
(

cx̄(t) − b2γ (t)Eθ [x̄(t)|F Y
t ]
)

dt + σdWt + αdYt , x̄(0) = x0, (50)

and the filter πt (x̄) := Eθ [x̄(t)|F Y
t ] is solution of the SDE on (Ω,F , lF, lPθ ):

πt (x̄) = x0 +
∫ t

0
(c − b2γ (s))πs(x̄)ds +

∫ t

0

(
α + (θαγ (t) + β)

[
πs(x̄2) − π2

s (x̄)
])

dȲ θ
s ,

where, Ȳ θ
t = Yt −

∫ t
0 (θαγ (s)+β)πs(x̄)ds is an (Ω,F , lFY , lPθ )-Brownian motion.
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Abstract According to theoretical arguments, a properly designed emission trad-
ing system should help reaching pollution reduction at low social burden based on
the theoretical work of environmental economists, cap-and-trade systems are put
into operations all over the world. However, the practice from emissions trading
yields a real stress test for the underlying theory and reveals a number of its weak
points. This paper aims to fill the gap between general welfare concepts underly-
ing understanding of liberalized market and specific issues of real-world emission
market operation. In our work, we present a novel technique to analyze emission
market equilibrium in order to address diverse questions in the setting of risk-averse
market players. Our contribution significantly upgrades all existing models in this
field, which neglect risk-aversion aspects at the cost of having a wide range of sin-
gularities in their conclusions, now resolved in our approach. Furthermore, we show
both how the architecture of an environmental market can be optimized under the
realistic assumption of risk-aversion.
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1 Practice of the EU ETS

A properly designed emission trading system should help reducing pollution reduc-
tion with low social burden.

In this paper we understand it as a burden to the society, caused by energy pro-
duction. We assume that it can be measured in monetary units including both, the
overall production costs and an appropriately quantified environmental impact of
energy production.

Originated from this idea, and based on the theoretical work of environmental
economists, cap-and-trade systems have been put into operations all over the world.

The problem of design optimization for emission trading schemes has been
addressed in [4]. This work shows that, in general, a traditional architecture of
environmental markets is far from being optimal, meaning that appropriate alter-
ations may provide significant improvements in emission reduction performances at
lower social burden. Such improvements can be achieved by extending a regulatory
framework, which we address below as extended scheme.

Let us explain this.
In the traditional scheme, it is assumed that the administrator allocates a pre-

determined allowance number to the market and sets a compliance date at which a
penalty must be paid for each unit of pollutant not covered by allowances. Hence,
the policy maker can exercise merely two controls, the so-called cap (total amount of
allowances allocated to themarket) and the penalty size. In theory, a desired pollution
reduction can be reached at some costs for the society by an appropriate choice of
these parameters. However, in practice, there is not much flexibility, since the cap
is motivated politically and the penalty is determined to provide enough incentives
for the required pollution reduction. As a result, the performance of the traditional
scheme could be very poor in terms of social burden for the achieved reduction.

In an extended scheme, the policy maker has much more influence. The regulator
can tax or subsidize the production in terms of monetary units or in terms of emission
certificates. These additional controls can be implemented in a technology-sensitive
way. Doing so, the merit order of technologies can be changed significantly. On this
account, emission savings, triggered by certificate prices, also become controllable.
The work [4] illustrates that, by an appropriate choice of additional controls, the
market can reach a targeted pollution reduction at much lower social burden.

Although these theoretical findings are sound, intuitive, and practically important,
the optimization of environmentalmarket architectures could not be brought to a level
suitable for practical implementation. There are two reasons for this.

(1) The existing approach [4] is based on the unrealistic assumption that each of
the market players is non-risk-averse in the sense that it realizes a linear utility
function. This assumption is not conform with the modern view and creates
a number of singularities in the model. A priori, it is not even clear which
conclusions of this work do hold under risk-aversion.
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(2) Although the practical advantage of such market design optimization is obvi-
ous, policy makers hardly can use the theoretical findings of [4], because their
quantitative assessment requires optimal control techniques whose numerics is
difficult.

In this work, we address both issues, namely:

(1′) We assume a non-linear utility function for market agents and show several
properties of the market equilibrium which make market design optimization
possible. With this, our model is brought in line with standard economic theory
and is appropriate for further developments. We also emphasize that, to capture
risk-aversion, a completely new argumentation has been developed.

(2′) We provide our study in a one-period setting. Being accessible without optimal
control techniques, the results become evident and potentially usable for a broad
audience, including practitioners and decision makers.

The paper is organized as follows. Section2 discusses the literature developed
concerning markets of emission certificates. In Sect. 3 we introduce our equilibrium
model. Section4 deepens the analysis of the equilibrium. Section5 studies the social
optimality of the equilibrium and proves that it corresponds to the overall minimum-
cost policy under a risk-neutral probability distribution. Section6 discusses some
perspectives of optimal market design. The final Sect. 7 provides conclusions.

2 Theory of Marketable Pollution Rights

The efficiency properties of environmental markets have been first addressed in
[6, 10], who first advocated the principle that the “environment” is a good that
can not be “consumed” for free. In particular, Montgomery describes a system of
tradable certificates issued by a public authority coupled with fixing a cap to the total
emissions, and, doing so, to force polluting companies paying proportionally to the
environmental damage generated by their production activity. An emission certificate
is representative of the permission to emit a given quantity of pollutant without being
penalized. Companies with low environmental impact can sell excess certificates and
the resulting revenue represents a general incentive to reduce pollution. Montgomery
shows that the equilibrium price for a certificate must be driven by the cost of the
most virtuous company to abate its marginal unit of pollutant. The key result of his
analysis is that such a system guarantees that the reduction of pollution is distributed
among the companies efficiently, that is minimizing their total costs.

After the seminal analysis of Montgomery, which is based on a deterministic and
static model, the following research has taken the direction to the stochastic and
multi-period settings. A literature review on the research which has developed after
Montgomery’swork can be found in [14]. A common result shared by all the analyses
developed so far is that cap-and-trade systems indeed represent themost efficient way
to reduce and control the environmental damage generated by the industrial activity.
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Let us mention the contributions which are directly related to our analysis. A
majority of relatively recent papers [1–5, 11, 13] are related to equilibrium models,
where risk-neutral individuals optimize the expected value of their profit or cost
function. The hypothesis of risk-neutrality of the agents is gracefully assumed in
those contributions, since it significantly simplifies the proof that environmental
markets are efficient. Some papers have considered explicitly risk-averse decision
makers. One of them, [9], develops a pricingmodel for the spot and derivative pricing
of environmental certificates in a single-period economy. In [7], the authors also
develop a (multi-period) equilibrium pricing model for contingent claims depending
on environmental certificates, where risk-averse agentsmaximize the expected utility
of their profit function.

3 One-Period Equilibrium of Emission Market

To explain the emission price mechanism, we present a market model where a finite
number of agents, indexed by the set I , is confronted with abatement of pollution.
The key assumptions are:

• We consider a trading scheme in isolation, within a time horizon [0, T ], without
credit transfer from and to other markets. That is, unused emission allowances
expire worthless.

• There is no production strategy adjustment within the compliance period [0, T ].
This means that the agents schedule their production plans for the entire period
[0, T ] at the beginning. Allowances can be traded twice: at time t = 0 at the
beginning and at time t = T immediately before emission reports are surrendered
to the regulator.

• For the sake of simplicity, we set the interest rate to zero.
• Each agent decides how much energy to produce and how many allowances to
trade.

Note that this one-period model is best suited for our needs to explain the core
mechanism of market operation and to discuss its properties. A generalization to a
multi-period framework is possible, but it gives no additional insights related to the
goal of this work.

The i th agent is specified by the set Ξ i of feasible production plans for the
generation of energy (electricity) within one time period from t = 0 to t = T.
Further, we consider the following mappings, defined on Ξ i , for each agent i ∈ I :

ξ i
0 �→ V i

0 (ξ
i
0), Ci

0(ξ
i
0), Ei

T (ξ i
0),

with the interpretation that for production plan ξ i
0 ∈ Ξ i , the values V i

0 (ξ
i
0), Ci

0(ξ
i
0),

and Ei
0(ξ

i
0) stand for the total production volume, the total production costs, and the

total carbon dioxide emission, respectively.
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Production: At time t = 0, each agent i ∈ I faces the energy demand D0 ∈ R+ of
the entire market, the realized electricity price P0 ∈ R+, and the emission allowance
price A0 ∈ R+. Based on this information, each agent decides on its production plan
ξ i
0 ∈ Ξ i , where Ξ i is the set of feasible production plans. Given ξ i

0 ∈ Ξ i , at time T ,
agent realizes the total production costs,

Ci
0(ξ

i
0) ∈ R, (1)

the production volume

V i
0 (ξ

i
0) ∈ R, (2)

and the total revenue, P0V i
0 (ξ

i
0), from the electricity sold.

Allowance allocation: We assume that the administrator allocates a pre-determined
number γ i

0 ∈ [0,∞[ of allowances to each agent i .

So far, we have introduced deterministic quantities. Let us now turn to uncertainties
modeled by random variables on the probability space (Ω,F ,P).

Emission from production: Following the production plan ξ i
0, the total pollution of

agent i is expressed as Ei
T (ξ i

0).

Remark (Randomness in demand and production) The question of randomness in
energy demand and production deserves a careful argumentation. The reader may
be confused by the assumption that in our one-period modeling, the time unit may
correspond to the entire compliance period (which suggests a rather long time), such
that our assumption on deterministic demand and unflexible production schedule
appears unrealistic. To ease understanding, one shall imagine an artificial emission
market model for short time period, say one day until compliance. The point of our
proposal is that the elements, the arguments and the techniques required to define the
optimal production plan on a daily basis are the same of those required to identify
the plan ξ i

0 over a generalized period [0, T ]. The value of this toy model is that it
allows a straight-forward generalization to the multi-period situation. In our one-
period modeling, we assume that the nominal energy demand D0 is non-random
and is observed at the time t = 0 when production decisions are made. We also
suppose that the production plan ξ i

0 of each agent is deterministically scheduled at
time t = 0. This view is in line with the current practice in energy business, where
a nominal energy production volume along with a detailed schedule of production
units is planed non-randomly in advance. Of course, the realized energy consump-
tion deviates from what has been predicted. However, based on our experience in
energymarkets, it does not make sense to include this random factor into equilibrium
modeling, since all decisions are made on the basis of a non-random demand antici-
pation and non-random customer’s requests for energy delivery. To maintain energy
consumption fluctuations in real-time, diverse auxiliary mechanisms are used. They
can be considered as purely technical measures (security of supply by reserve mar-
gins). For this reason, we believe that it is natural to assume that, although the energy
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demand D0 is known and production plan ξ i
0 is deterministically scheduled at time

t = 0, the total emission, associated with this production can not be predicted with
certainty at time t = 0when the production and trading decisions aremade. In fact, in
practice the producers have to manage diverse source of randomness while following
production, (demand fluctuation, outages of generators) which yields usually small
but unpredictable deviations N i from the nominal emission Ei

0(ξ
i
0) associated with

production plan ξ i
0. Thus, let us agree that Ei

T (ξ i
0) is modeled as a random variable

given as a sum
Ei

T (ξ i
0) = Ei

0(ξ
i
0) + N i , ξ i

0 ∈ Ξ i , i ∈ I (3)

with deterministic function

ξ i
0 : Ξ i → R, ξ i

0 �→ Ei
0(ξ

i
0)

describing the dependence of the nominal emission on the production plan and a
random variable N i standing for the deviation from the nominal emission. Note that
the random emission Ei

T (ξ i
0) will be the only source of uncertainty in our model.

To ease our analysis, let us agree on the natural assumption that for production
schedules ξ i

0 ∈ Ξi i ∈ I the total market emission
∑

i∈I Ei
T (ξ i

0) possesses no point
masses:

P(
∑
i∈I

Ei
T (ξ i

0) = z) = 0 for all z ∈ R. (4)

Allowance trading: At times t = 0, T the allowance permits can be exchanged
between agents by trading at the prices A0 and AT , respectively. Denote by ϑ i

0, ϑ
i
T

the change at times t = 0, T of the allowance number held by agent i ∈ I . Such
trading yields a revenue, which is

− ϑ i
0A0 − ϑ i

T AT . (5)

Note that ϑ i
0 and A0 are deterministic, whereas ϑ i

T and AT are modeled as random
variables. Observe that sales are described by negative values of ϑ i

0, ϑ
i
T , therefore

(5) is non-negative random variable, if permits are sold.

Penalty payment: As mentioned above, the penalty π ∈ [0,+∞[ must be paid at
maturity T for each unit of pollutant not covered by allowances. Given the changes
at times t = 0, T due to allowance trading, i.e. ϑ i

0 and ϑ i
T , the production ξ i

0, and
the total number γ i

0 of allowances allocated to agent i ∈ I , the loss of agent i due to
potential penalty payment is given by

π(Ei
0(ξ

i
T ) − ϑ i

0 − ϑ i
T − γ i

0)
+. (6)

Individual profit: In view of (1)–(6), the profit of agent i ∈ I following trading and
production strategy (ϑ i , ξ i ) = (ϑ i

0, ϑ
i
T , ξ i

0) depends on the market prices (A, P) =
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(A0, AT , P0) for allowances and energy and is given by

L A,P,i (ϑ i , ξ i ) = −ϑ i
0A0 − ϑ i

T AT − Ci
0(ξ

i
0) + P0V i

0 (ξ
i
0)

−π(Ei
T (ξ i

0) − ϑ i
0 − ϑ i

T − γ i
0)

+.

Note that the individual profit could be negative.

Risk-aversion and rational behavior: Suppose that the risk attitudes of each agent
i ∈ I are described by a pre-specified strictly increasing utility functionUi : R → R.
With this, the rational behavior of the agent i is targeted on the maximization of the
functional

(ϑ i , ξ i ) �→ E(Ui (L A,P,i (ϑ i , ξ i )))

over all the possible trading and production strategies (ϑ i , ξ i ) = (ϑ i
0, ϑ

i
T , ξ i

0).

Energy demand: Suppose that at time t = 0 all agents observe the total energy
demand, which is described by D0 ∈ R+. Let us agree that the demand must be
covered.

Market equilibrium: Following standard apprehension, a realistic market state is
described by the so-called equilibrium—a situation where all allowance prices, all
allowance positions, and all production decisions are such that each agent is satisfied
by its own policy and, at the same time, natural restrictions are fulfilled.

Definition 1 Given energy demand D0 ∈ R+, the prices (A∗, P∗) = (A∗
0, A∗

T ,

P∗
0 ) are called equilibrium prices, if, for each agent i ∈ I , there exists a strategy

(ϑ i∗, ξ i∗) = (ϑ i∗
0 , ϑ i∗

T , ξ i∗
0 ) such that:

(i) the energy demand is covered

∑
i∈I

V i
0 (ξ

i∗
0 ) = D0,

(ii) the emission certificates are in zero net supply

∑
i∈I

ϑ i∗
t = 0 almost surely for t = 0 and t = T, (7)

(iii) each agent i ∈ I is satisfied by its own policy in the sense that

E(Ui (L A∗,P∗,i (ϑ i∗, ξ i∗))) ≥ E(Ui (L A∗,P∗,i (ϑ i , ξ i ))) (8)

holds for any alternative strategy (ϑ i , ξ i ).

The main objective of this section is to prove that in the present model the electricity
price formation is determined by the usual merit order arguments, where the effect of
emission regulation causes emission allowance prices to enter the costs of production
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at the specific emission rate. This issue can be considered as the core mechanism of
any cap-and-trade system, since including pollution costs into final product prices
causes a change of the merit order of production technologies towards a cleaner
production. To formulate this result, let us elaborate on the opportunity costs and
introduce additional definitions.

Opportunity costs: In the economic literature, they stand for the forgone benefit
from using a certain strategy compared to the next best alternative. For example, the
opportunity costs of farming own land is the amount which could be obtained by
renting the land to someone else. Let us explain how the opportunity costs necessarily
lead to windfall profits.

When facing energy (electricity) generation, producers consider a profit, which
couldbepotentially realizedwhen, insteadof production, unused emission allowances
were sold to the market. For instance, if the price of the emission certificates is 12
e per tonne of CO2 and the production of one Megawatt-hour (MWh) emits two
tonnes of CO2 (say, using a coal-fired steam turbine), then the producer must decide
between two strategies which are equivalent in terms of their emission certificate
balance:

• produce and sell one MWh to the market,
• do not produce this MWh and sell allowances covering two tonnes of CO2.

In this situation, the opportunity costs of producing one MWh are 2 × 12 = 24 e.
Obviously, the agent produces energy only if the first strategy is at least as profitable
as the second one. Thereby, both the production and the opportunity costs must be
considered in the formation of the electricity market price. Clearly, if the production
costs of electricity are 30 e per MWh, then the energy will be produced only if its
price covers both the production and the opportunity costs. Thus electricity can only
be delivered at a price exceeding 30+ 2× 12 = 54 e. That is, in order to trigger the
electricity production, the opportunity costs must be added to the production costs.

In the scientific community, this phenomenon is well-known under the name of
cost-pass-through. An empirical analysis, see [12] confirms that the strategy of cost-
pass-through is currently followed by the European energy producers. Furthermore,
the detailed investigation of mathematical market models shows that the cost-pass-
through is the only possible strategy in the so-called equilibrium state of the market.
This can be interpreted as follows: when behaving optimally, the energy producers
must pass the allowance price on to the consumers. Note that the producer obtains a
windfall profit of 24 e in anycase: if electricity price is higher than 54, by passing-
through the price of the certificates (that he has received for free); if the price is less
than 54, by selling 2 certificates at 12 e on the emission market.

More importantly, it turns out that the cost-pass-through is nothing but the core
mechanism responsible for the emission savings. Namely, due to the opportunity
costs, clean technologies appear cheaper than emission-intense production strategies.
For instance, the alternative generation technology represented by a gas turbine,
which yields energy at the price of 40 e and emits only one tonne of CO2, hardly
competes with a coal-fired steam turbine under generic regime (without emissions
regulation). Namely, if there is no regulatory framework, then the coal-fired steam
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turbine is scheduled first and the gas turbine has to wait until the energy demand
can not be covered by coal-fired steam technologies. However, given an emission
regulation, the opposite is true: say, if the allowance price is equal to 12 e per tonne
of CO2 as above, then the gas technology appears cheaper, operating at full costs
of 40 + 1 × 12 = 52 e. Thus, the gas turbine is scheduled first, followed by the
coal-fired steam turbine, which runs only if the installed gas turbine capacity does
not cover the energy demand.

In the next section, we will show that the only rational behavior in equilibrium
is to pass the opportunity costs on to the consumers. For this, we require additional
notions.

Definition 2 Consider a given energy amount d ∈ R+ and a given allowance price
a ∈ R+.
(i) Introduce the individual opportunity merit order costs of agent i ∈ I as

C i (d, a) = inf{Ci
0(ξ

i
0) + aEi

0(ξ
i
0) : ξ i

0 ∈ Ξ i , V i
0 (ξ

i
0) ≥ d}.

An individual production plan ξ i
0 ∈ Ξ i is called conform with opportunity costs at

emission price a ∈ R+ if

C i (V i
0 (ξ

i
0), a) = Ci

0(ξ
i
0) + aEi

0(ξ
i
0).

that is to say ξ i
0 is confirm if it minimizes the production and emission costs among

all the alternative plans offering the same generation and given emission price a.
(ii) Introduce the cumulative opportunity merit order costs as

C (d, a) = inf{
∑
i∈I

(Ci
0(ξ

i
0) + aEi

0(ξ
i
0)) : ξ i

0 ∈ Ξ i , i ∈ I,
∑
i∈I

V i
0 (ξ

i
0) ≥ d}.

The production plans ξ i
0 ∈ Ξ i , i ∈ I , are called conform with opportunity costs at

emission price a ∈ R+ if

C (
∑
i∈I

V i
0 (ξ

i
0), a) =

∑
i∈I

(
Ci
0(ξ

i
0) + aEi

0(ξ
i
0)

)
.

(iii) Any price p ∈ R+ with the property that

− C (d̃, a) + pd̃ ≤ −C (d, a) + pd for all d̃ ∈ R+ (9)

is referred to as an opportunity merit order electricity price at (d, a) and it can be
understand as the marginal cost for the entire generation sector given the level of
demand d and emission price a.
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4 Properties of Equilibrium

With these definitions, we now show that, within any equilibrium, the production
plans are always conform with opportunity costs. Furthermore, the equilibrium elec-
tricity price is always an opportunity merit order price.

Proposition 1 Given energy demand D0, let (A∗, P∗) = (A∗
0, A∗

T , P∗
0 ) be the equi-

librium prices with the corresponding strategies (ϑ i∗, ξ i∗), i ∈ I , then the following
points hold:
(i) For each agent i ∈ I , the individual production plan ξ i∗

0 is conform with oppor-
tunity costs at emission price A∗

0:

C i (V i
0 (ξ

i∗
0 ), A∗

0) = Ci
0(ξ

i∗
0 ) + A∗

0Ei
0(ξ

i∗
0 ). (10)

(ii) The market production schedule ξ i∗
0 , i ∈ I , is conform with opportunity costs at

emission price A∗
0:

C (
∑
i∈I

V i
0 (ξ

i∗
0 ), A∗

0) =
∑
i∈I

(Ci
0(ξ

i∗
0 ) + A∗

0Ei
0(ξ

i∗
0 )). (11)

(iii) P∗
0 is an opportunity merit order price at (

∑
i∈I V i

0 (ξ
i∗
0 ), A∗

0).

The direct economic consequence of this mathematical result is that each individual
will organize its own production strategy by scheduling power production units in
an increasing price order. Thereby their variable costs (which include the opportu-
nity costs of using the emission certificates) are considered. Within such a schedule,
a demand d is satisfied by gradually turning on the most economic plants, until a
generation level matching d is reached. Furthermore, the above proposition states
that such schedule is reached not only on the individual level, but also for the entire
market.Namely, anoverall demandd is satisfiedbygradually turningon themost eco-
nomic plants until reaching a production which covers the demand d. Such aggregate
ordering is usually called merit order, for this reason we call C i (d, a) and C (d, a)

(agent’s i) opportunity merit order costs and cumulative opportunity merit order
costs, respectively.

It is worth noticing that the opportunity merit order electricity price as defined in
(9) is equal to the marginal cost of generating electricity when the level of demand is
d given certificate price a. Coupling this property with the merit order production in
the electricity sector, implies that the most expensive production in the plan ξ i

0 will
determine the marginal cost at demand level d and emission price a. The opportunity
merit order electricity price at (d, a) is defined as the lowest price, which is able to
trigger the required production level.

Proof (i) Consider the equilibrium strategy (ϑ i∗
0 , ξ i∗

0 ) of agent i ∈ I. Assume that the
agent deviates from this strategy following an alternative production plan ξ i

0 ∈ Ξ i.
However, to keep the same emission credit balance, the difference Ei

0(ξ
i
0)− Ei

0(ξ
i∗
0 )
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is traded at the market in addition to ϑ i∗
0 . That is, we change the equilibrium trading

strategy (ϑ i∗
0 , ϑ i∗

T ) to an alternative trading strategy (ϑ i
0, ϑ

i
T ) given by

ϑ i
0 = ϑ i∗

0 + Ei
0(ξ

i
0) − Ei

0(ξ
i∗
0 ), ϑ i

T = ϑ i∗
T .

Note that we have changed only the initial position, from ϑ i∗
0 to ϑ i

0, whereas the
final position is the same ϑ i

T = ϑ i∗
T . A direct calculation shows that the profit of this

alternative strategy (ϑ i , ξ i ) = (ϑ i
0, ϑ

i
T , ξ i

0) can be written as

L A∗,P∗,i (ϑ i , ξ i ) = L A∗,P∗,i (ϑ i∗, ξ i∗) + R(ξ i
0, ξ

i∗
0 ),

i.e. it differs form the original profit L A∗,P∗,i (ϑ i∗, ξ i∗) by the amount

R(ξ i
0, ξ

i∗
0 ) = P∗

0 (V i
0 (ξ

i
0)− V i

0 (ξ
i∗
0 ))+ (Ci

0(ξ
i∗
0 )−Ci

0(ξ
i
0))+ A∗

0(Ei
0(ξ

i∗
0 )− Ei

0(ξ
i
0)).

Note that R(ξ i
0, ξ

i∗
0 ) can not be positive, since otherwise

L A∗,P∗,i (ϑ i , ξ i ) > L A∗,P∗,i (ϑ i∗, ξ i∗)

would yield

E(Ui (L A∗,P∗,i (ϑ i , ξ i ))) > E(Ui (L A∗,P∗,i (ϑ i∗, ξ i∗))),

thus contradicting the optimality of the equilibrium strategy (ϑ i∗, ξ i∗) (see (8)). Now,
from R(ξ i

0, ξ
i∗
0 ) ≤ 0 we conclude that

− Ci
0(ξ

i∗
0 ) − A∗

0Ei
0(ξ

i∗
0 ) + P∗

0 V i
0 (ξ i∗

0 ) ≥ −Ci
0(ξ

i
0) − A∗

0Ei
0(ξ

i
0) + P∗

0 V i
0 (ξ i

0) (12)

for each ξ i
0 ∈ Ξ i . With this, we conclude the desired assertion (10) as follows:

any alternative production plan ξ i
0 which produces an energy amount V i

0 (ξ
i
0) at least

equal to V i
0 (ξ

i∗
0 ) must satisfy

Ci
0(ξ

i∗
0 ) + A∗

0Ei
0(ξ

i∗
0 ) ≤ Ci

0(ξ
i
0) + A∗

0Ei
0(ξ

i
0).

Thus,

Ci
0(ξ

i∗
0 ) + A∗

0Ei
0(ξ

i∗
0 ) = inf{Ci

0(ξ
i
0) + A∗

0Ei
0(ξ

i
0) : ξ i

0 ∈ Ξ i , V i
0 (ξ

i
0) ≥ V i

0 (ξ
i∗
0 )}.

(ii) Summing up (12) over i ∈ I , yields, for arbitrary choices of ξ i
0 ∈ Ξ i , i ∈ I ,
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−
∑
i∈I

(
Ci
0(ξ

i∗
0 ) + A∗

0Ei
0(ξ

i∗
0 )

)
+ P∗

0

∑
i∈I

V i
0 (ξ

i∗
0 )

≥ −
∑
i∈I

(
Ci
0(ξ

i
0) + A∗

0Ei
0(ξ

i
0)

)
+ P∗

0

∑
i∈I

V i
0 (ξ

i
0). (13)

From this, we conclude that, for any choice ξ i
0 ∈ Ξ i , i ∈ I , of production plans

satisfying

∑
i∈I

V i
0 (ξ

i
0) ≥

∑
i∈I

V i
0 (ξ

i∗
0 ),

it holds

∑
i∈I

(
Ci
0(ξ

i∗
0 ) + A∗

0Ei
0(ξ

i∗
0 )

)
≤

∑
i∈I

(
Ci
0(ξ

i
0) + A∗

0Ei
0(ξ

i
0)

)
,

implying the desired assertion (11).
(iii) We need to prove that, for any d̃ ∈ R+,

−C (d̃, A∗
0) + P∗

0 d̃ ≤ −C (
∑
i∈I

V i
0 (ξ

i∗
0 ), A∗

0) + P∗
0

∑
i∈I

V i
0 (ξ

i∗
0 ).

For each choice of production strategies ξ i
0 ∈ Ξ i , i ∈ I , estimate (13), combined

with (11), gives

−C (
∑
i∈I

V i
0 (ξ

i∗
0 ), A∗

0) + P∗
0

∑
i∈I

V i
0 (ξ

i∗
0 )

≥ −
∑
i∈I

(
Ci
0(ξ

i
0) + A∗

0Ei
0(ξ

i
0)

)
+ P∗

0

∑
i∈I

V i
0 (ξ

i
0).

In particular, if the strategies are chosen from

{(ξ i
0)i∈I : ξ i

0 ∈ Ξ i , i ∈ I,
∑
i∈I

V i
0 (ξ

i
0) ≥ d̃},

then it holds that

−C (
∑
i∈I

V i
0 (ξ

i∗
0 ), A∗

0) + P∗
0

∑
i∈I

V i
0 (ξ

i∗
0 ) ≥ −

∑
i∈I

(
Ci
0(ξ

i
0) + A∗

0Ei
0(ξ

i
0)

)
+ P∗

0 d̃.

Passing on the right-hand side of this inequality to

C (d̃, A∗
0) := inf{

∑
i∈I

(Ci
0(ξ

i
0) + A∗

0Ei
0(ξ

i
0)) : ξ i

0 ∈ Ξ i , i ∈ I,
∑
i∈I

V i
0 (ξ

i
0) ≥ d̃},
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yields the desired assertion

−C (
∑
i∈I

V i
0 (ξ

i∗
0 ), A∗

0) + P∗
0

∑
i∈I

V i
0 (ξ

i∗
0 ) ≥ −C (d̃, A∗

0) + P∗
0 d̃.

Remark The statement (ii) of the above proposition characterizes equilibrium in
terms of aggregated quantities. Once the equilibrium is reached, the production
schedule represents the cheapest way to satisfy the demand. From this perspective,
the reader may conclude that the equilibrium production schedule can be obtained
as a production plan which minimizes the overall costs among those which cover
a given demand, indicating that only aggregated quantities do influence the equi-
librium. However, we shall emphasize that the equilibrium still heavily depends on
individual ingredients (such as initial endowments and risk aversion), which enter
through the initial allowance price.

Now, we show another natural property of the equilibrium allowance prices. It
turns out that there is no arbitrage allowance trading and that the terminal allowance
price is digital.

Proposition 2 Given energy demand D0, let (A∗, P∗) = (A∗
0, A∗

T , P∗
0 ) be the equi-

librium prices with the corresponding strategies (ϑ i∗, ξ i∗), i ∈ I ,. It holds:
(i) There exists a risk-neutral measure Q

∗ ∼ P such that A∗ = (A∗
0, A∗

T ) follows a
martingale with respect to Q

∗.
(ii) The terminal allowance price in equilibrium is digital

A∗
T = π1{∑i∈I Ei

T (ξ i∗
0 )−γ0≥0}. (14)

Proof (i) According to the first fundamental theorem of asset pricing, see [8] in
discrete-time setting, the existence of the so-called equivalent martingale measure
satisfying A∗

0 = E
Q

∗
(AT ) is ensured by the absence of arbitrage. Fortunately, in

our framework, the absence of arbitrage follows from the equilibrium notion, as we
show next.We thus conclude (i) of the above theorem and it remains to verify that the
equilibrium rules out all arbitrage opportunities for allowance trading. Let us follow
an indirect proof, assuming that ν0 is an arbitrage allowance trading, meaning that

P(ν0(A∗
T − A∗

0) ≥ 0) = 1, P(ν0(A∗
T − A∗

0) > 0) > 0. (15)

Based on this we obtain a contradiction by showing that each agent i can change its
own policy (ϑ i∗, ξ i∗) to an improved strategy (ϑ̃ i , ξ i∗) satisfying

E

(
Ui

(
L A∗,i (ϑ i∗, ξ i∗)

))
< E

(
Ui (L A∗,i (ϑ̃ i , ξ i∗))

)
. (16)

The improvement is achieved by incorporating arbitrage ν0 into the allowance trading
of each agent i as follows:

ϑ̃ i
0 := ϑ i∗

0 + ν0, ϑ̃ i
T := ϑ i∗

T − ν0.



278 P. Falbo and J. Hinz

Indeed, the revenue improvement from allowance trading is

−ϑ̃ i
0A∗

0 − ϑ̃ i
T A∗

T = −ϑ i
0A∗

0 − ϑ i
T A∗

T + ν0(A∗
T − A∗

0),

which we combine with (15) to see that

P

(
L A,i (ϑ i∗, ξ i∗) ≤ L A,i (ϑ̃ i , ξ i∗)

)
= 1, P

(
L A,i (ϑ i∗, ξ i ) < L A,i (ϑ̃ i , ξ i∗)

)
> 0,

which implies (16), therefore contradicting the optimality of (ϑ i∗, ξ i∗).
(ii) From equilibrium property (8), it follows that for almost eachω ∈ Ω the terminal
allowance position adjustment ϑT (ω) is a maximizer on R to

z �→ −z A∗
T (ω) − π(Ei

T (ξ i∗
0 )(ω) − ϑ i∗

0 − γ i
0 − z)+. (17)

Note that a maximizer of this mapping exists only if 0 ≤ A∗
T (ω) ≤ π . That is, the

terminal allowance price in equilibrium must be within the interval A∗
T ∈ [0, π ]

almost surely. Let us show now that the price actually attains only boundary values
almost surely, i.e.

A∗
T ∈ {0, π} almost surely. (18)

Suppose that an intermediate value A∗
T (ω) ∈]0, π [ is taken, then the unique

maximizer of function (17) is attained on Ei
T (ξ i∗

T )(ω) − ϑ i∗
0 − γ i

0 . This implies that
ϑ i∗

T (ω) = Ei
T (ξ i∗

0 )(ω) − ϑ i∗
0 − γ i

0 holds for each i ∈ I , and a summation over i
yields

∑
i∈I

ϑ i∗
T (ω) =

∑
i∈I

(
Ei

T (ξ i∗
0 )(ω) − ϑ i∗

0 − γ i
0

)
=

∑
i∈I

Ei
T (ξ i∗

0 )(ω) − γ0.

Note that equilibrium property (7) ensures that the random variable on the left-hand
side of the above equality is zero almost surely. Thus, the inclusion

{ω :A∗
T ∈]0, π [} ⊆ {ω :

∑
i∈I

Ei
T (ξ i∗

0 ) − γ0 = 0} (19)

holds almost surely. Because of (4), the probability of the event on the right-hand
side of the above inclusion is zero, which shows (18).

If A∗
T (ω) = 0, then a maximizer ϑ i∗

T (ω) to the function (17) is attained on
[Ei

T (ξ i∗
0 )(ω) − ϑ i∗

0 − γ i
0 ,+∞[. Hence

{ω :A∗
T = 0} ⊆ {ω :Ei

T (ξ i∗
0 ) − ϑ i∗

0 − γ i
0 ≤ ϑ i∗

T }

holds almost surely for each i ∈ I , which implies that



Risk Aversion in Modeling of Cap-and-Trade Mechanism … 279

{ω :A∗
T = 0} ⊆ {ω :

∑
i∈I

Ei
T (ξ i∗

0 ) − γ0 ≤
∑
i∈I

ϑ i∗
T }

holds almost surely. Now, because of the equilibrium property (7), we obtain the
almost sure inclusion

{ω :A∗
T = 0} ⊆ {ω :

∑
i∈I

Ei
T (ξ i∗

0 ) − γ0 ≤ 0}.

Since the probability of A∗
T ∈]0, π [ is zero (19), we conclude for the complementary

event that
{ω :A∗

T = π} ⊇ {ω :
∑
i∈I

Ei
T (ξ i∗

0 ) − γ0 ≥ 0} (20)

holds almost surely. Let us show the opposite inclusion. If A∗
T (ω) = π , then a

maximizer ϑ i∗
T (ω) to function (17) is attained on ] − ∞, Ei

T (ξ i∗
0 )(ω) − ϑ i∗

0 − γ i
0 ].

Hence,

{ω :A∗
T = π} ⊆ {Ei

T (ξ i∗
0 ) − ϑ i∗

0 − γ i
0 ≥ ϑ i∗

T }

holds almost surely for each i ∈ I , which implies that

{ω :A∗
T = π} ⊆ {ω :

∑
i∈I

Ei
T (ξ i∗

0 ) − γ0 ≥
∑
i∈I

ϑ i∗
T }

holds almost surely. Now, because of the equilibrium property (7), we obtain

{ω :A∗
T = π} ⊆ {ω :

∑
i∈I

Ei
T (ξ i∗

0 ) − γ0 ≥ 0}. (21)

Finally, combine inclusions (20) and (21) to obtain assertion (14).

5 Social Optimality

To formulate social optimality, we require additional notations. Given production
strategies ξ i

0 ∈ Ξ i , i ∈ I , we denote the overall market production schedule by
ξ0 = (ξ i

0)i∈I and introduce the total production costsC0, the total production volume
V0, and the total carbon dioxide emission ET and the total nominal carbon dioxide
emission, defined by

C0(ξ0) =
∑
i∈I

Ci
0(ξ

i
0), V (ξ0) =

∑
i∈I

V i
0 (ξ i

0), ET (ξ0) =
∑
i∈I

Ei
T (ξ i

0), E0(ξ0) =
∑
i∈I

Ei
0(ξ

i
0).
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Having in mind that C0(ξ0) stands for the overall costs of the production and inter-
preting π(ET (ξ0) − γ0)

+ as a proxy of the environmental impact of the production
schedule ξ0, let us agree that

B(ξ0) = C0(ξ0) + π(ET (ξ0) − γ0)
+

expresses the social burden caused by the overall production plan ξ0 ∈ ×i∈I Ξ
i .

It turns out that the equilibrium strategy minimizes the social burden among all
production strategies which cover a given demand.

Proposition 3 Given energy demand D0, let (A∗, P∗) = (A∗
0, A∗

T , P∗
0 ) be the equi-

librium prices with the corresponding strategies (ϑ i∗, ξ i∗), i ∈ I . Let Q∗ be a
risk-neutral measure whose existence is shown in Proposition 2. Then

EQ
∗

0 (B(ξ∗
0 )) ≤ EQ

∗
0 (B(ξ0)) (22)

holds for each production schedule ξ0 = (ξ i
0)i∈I ∈ ×i∈I Ξ

i which yields at least the
same production volume, V0(ξ0) ≥ V0(ξ

∗
0 ) = D0.

Proof For each convex function f : R → R, x �→ f (x), it holds f (x)+∇ f (x)h ≤
f (x + h), h ∈ R, where ∇ f (x) stands for one of the sub-gradients of f at the
point x . In particular, for convex function f : R → R+, x �→ x+, we obtain
x+ +1{x≥0}h ≤ (x + h)+ for all x, h ∈ R. With the equilibrium production strategy
ξ∗
0 = (ξ i∗

0 )i∈I , we conclude that

(ET (ξ∗
0 ) − γ0)

+ + 1{ET (ξ∗
0 )−γ0≥0}(ET (ξ0) − ET (ξ∗

0 )) ≤ (ET (ξ0) − γ0)
+

holds almost surely for any production strategy ξ0 ∈ ×i∈I Ξ
i . Using our model

assumption (3) we deduce ET (ξ0) − ET (ξ∗
0 ) = E0(ξ0) − E0(ξ

∗
0 ) which gives

(ET (ξ∗
0 ) − γ0)

+ + 1{ET (ξ∗
0 )−γ0≥0}(E0(ξ0) − E0(ξ

∗
0 )) ≤ (ET (ξ0) − γ0)

+.

Calculating the expectations with respect to Q
∗ on both sides and multiplying both

sides by π , we obtain

πEQ
∗ (

(ET (ξ∗
0 ) − γ0)

+) + πEQ
∗ (

1{ET (ξ∗
0 )−γ0≥0}

)
(E0(ξ0) − E0(ξ

∗
0 )) ≤

≤ πEQ
∗ (

(ET (ξ0) − γ0)
+)

.

Using the martingale property and the digital terminal value of the equilibrium
allowance prices shown in Proposition 2, we finally obtain

πEQ
∗ (

(ET (ξ∗
0 ) − γ0)

+) + A∗
0(E0(ξ0) − E0(ξ

∗
0 )) ≤ πEQ

∗ (
(ET (ξ0) − γ0)

+)
.

(23)
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For the case that the strategy ξ0 yields at least the total production volume of the
equilibrium strategy, V0(ξ0) ≥ V0(ξ

∗
0 ), assertion (11) in Proposition 1 yields the

estimate

C0(ξ
∗
0 ) + A∗

0E0(ξ
∗
0 ) ≤ C0(ξ0) + A∗

0E0(ξ0),

which is equivalent to

C0(ξ
∗
0 ) − C0(ξ0) ≤ A∗

0(E0(ξ0) − E0(ξ
∗
0 )).

Now, combining the last inequality with (23), we obtain

C0(ξ
∗
0 ) + πEQ

∗ (
(ET (ξ∗

0 ) − γ0)
+) ≤ C0(ξ0) + πEQ

∗ (
(ET (ξ0) − γ0)

+)
,

which proves our claim (22).

In Proposition 3, the equilibrium production schedule ξ∗
0 was characterized as a

solution to the minimization problem

min{EQ
∗
(B(ξ0)) : ξ0 ∈ ×i∈I Ξ

i , V0(ξ0) ≥ D0}. (24)

Although this fact is about minimization of social burden, it should not be interpreted
as one of the classical welfare results, which typically follow from equilibrium con-
siderations.

An interesting point here is that this type of cost-optimality needs to be taken with
great care: due to the opportunity cost-pass-through, the consumers can not expect
that an (inappropriately designed) cap-and-trade mechanism indeed implements the
cheapest way of emission reduction, from their perspective.

To see this point, remember that the price per unit of electricity under the merit
order system includes the opportunity costs of consuming the emission certificates.
Therefore, given emission price A0 and an overall production schedule ξ0, the con-
sumers pay the costs

∑
i∈I A0Ei (ξ i

0) to switch in the merit order and to reduce
emissions. From a global perspective, this costs stands for a wealth re-distribution.
From the consumer’s perspective, it is associated with a burden.

6 Equilibrium-Like Risk-Neutral Modeling

Another interesting observation from Proposition 3 is that the expectation
E
Q

∗
(B(ξ0)) of the social burden B(ξ0) is minimized with respect to a risk-neutral

measure Q
∗ which differs from the objective measure P. The measure Q

∗ is an
outcome of the equilibrium, and, as such, it heavily depends on the many model
components, for instance on the risk-aversions, on the certificate endowments, and
on the production technologies of the agents. However, it is surprising that, once the
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measure Q∗ is known, other important equilibrium outcomes can be deduced from
aggregated quantities only.

In particular, givenQ∗, the equilibrium production schedule ξ∗
0 can be obtained as

the solution of optimization problem (24). Such solution is determined by aggregated
quantities, since the social burden is by definition B(ξ0) = C0(ξ0) + π(ET (ξ0) −
γ0)

+ and, apart the quantities γ0 and π decided by the authority, it depends only
on technologies present in the market. Having obtained the equilibrium production
schedule ξ∗

0 as the solution of optimization problem (24), the equilibrium allowance
price A∗

0 is calculated applying martingale pricing:

A∗
0 = πEQ

∗
(1{ET (ξ0)−γ0≥0}).

Finally, given the production schedule ξ∗
0 and the allowance price A∗

0, also the elec-
tricity price P∗

0 is determined as themarginal price of themost expensive technology,
which is active in the schedule ξ∗

0 . Note that the opportunity costs must be included
when identifying the most expensive active technology.

Summarizing, we conclude that given Q
∗, merely aggregated market parameters

are needed to obtain ξ∗
0 , A∗

0, and P∗
0 . This observation can be used to establish and to

analyze realistic equilibrium-like emission market models. Such models are needed,
since in real emission trading it is nearly impossible to estimate the equilibrium from
a market model, because the individual parameters are highly undetermined. For
instance, within the EU ETS, there are more than 25, 000 agents, each with a specific
production, its own certificate endowment, and a completely unknown risk-aversion.
On the contrary, the aggregated quantities are well-known, since high-quality market
data on total allowance allocation and electricity production, including capacities,
costs, and emission rates, are available.

In view of this, we suggest an alternative way to estimate the market equilib-
rium based on aggregated quantities and using an exogenously specified proxy for
risk-neutral measure Q∗. This general approach follows the standard methodology
of financial mathematics, which successfully describes the stochastic evolution of
equilibrium prices on financial markets under an appropriately chosen risk-neutral
measure.

6.1 Market Equilibrium Under a Risk-Neutral Measure

Wesketch the followingprogram for equilibrium-typemodeling of emissionmarkets:
(1) Determine a risk-neutral measure Q∗, which corresponds to an equilibrium situ-
ation of the emission market in the sense of (i) of Proposition 2.
(2) Observe that, because of Proposition 3, the equilibrium production schedule ξ∗

0
must be a solution to the deterministic optimization problem
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minimizeC0(ξ0) + πEQ
∗
((ET (ξ0) − γ0)

+)

subject to V0(ξ0) ≥ D0, over ξ0 ∈ ×i∈I Ξ
i .

(25)

To address the problem further, a specification of the space ×i∈I Ξ
i of market pro-

duction strategies along with the functions C0, V0 and ET is required.
(3) Given the equilibrium production schedule, calculate the total production costs
C0(ξ

∗
0 ), the total carbon dioxide emission ET (ξ∗

0 ), and the energy price P∗ to assess
the performance in emission reduction of the current market architecture.

Remark Note that a risk neutral measure is not unique. Clearly, finding a realistic
candidate for the risk-neutral measure Q∗ can be difficult. However, notice that one
merely needs to specify the fluctuations of the non-predictable emissions under a
risk-neutral measure. This distribution can be described in a parameter-dependent
way, which adds flexibility to the model. For instance, having assumed a Gaussian
framework under objectivemeasure andmodeling the density of the risk-neutralmea-
sure in terms of a Girsanov kernel. Given theoretical initial emission price depending
on the parameters of the Girsanov kernel, these parameters shall be adjusted to match
the observed emission prices. Similar techniques have been applied in financial mod-
eling under the framework of implicit model calibration. Being one of the central
questions in quantitative finance, the connection between risk-neutral and objective
measures has been successfully addressed over the recent decades. In view of this
development, modeling from a risk-neutral measure perspective can be based on a
variety of different methods, ranging from benchmark approach, estimation of risk
premia, state price density from portfolio optimization theory, to several econometric
methods for the estimation of the so-called market price of risk.

Finally, the performance of the cap-and-trademechanismcan be examined leveraging
on the dependence of the major economic indicators, i.e. total consumers’ costs
P∗
0 D0, total (producers’) production costsC0(ξ

i∗
0 ), and total carbon dioxide emission

E0(ξ
i∗
0 ), on the controls available to the regulator.

Note that in the standard scheme the regulator controls two key parameters: the
total allowance allocation γ0 and the penalty size π . The performance of regulation
could be assessed in terms of relation between the increase of consumers’ costs versus
the achieved emission reduction. Such analysis may uncover and visualize inappro-
priate market architectures, where unlucky choices of γ0 and π cause consumers
to pay too much, compared to emission savings. Complementary or supplementary
policies can be evaluated at this point next to the cap-and-trade system. In particular,
different forms of subsidies and carbon tax mechanisms can have a strong impact on
the merit order of different technologies.

7 Conclusions

In this paper,we showhowequilibriumanalysis andoptimization of an environmental
market can be carried out under the realistic assumption of risk-aversemarket players.



284 P. Falbo and J. Hinz

This generalization is based on a novel approach. Thereby, we obtain a number of
interesting observations, which allow studying equilibriummarket situations in terms
of aggregated market quantities under a risk-neutral measure. Our findings show
how market design optimization can be achieved incorporating risk-aversion. The
choice to develop our approach in one-period setting, yields explicit results which
constructively contribute to better understand the working principles of financial
instruments and to improve both effectiveness and efficiency of environmental policy.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Exponential Ergodicity
of the Jump-Diffusion CIR Process

Peng Jin, Barbara Rüdiger and Chiraz Trabelsi

Abstract In this paper we study the jump-diffusion CIR process (shorted as JCIR),
which is an extension of the classical CIR model. The jumps of the JCIR are intro-
duced with the help of a pure-jump Lévy process (Jt , t ≥ 0). Under some suitable
conditions on the Lévy measure of (Jt , t ≥ 0), we derive a lower bound for the tran-
sition densities of the JCIR process. We also find some sufficient conditions under
which the function V (x) = x , x ≥ 0, is a Forster-Lyapunov function for the JCIR
process. This allows us to prove that the JCIR process is exponentially ergodic.

Keywords CIR model with jumps · Exponential ergodicity · Forster-Lyapunov
functions · Stochastic differential equations
MSC: 60H10 · 60J60

1 Introduction

The Cox-Ingersoll-Ross model (or CIR model) was introduced in [1] by Cox et al.
in order to describe the random evolution of interest rates. The CIR model captures
many features of the real world interest rates. In particular, the interest rate in the
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mathematical finance, some extensions of the CIR model have been introduced and
studied, see e.g. [2, 5, 15].

In this paper we study an extension of the CIR model including jumps, the so-
called jump-diffusion CIR process (shorted as JCIR). The JCIR process is defined as
the unique strong solution X := (Xt , t ≥ 0) to the following stochastic differential
equation

d Xt = a(θ − Xt )dt + σ
√

Xt dWt + d Jt , X0 ≥ 0, (1)

where a, σ > 0, θ ≥ 0 are constants, (Wt , t ≥ 0) is a 1-dimensional Brownian
motion and (Jt , t ≥ 0) is a pure-jump Lévy process with its Lévy measure ν con-
centrated on (0,∞) and satisfying

∫
(0,∞)

(ξ ∧ 1)ν(dξ) < ∞, (2)

independent of the Brownian motion (Wt , t ≥ 0). The initial value X0 is assumed
to be independent of (Wt , t ≥ 0) and (Jt , t ≥ 0). We assume that all the above
processes are defined on some filtered probability space (Ω,F , (F )t≥0, P). We
remark that the existence and uniqueness of strong solutions to (1) are guaranteed
by [7, Theorem 5.1].

The term a(θ − Xt ) in (1) defines a mean reverting drift pulling the process
towards its long-term value θ with a speed of adjustment equal to a. Since the
diffusion coefficient in the SDE (1) is degenerate at 0 and only positive jumps are
allowed, the JCIR process (Xt , t ≥ 0) stays non-negative if X0 ≥ 0. This fact can be
shown rigorously with the help of comparison theorems for SDEs, for more details
we refer the readers to [7].

The JCIR defined in (1) includes the basic affine jump-diffusion (or BAJD) as a
special case, in which the Lévy process (Jt , t ≥ 0) takes the form of a compound
Poisson process with exponentially distributed jumps. The BAJD was introduced by
Duffie and Gârleanu [2] to describe the dynamics of default intensity. It was also
used in [5, 12] as a short-rate model. Motivated by some applications in finance, the
long-time behavior of the BAJD has been well studied. According to [12, Theorem
3.16] and [10, Proposition 3.1], the BAJD possesses a unique invariant probability
measure,whose distributional propertieswere later investigated in [9, 11].We remark
that the results in [10, 11] are very general and hold for a large class of affine process
with state space R+, where R+ denotes the set of all non-negative real numbers. The
existence and some approximations of the transition densities of the BAJD can be
found in [6]. A closed formula of the transition densities of the BAJD was recently
derived in [9].

In this paper we are interested in two problems concerning the JCIR defined in (1).
The first one is to study the transition density estimates of the JCIR. Our first main
result of this paper is a lower bound on the transition densities of the JCIR. Our idea
to establish the lower bound of the transition densities is as follows. Like the BAJD,
the JCIR is also an affine processes in R+. Roughly speaking, affine processes are
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Markov processes forwhich the logarithmof the characteristic function of the process
is affine with respect to the initial state. Affine processes on the canonical state space
Rm+ × Rn have been investigated in [3, 5, 13, 14]. Based on the exponential-affine
structure of the JCIR, we are able to compute its characteristic function explicitly.
Moreover, this enables us to represent the distribution of the JCIR as the convolution
of two distributions. The first distribution is known and coincideswith the distribution
of the CIR model. However, the second distribution is more complicated. We will
give a sufficient condition such that the second distribution is singular at the point 0.
In this way we derive a lower bound estimate of the transition densities of the JCIR.

The other problem we consider in this paper is the exponential ergodicity of
the JCIR. According to the main results of [10] (see also [12]), the JCIR has a
unique invariant probability measure π , given that some integrability condition on
the Lévy measure of (Jt , t ≥ 0) is satisfied. Under some sharper assumptions we
show in this paper that the convergence of the law of the JCIR process to its invariant
probability measure under the total variation norm is exponentially fast, which is
called the exponential ergodicity. Our method is the same as in [9], namely we show
the existence of a Forster-Lyapunov function and then apply the general framework
of [16–18] to get the exponential ergodicity.

The remainder of this paper is organized as follows. In Sect. 2 we collect some
key facts on the JCIR and in particular derive its characteristic function. In Sect. 3 we
study the characteristic function of the JCIR and prove a lower bound of its transition
densities. In Sect. 4 we show the existence of a Forster-Lyapunov function and the
exponential ergodicity for the JCIR.

2 Preliminaries

In this section we use the exponential-affine structure of the JCIR process to derive
its characteristic functions.

We recall that the JCIR process (Xt , t ≥ 0) is defined to be the solution to (1) and
it depends obviously on its initial value X0. From now on we denote by (X x

t , t ≥ 0)
the JCIR process started from an initial point x ≥ 0, namely

d X x
t = a(θ − X x

t )dt + σ
√

X x
t dWt + d Jt , X x

0 = x . (3)

Since the JCIR process is an affine process, the corresponding characteristic func-
tions of (X x

t , t ≥ 0) is of exponential-affine form:

E
[
eu X x

t
] = eφ(t,u)+xψ(t,u), u ∈ U := {u ∈ C : �u ≤ 0}, (4)
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where �u denotes the real part of u and the functions φ(t, u) and ψ(t, u) in turn are
given as solutions of the generalized Riccati equations

{
∂tφ(t, u) = F

(
ψ(t, u)

)
, φ(0, u) = 0,

∂tψ(t, u) = R
(
ψ(t, u)

)
, ψ(0, u) = u ∈ U ,

(5)

with the functions F and R given by

F(u) = aθu +
∫

(0,∞)

(euξ − 1)ν(dξ),

R(u) = σ 2u2

2
− au.

Solving the system (5) gives φ(t, u) and ψ(t, u) in their explicit forms:

ψ(t, u) = ue−at

1 − σ 2

2a u(1 − e−at )
(6)

and

φ(t, u) = −2aθ

σ 2 log
(
1− σ 2

2a
u(1−e−at )

)+
∫ t

0

∫
(0,∞)

(
eξψ(s,u) −1

)
ν(dξ)ds. (7)

Here the complex-valued logarithmic function log(·) is understood to be its main
branch defined on C \ {0}. For t ≥ 0 and u ∈ U we define

ϕ1(t, u, x) := (
1 − σ 2

2a
u(1 − e−at )

)− 2aθ

σ2 exp
( xue−at

1 − σ 2

2a u(1 − e−at )

)
,

ϕ2(t, u) := exp
( ∫ t

0

∫ ∞

0

(
eξψ(s,u) − 1

)
ν(dξ)ds

)
, (8)

where the complex-valued power function z−2aθ/σ 2 := exp
( − (2aθ/σ 2) log z

)
is

also understood to be its main branch defined on C\{0}. One can notice that ϕ2(t, u)

resembles the characteristic function of a compound Poisson distribution.
It follows from (4), (6) and (7) that the characteristic functions of (X x

t , t ≥ 0) is
given by

E[eu X x
t ] = ϕ1(t, u, x)ϕ2(t, u), u ∈ U , (9)

where ϕ1(t, u, x) and ϕ2(t, u) are defined by (8).
According to the parameters of the JCIR process we look at two special cases:
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2.1 Special Case (i): ν = 0, No Jumps

Notice that the case ν = 0 corresponds to the classical CIR model (Yt , t ≥ 0)
satisfying the following stochastic differential equation

dY x
t = a(θ − Y x

t )dt + σ
√

Y x
t dWt , Y x

0 = x ≥ 0. (10)

It follows from (9) that the characteristic function of (Y x
t , t ≥ 0) coincides with

ϕ1(t, u, x), namely for u ∈ U

E[euY x
t ] = ϕ1(t, u, x). (11)

It is well known that the classical CIR model (Y x
t , t ≥ 0) has transition density

functions f (t, x, y) given by

f (t, x, y) = κe−u−v
( v

u

) q
2

Iq
(
2(uv)

1
2
)

(12)

for t > 0, x > 0 and y ≥ 0, where

κ ≡ 2a

σ 2
(
1 − e−at

) , u ≡ κxe−at ,

v ≡ κy, q ≡ 2aθ

σ 2 − 1,

and Iq(·) is the modified Bessel function of the first kind of order q. For x = 0 the
formula of the density function f (t, x, y) is given by

f (t, 0, y) = c

Γ (q + 1)
vqe−v (13)

for t > 0 and y ≥ 0.

2.2 Special Case (ii): θ = 0 and x = 0

We denote by (Zt , t ≥ 0) the JCIR process given by

d Zt = −aZt dt + σ
√

Zt dWt + d Jt , Z0 = 0. (14)

In this particular case the characteristic functions of (Zt , t ≥ 0) is equal toϕ2(t, u),
namely for u ∈ U

E[eu Zt ] = ϕ2(t, u). (15)
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3 A Lower Bound for the Transition Densities of JCIR

In this section we will find some conditions on the Lévy measure ν of (Jt , t ≥ 0)
such that an explicit lower bound for the transition densities of the JCIR process
given in (3) can be derived. As a first step we show that the law of X x

t , t > 0, in (3)
is absolutely continuous with respect to the Lebesgue measure and thus possesses a
density function.

Lemma 1 Consider the JCIR process (X x
t , t ≥ 0) (started from x ≥ 0) that is

defined in (3). Then for any t > 0 and x ≥ 0 the law of X x
t is absolutely contin-

uous with respect to the Lebesgue measure and thus possesses a density function
p(t, x, y), y ≥ 0.

Proof As shown in the previous section, it holds

E[eu X x
t ] = ϕ1(t, u, x)ϕ2(t, u) = E[euY x

t ]E[eu Zt ],

therefore the law of X x
t , denoted byμX x

t
, is the convolution of the laws of Y x

t and Zt .
Since (Y x

t , t ≥ 0) is the well-known CIR process and has transition density functions
f (t, x, y), t > 0, x, y ≥ 0 with respect to the Lebesgue measure, thus μX x

t
is also

absolutely continuous with respect to the Lebesgue measure and possesses a density
function.

In order to get a lower bound for the transition densities of the JCIR process we
need the following lemma.

Lemma 2 Suppose that
∫
(0,1) ξ ln(1/ξ)ν(dξ) < ∞. Then ϕ2 defined by (8) is the

characteristic function of a compound Poisson distribution. In particular, P(Zt =
0) > 0 for all t > 0, where (Zt , t ≥ 0) is defined by (14).

Proof It follows from (6), (8) and (15) that

E[eu Zt ] = ϕ2(t, u) = exp

( ∫ t

0

∫
(0,∞)

(
exp

(
ξue−as

1−(σ 2/2a)(1−e−as)u

) − 1
)
ν(dξ)ds

)
,

where u ∈ U . Define

Δ :=
∫ t

0

∫
(0,∞)

(
exp

( ξue−as

1 − (σ 2/2a)(1 − e−as)u

)
− 1

)
ν(dξ)ds.

If we rewrite

exp
( ξe−asu

1 − (σ 2/2a)(1 − e−as)u

)
= exp

( αu

β − u

)
, (16)
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where ⎧⎪⎪⎨
⎪⎪⎩

α := 2aξ

σ 2(eas − 1)
> 0,

β := 2aeas

σ 2(eas − 1)
> 0,

(17)

then we recognize that the right-hand side of (16) is the characteristic function of a
Bessel distribution with parameters α and β. Recall that a probability measure μα,β

on
(
R+,B(R+)

)
is called a Bessel distribution with parameters α and β if

μα,β(dx) = e−αδ0(dx) + βe−α−βx
√

α

βx
I1(2

√
αβx)dx, (18)

where δ0 is the Dirac measure at the origin and I1 is the modified Bessel function of
the first kind, namely

I1(r) = r

2

∞∑
k=0

( 1
4r2

)k

k!(k + 1)! , r ∈ R.

For more properties of Bessel distributions we refer the readers to [8, Sect. 3] (see
also [4, p. 438] and [9, Sect. 3]). Let μ̂α,β denote the characteristic function of the
Bessel distributionμα,β with parameters α and β which are defined in (17). It follows
from [9, Lemma 3.1] that

μ̂α,β(u) = exp
( αu

β − u

)
= exp

( ξe−asu

1 − (σ 2/2a)(1 − e−as)u

)
.

Therefore

Δ =
∫ t

0

∫
(0,∞)

(
μ̂α,β(u) − 1

)
ν(dξ)ds

=
∫ t

0

∫
(0,∞)

(
e

αu
β−u − e−α + e−α − 1

)
ν(dξ)ds.

Set

λ :=
∫ t

0

∫
(0,∞)

(
1 − e−α

)
ν(dξ)ds

=
∫ t

0

∫
(0,∞)

(
1 − e

− 2aξ

σ2(eas−1)

)
ν(dξ)ds. (19)
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If λ < ∞, then

Δ =
∫ t

0

∫
(0,∞)

(
e

αu
β−u − e−α

)
ν(dξ)ds − λ

= λ
(1
λ

∫ t

0

∫
(0,∞)

(
e

αu
β−u − e−α

)
ν(dξ)ds − 1

)
.

The fact that λ < ∞ will be shown later in this proof.
Nextwe show that the term (1/λ)

∫ t
0

∫
(0,∞)

(
exp

(
αu/(β−u)

)−exp(−α)
)
ν(dξ)ds

can be viewed as the characteristic function of a probability measure ρ. To define ρ,
we first construct the following measures

mα,β(dx) := βe−α−βx
√

α

βx
I1(2

√
αβx)dx, x ≥ 0,

where I1 is the modified Bessel function of the first kind. Noticing that the measure
mα,β is the absolute continuous component of the measure μα,β in (18), we easily
get

m̂α,β(u) = μ̂α,β(u) − e−α = e
αu

β−u − e−α,

where m̂α,β(u) := ∫ ∞
0 eux mα,β(dx) for u ∈ U . Recall that the parameters α and β

defined by (17) depend on the variables ξ and s. We can define a measure ρ on R+
as follows:

ρ := 1

λ

∫ t

0

∫
(0,∞)

mα,β ν(dξ)ds.

By the definition of the constant λ in (19) we get

ρ(R+) = 1

λ

∫ t

0

∫
(0,∞)

mα,β(R+)ν(dξ)ds

= 1

λ

∫ t

0

∫
(0,∞)

(1 − e−α)ν(dξ)ds

= 1,

i.e. ρ is a probability measure on R+, and for u ∈ U

ρ̂(u) =
∫

(0,∞)

euxρ(dx)

= 1

λ

∫ t

0

∫
(0,∞)

(e
αu

β−u − e−α)ν(dξ)ds.

Thus Δ = λ(ρ̂(u) − 1) and E[eu Zt ] = eλ(ρ̂(u)−1) is the characteristic function of a
compound Poisson distribution.
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Now we verify that λ < ∞. Noticing that

λ =
∫ t

0

∫
(0,∞)

(
1 − e−α

)
ν(dξ)ds

=
∫ t

0

∫
(0,∞)

(
1 − e

− 2aξ

σ2(eas−1)

)
ν(dξ)ds

=
∫

(0,∞)

∫ t

0

(
1 − e

− 2aξ

σ2(eas−1)

)
dsν(dξ),

we introduce the change of variables
2aξ

σ 2(eas − 1)
:= y and then get

dy = − 2aξ

σ 2(eas − 1)2
aeasds

= −y2
σ 2

2ξ

( 2aξ

σ 2y
+ 1

)
ds.

Therefore

λ =
∫

(0,∞)

ν(dξ)

∫ 2aξ

σ2(eat −1)

∞
(1 − e−y)

−2ξ

2aξ y + σ 2y2
dy

=
∫

(0,∞)

ν(dξ)

∫ ∞
2aξ

σ2(eat −1)

(1 − e−y)
2ξ

2aξ y + σ 2y2
dy

=
∫

(0,∞)

ν(dξ)

∫ ∞
ξ
δ

(1 − e−y)
2ξ

2aξ y + σ 2y2
dy,

where δ := σ 2(eat − 1)

2a
. Define

M(ξ) :=
∫ ∞

ξ
δ

(1 − e−y)
2ξ

2aξ y + σ 2y2
dy.

Then M(ξ) is continuous on (0,∞). As ξ → 0 we get

M(ξ) =
∫ 1

ξ
δ

(1 − e−y)
2ξ

2aξ y + σ 2y2
dy + 2ξ

∫ ∞

1
(1 − e−y)

dy

2aξ y + σ 2y2

≤ 2ξ
∫ 1

ξ
δ

y

2aξ y + σ 2y2
dy + 2ξ

∫ ∞

1

1

2aξ y + σ 2y2
dy

≤ 2ξ
∫ 1

ξ
δ

1

2aξ + σ 2y
dy + 2ξ

∫ ∞

1

1

σ 2y2
dy.
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Since

2ξ
∫ 1

ξ
δ

1

2aξ + σ 2y
dy = 2ξ

σ 2

[
ln(2aξ + σ 2y)

]1
ξ
δ

= 2ξ

σ 2 ln(2aξ + σ 2) − 2ξ

σ 2 ln(2aξ + σ 2ξ

δ
)

≤ c1ξ + c2ξ ln(
1

ξ
) ≤ c3ξ ln(

1

ξ
)

for sufficiently small ξ , we conclude that

M(ξ) ≤ c4ξ ln(
1

ξ
), as ξ → 0.

If ξ → ∞, then

M(ξ) ≤
∫ ∞

ξ
δ

(1 − e−y)
2ξ

2aξ y + σ 2y2
dy

≤
∫ ∞

ξ
δ

2ξ

2aξ y + σ 2y2
dy ≤ 2ξ

∫ ∞
ξ
δ

1

σ 2y2
dy

= 2ξ

σ 2

∫ ∞
ξ
δ

d(−1

y
) = 2ξ

σ 2

[
− 1

y

]∞
ξ
δ

= 2ξ

σ 2

δ

ξ
= 2δ

σ 2 := c5 < ∞.

Therefore,

λ ≤ c4

∫ 1

0
ξ ln(

1

ξ
)ν(dξ) + c5

∫ ∞

1
1ν(dξ) < ∞.

With the help of the Lemma 2 we can easily prove the following proposition.

Proposition 1 Let p(t, x, y), t > 0, x, y ≥ 0 denote the transition density of the
JCIR process (X x

t , t ≥ 0) defined in (3). Suppose that
∫
(0,1) ξ ln( 1

ξ
)ν(dξ) < ∞.

Then for all t > 0, x, y ≥ 0 we have

p(t, x, y) ≥ P(Zt = 0) f (t, x, y),

where P(Zt = 0) > 0 for all t > 0 and f (t, x, y) are transition densities of the CIR
process (without jumps).

Proof According to Lemma 2, we have P(Zt = 0) > 0. Since

E[eu X x
t ] = ϕ1(t, u, x)ϕ2(t, u) = E[euY x

t ]E[eu Zt ],
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the law of X x
t , denoted by μX x

t
, is the convolution of the laws of Y x

t and Zt . Thus
for all A ∈ B(R+)

μX x
t
(A) =

∫
R+

μY x
t
(A − y)μZt (dy)

≥
∫

{0}
μY x

t
(A − y)μZt (dy)

≥ μY x
t
(A)μZt ({0})

≥ P(Zt = 0)μY x
t
(A)

≥ P(Zt = 0)
∫

A
f (t, x, y)dy,

where f (t, x, y) are the transition densities of the classical CIR process given in
(12). Since A ∈ B(R+) is arbitrary, we get

p(t, x, y) ≥ P(Zt = 0) f (t, x, y)

for all t > 0, x, y ≥ 0.

4 Exponential Ergodicity of JCIR

In this section we find some sufficient conditions such that the JCIR process is
exponentially ergodic. We have derived a lower bound for the transition densities of
the JCIR process in the previous section. Next we show that the function V (x) = x ,
x ≥ 0, is a Forster-Lyapunov function for the JCIR process.

Lemma 3 Suppose that
∫
(1,∞)

ξν(dξ) < ∞. Then the function V (x) = x, x ≥ 0,
is a Forster-Lyapunov function for the JCIR process defined in (3), in the sense that
for all t > 0, x ≥ 0,

E[V (X x
t )] ≤ e−at V (x) + M,

where 0 < M < ∞ is a constant.

Proof We know that μX x
t

= μY x
t

∗ μZt , therefore

E[X x
t ] = E[Y x

t ] + E[Zt ].

Since (Y x
t , t ≥ 0) is the CIR process starting from x , it is known that μY x

t
is a

non-central Chi-squared distribution and thus E[Y x
t ] < ∞. Next we show that

E[Zt ] < ∞.
Let u ∈ (−∞, 0). By using Fatou’s Lemma we get
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E[Zt ] = E
[
lim
u→0

eu Zt − 1

u

]

≤ lim inf
u→0

E
[eu Zt − 1

u

]
= lim inf

u→0

E[eu Zt ] − 1

u
.

Recall that

E[eu Zt ] = ϕ2(t, u) = exp
( ∫ t

0

∫
(0,∞)

(
e

ξue−as

1−(σ2/2a)(1−e−as )u − 1
)
ν(dξ)ds

)
= eΔ(u).

Then we have for all u ≤ 0

∂

∂u

(
exp

( ξue−as

1 − (σ 2/2a)(1 − e−as)u

)
− 1

)

= ξe−as

(
1 − (σ 2/2a)(1 − e−as)u

)2 exp
( ξue−as

1 − (σ 2/2a)(1 − e−as)u

)

≤ ξe−as

(
1 − (σ 2/2a)(1 − e−as)u

)2 ≤ ξe−as

and further ∫ t

0

∫
(0,∞)

ξe−asν(dξ)ds < ∞.

Thus Δ(u) is differentiable in u and

Δ′(0) =
∫ t

0

∫
(0,∞)

ξe−asν(dξ)ds = 1 − e−at

a

∫
(0,∞)

ξν(dξ).

It follows that

E[Zt ] ≤ lim inf
u→0

ϕ2(t, u) − ϕ2(t, 0)

u

= ∂ϕ2(t, u)

∂u

∣∣∣
u=0

= eΔ(0)Δ′(0)

= 1 − e−at

a

∫
(0,∞)

ξν(dξ).

Therefore under the assumption
∫

(0,∞)

ξν(dξ) < ∞ we have proved that E[Zt ] <

∞. Furthermore,

E[Zt ] = ∂

∂u

(
E[eu Zt ]

)∣∣∣
u=0

= 1 − e−at

a

∫
(0,∞)

ξν(dξ).
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On the other hand,

E[euY x
t ] = (

1 − (σ 2/2a)u(1 − e−at )
)−2aθ/σ 2

exp
( xue−at

1 − (σ 2/2a)u(1 − e−at )

)
.

With a similar argument as above we get

E[Y x
t ] = ∂

∂u

(
E[euY x

t ]
)∣∣∣

u=0
= θ(1 − e−at ) + xe−at .

Altogether we get

E[X x
t ] = E[Y x

t ] + E[Zt ]
= (1 − e−at )

(
θ + 1 − e−at

a

) + xe−at

≤ θ + 1

a
+ xe−at ,

namely

E[V (X x
t )] ≤ θ + 1

a
+ e−at V (x).

Remark 1 If
∫
(1,∞)

ξν(dξ) < ∞, then there exists a unique invariant probability
measure for the JCIR process. This fact follows from [12, Theorem 3.16] and [10,
Proposition 3.1].

Let ‖ · ‖T V denote the total-variation norm for signed measures on R+, namely

‖μ‖T V = sup
A∈B(R+)

{|μ(A)|}.

Let Pt (x, ·) := P(X x
t ∈ ·) be the distribution of the JCIR process at time t started

from the initial point x ≥ 0. Now we prove the main result of this paper.

Theorem 1 Assume that
∫

(1,∞)

ξ ν(dξ) < ∞ and
∫

(0,1)
ξ ln(

1

ξ
)ν(dξ) < ∞.

Let π be the unique invariant probability measure for the JCIR process. Then the
JCIR process is exponentially ergodic, namely there exist constants 0 < β < 1 and
0 < B < ∞ such that

‖Pt (x, ·) − π‖T V ≤ B
(
x + 1

)
β t , t ≥ 0, x ∈ R+. (20)

Proof Basically, we follow the proof of [18, Theorem 6.1]. For any δ > 0 we
consider the δ-skeleton chain ηx

n := X x
nδ, n ∈ Z+, where Z+ denotes the set of all
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non-negative integers. Then (ηx
n )n∈Z+ is a Markov chain on the state space R+ with

transition kernel Pδ(x, ·) and starting point ηx
0 = x . It is easy to see that the measure

π is also an invariant probability measure for the chain (ηx
n )n∈Z+ , x ≥ 0.

Let V (x) = x , x ≥ 0. It follows from the Markov property and Lemma 3 that

E[V (ηx
n+1)|ηx

0 , η
x
1 , . . . , η

x
n ] =

∫
R+

V (y)Pδ(ηx
n , dy) ≤ e−aδV (ηx

n ) + M,

where M is a positive constant. If we set V0 := V and Vn := V (ηx
n ), n ∈ N, then

E[V1] ≤ e−aδV0(x) + M

and
E[Vn+1|ηx

0 , η
x
1 , . . . , η

x
n ] ≤ e−aδVn + M, n ∈ N.

Now we proceed to show that the chain (ηx
n )n∈Z+ , x ≥ 0, is λ-irreducible, strong

aperiodic, and all compact subsets of R+ are petite for the chain (ηx
n )n∈Z+ .

“λ-irreducibility”: We show that the Lebesgue measure λ on R+ is an irreducibil-
ity measure for (ηx

n )n∈Z+ . Let A ∈ B(R+) and λ(A) > 0. Then it follows from
Proposition 1 that

P[ηx
1 ∈ A|ηx

0 = x] = P(X x
δ ∈ A) ≥ P(Zδ = 0)

∫
A

f (δ, x, y)dy > 0,

since f (δ, x, y) > 0 for any x ∈ R+ and y > 0. This shows that the chain (ηx
n )n∈Z+

is irreducible with λ being an irreducibility measure.
“Strong aperiodicity”(see [16, p. 561] for a definition): To show the strong aperi-

odicity of (ηx
n )n∈Z0 , we need to find a set B ∈ B(R+), a probability measure m with

m(B) = 1, and ε > 0 such that

L(x, B) > 0, x ∈ R+, (21)

and
P(ηx

1 ∈ A) ≥ εm(A), x ∈ C, A ∈ B(R+), (22)

where L(x, B) := P(ηx
n ∈ B for some n ∈ N). To this end set B := [0, 1] and

g(y) := infx∈[0,1] f (δ, x, y), y > 0. Since for fixed y > 0 the function f (δ, x, y)

is strictly positive and continuous in x ∈ [0, 1], thus we have g(y) > 0 and 0 <∫
(0,1] g(y)dy ≤ 1. Define

m(A) := 1∫
(0,1] g(y)dy

∫
A∩(0,1]

g(y)dy, A ∈ B(R+).
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Then for any x ∈ [0, 1] and A ∈ B(R+) we get

P(ηx
1 ∈ A) = P(X x

δ ∈ A)

≥ P(Zδ = 0)
∫

A
f (δ, x, y)dy

≥ P(Zδ = 0)
∫

A∩(0,1]
g(y)dy

≥ P(Zδ = 0)m(A)

∫
(0,1]

g(y)dy,

so (22) holds with ε := P(Zδ = 0)
∫
(0,1] g(y)dy.

Obviously

L(x, [0, 1]) ≥ P(ηx
1 ∈ [0, 1]) = P(X x

δ ∈ [0, 1]) ≥ P(Zδ = 0)
∫

[0,1]
f (δ, x, y)dy > 0

for all x ∈ R+, which verifies (21).
“Compact subsets are petite”: We have shown that λ is an irreducibility measure

for (ηx
n )n∈Z+ . According to [16, Theorem 3.4(ii)], to show that all compact sets are

petite, it suffices to prove the Feller property of (ηx
n )n∈Z+ , x ≥ 0. But this follows

from the fact that (ηx
n )n∈Z+ is a skeleton chain of the JCIR process, which is an affine

process and possess the Feller property.
According to [16, Theorem 6.3] (see also the proof of [16, Theorem 6.1]), the

probabilitymeasureπ is the only invariant probabilitymeasure of the chain (ηx
n )n∈Z+ ,

x ≥ 0, and there exist constants β ∈ (0, 1) and C ∈ (0,∞) such that

‖Pδn(x, ·) − π‖T V ≤ C
(
x + 1

)
βn, n ∈ Z+, x ∈ R+.

Then for the rest of the proof we can proceed as in [18, p. 536] and get the
inequality (20).
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Abstract We study a coupled system of controlled stochastic differential equations
(SDEs) driven by a Brownian motion and a compensated Poisson random measure,
consisting of a forward SDE in the unknown process X (t) and a predictive mean-field
backward SDE (BSDE) in the unknowns Y (t), Z(t), K (t, ·). The driver of the BSDE
at time t may depend not just upon the unknown processes Y (t), Z(t), K (t, ·), but
also on the predicted future value Y (t + δ), defined by the conditional expectation
A(t) := E[Y (t +δ)|Ft ].We give a sufficient and a necessarymaximum principle for
the optimal control of such systems, and then we apply these results to the following
two problems: (i) Optimal portfolio in a financial market with an insider influenced
asset price process. (ii) Optimal consumption rate from a cash flow modeled as a
geometric Itô-Lévy SDE, with respect to predictive recursive utility.
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1 Introduction

The purpose of this paper is to introduce and study a pricing model where beliefs
about the future development of the price process influence its current dynamics. We
think this can be a realistic assumption in price dynamics where human psychology
is involved, for example in electricity prices, oil prices and energymarkets in general.
It can also be a natural model of the risky asset price in an insider influenced market.
See Sect. 5.1.

We model such price processes as backward stochastic differential equations
(BSDEs) driven by Brownian motion and a compensated Poisson random measure,
where the coefficients dependnot only of the current values of the unknownprocesses,
but also on their predicted future values. These predicted values are expressedmathe-
matically in terms of conditional expectation, and we therefore name such equations
predictive mean-field equations. To the best of our knowledge such systems have
never been studied before.

In applications to portfolio optimization in a financial market where the price
process ismodeledby apredictivemean-field equation,we are led to consider coupled
systems of forward-backward stochastic differential equations (FBSEDs), where the
BSDE is of predictive mean-field type. In this paper we study solution methods for
the optimal control of such systems in terms of maximum principles. Then we apply
these methods to study

(i) optimal portfolio in a financial market with an insider influenced asset price
process. (Sect. 5.1), and

(ii) optimal consumption rate from a cash flow modeled as a geometric Itô-Lévy
SDE, with respect to predictive recursive utility (Sect. 5.2).

2 Formulation of the Problem

We now present our model in detail. We refer to [5] for information about stochastic
control of jump diffusions.

Let B(t) = B(t, ω); (t, ω) ∈ [0,∞)×Ω and Ñ (dt, dζ ) = N (dt, dζ )−ν(dζ )dt
be a Brownian motion and an independent compensated Poisson random measure,
respectively, on a filtered probability space

(
Ω,E,F = {Ft }t≥0, P

)
satisfying the

usual conditions. We consider a controlled system of predictive (time-advanced)
coupled mean-field forward-backward stochastic differential equations (FBSDEs)
of the form (T > 0 and δ > 0 are given constants)

• Forward SDE in X (t):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d X (t) = d Xu(t) = b(t, X (t), Y (t), A(t), Z(t), K (t, ·), u(t), ω)dt

+σ(t, X (t), Y (t), A(t), Z(t), K (t, ·), u(t), ω)d B(t)

+ ∫
R

γ (t, X (t), Y (t), A(t), Z(t), K (t, ·), u(t), ζ, ω)Ñ (dt, dζ ) ; t ∈ [0, T ]
X (0) = x ∈ R
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• Predictive BSDE in Y (t), Z(t), K (t):

⎧⎪⎨
⎪⎩

dY (t) = −g(t, X (t), Y (t), A(t), Z(t), K (t, ·), u(t), ω)dt + Z(t)d B(t)

+ ∫
R

K (t, ζ )Ñ (dt, dζ ) ; t ∈ [0, T )

Y (T ) = h(X (T ), ω).

(1)
We set

Y (t) := L ; t ∈ (T, T + δ], (2)

where L is a given boundedF -measurable randomvariable, representing a “ceme-
tery” state of the process Y after time T . The process A(t) represents our predictive
mean-field term. It is defined by

A(t) := E[Y (t + δ) | Ft ] ; t ∈ [0, T ]. (3)

Here R is the set of functions from R0 := R\{0} into R, h(x, ω) is a C1 function
(with respect to x) from R× Ω into R such that h(x, ·) isFT -measurable for all x ,
and

g : [0, T ] × R × R × R × R × R × U × Ω → R

is a given function (driver) such that g(t, x, y, a, z, k, u, ·) is an F-adapted process
for all x, y, a, z ∈ R, k ∈ R and u ∈ U, which is the set of admissible control values.
The process u(t) is our control process, assumed to be in a given family A = AG

of admissible processes, assumed to be càdlàg and adapted to a given subfiltration
G = {Gt }t≥0 of the filtrationF, i.e.Gt ⊆ Ft for all t . The sigma-algebraGt represents
the information available to the controller at time t .

We assume that for all u ∈ A the coupled system (1)–(3) has a unique solution
X (t) = Xu(t) ∈ L2(m × P), Y (t) = Y u(t) ∈ L2(m × P), A(t) = Au(t) ∈
L2(m × P), Z(t) = Zu(t) ∈ L2(m × P), K (t, ζ ) = K u(t, ζ ) ∈ L2(m × ν × P),
with X (t), Y (t), A(t) being càdlàg and Z(t), K (t, ζ ) being predictable. Here and
later m denotes Lebesgue measure on [0, T ].

To the best of our knowledge this system, (1)–(3), of predictive mean-field FBS-
DEs has not been studied before. However, the predictive BSDE (1)–(3) is related to
the time-advanced BSDE which appears as an adjoint equation for stochastic con-
trol problems of a stochastic differential delay equation. See [7] and the references
therein.

The process A(t) models the predicted future value of the state Y at time t + δ.
Therefore (1)–(3) represent a systemwhere the dynamics of the state is influenced by
beliefs about the future. This is a natural model for situations where human behavior
is involved, for example in pricing issues in financial or energy markets.
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The performance functional associated to u ∈ A is defined by

J (u) = E

[∫ T

0
f (t, X (t), Y (t), A(t), u(t), ω)dt + ϕ(X (T ), ω) + ψ(Y (0))

]

(4)

where f : [0, T ] × R × R × U × Ω → R, ϕ : R × Ω → R and ψ : R → R

are given C1 functions, with f (t, x, y, a, u, ·) being F-adapted for all x, y, a ∈ R,
u ∈ U. We assume that ϕ(x, ·) isFT -measurable for all x .

We study the following predictive mean-field stochastic control problem:
Find u∗ ∈ A such that

sup
u∈A

J (u) = J (u∗). (5)

In Sect. 3 we give a sufficient and a necessary maximum principle for the optimal
control of forward-backward predictive mean-field systems of the type above.

An existence and uniqueness result for predictive mean-field BSDEs is given in
Sect. 4.
Then in Sect. 5 we apply the results to the following problems:

• Portfolio optimization in a market where the stock price is modeled by a predictive
mean-field BSDE,

• Optimization of consumption with respect to predictive recursive utility.

3 Solution Methods for the Stochastic Control Problem

3.1 A Sufficient Maximum Principle

For notational simplicity we suppress the dependence of ω in f, g, h, ϕ and ψ in the
sequel.We first give sufficient conditions for optimality of the control u bymodifying
the stochastic maximum principle given in, for example, [6], to our new situation:

Wedefine theHamiltonian H : [0, T ]×R×R×R×R×R×U×R×R×R×R) →
R associated to the problem (5) by

H(t, x, y, a, z, k, u, p, q, r, λ) = f (t, x, y, a, u) + b(t, x, y, a, z, k, u)p + σ(t, x, y, a, z, k, u)q

+
∫
R

γ (t, x, y, a, z, k, u, ζ )Ñ (dt, dζ ) + g(t, x, y, a, z, k, u)λ.

(6)

We assume that f, b, σ, γ and g, and hence H , are Fréchet differentiable (C1) in
the variables x, y, a, z, k, u and that the Fréchet derivative ∇k H of H with respect
to k ∈ R as a random measure is absolutely continuous with respect to ν, with
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Radon-Nikodym derivative
d∇k H

dν
. Thus, if 〈∇k H, h〉 denotes the action of the linear

operator ∇k H on the function h ∈ R we have

〈∇k H, h〉 =
∫
R

h(ζ )d∇k H(ζ ) =
∫
R

h(ζ )
d∇k H(ζ )

dν(ζ )
dν(ζ ). (7)

The associated backward-forward system of equations in the adjoint processes
p(t), q(t), r(t), λ(t) is defined by

• BSDE in p(t), q(t), r(t):

⎧⎨
⎩

dp(t) = −∂ H

∂x
(t)dt + q(t)d B(t) +

∫
R

r(t, ζ )Ñ (dt, dζ ) ; 0 ≤ t ≤ T

p(T ) = ϕ′(X (T )) + λ(T )h′(X (T )).

(8)

• SDE in λ(t):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dλ(t) =
{

∂ H
∂y (t) + ∂ H

∂a (t − δ)χ[δ,T ](t)
}

dt + ∂ H
∂z (t)d B(t)

+
∫
R

d∇k H

dν
(t, ζ )Ñ (dt, dζ ) ; 0 ≤ t ≤ T

λ(0) = ψ ′(Y (0)),

(9)

where we have used the abbreviated notation

H(t) = H(t, X (t), Y (t), A(t), Z(t), K (t, ·), u(t), p(t), q(t), r(t), λ(t)).

Note that, in contrast to the time advanced BSDE (1)–(3), (9) is a (forward) stochastic
differential equation with delay.

Theorem 1 (Sufficientmaximumprinciple)Let û ∈ A with corresponding solution
X̂(t), Ŷ (t), Â(t), Ẑ(t), K̂ (t, ·), p̂(t), q̂(t), r̂(t), λ̂(t) of (1)–(3), (8) and (9). Assume
the following:

•
λ̂(T ) ≥ 0 (10)

• For all t , the functions

x → h(x), x → ϕ(x), x → ψ(x) and

(x, y, a, z, k, u) → H(t, x, y, a, z, k, u, p̂(t), q̂(t), r̂(t), λ̂(t))

are concave (11)
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• For all t the following holds,

(The conditional maximum principle)

ess sup
v∈U

E[H(t, X̂(t), Ŷ (t), Â(t), Ẑ(t), K̂ (t, ·), v, λ̂(t), p̂(t), q̂(t), r̂(t, ·)) | Gt ]

= E[H(t, X̂(t), Ŷ (t), Â(t), Ẑ(t), K̂ (t, ·), û(t), λ̂(t), p̂(t), q̂(t), r̂(t, ·)) | Gt ] ; t ∈ [0, T ]
(12)

• ∥∥∥∥∥
d∇k Ĥ(t, .)

dν

∥∥∥∥∥ < ∞ for all t ∈ [0, T ]. (13)

Then û is an optimal control for the problem (5).

Proof By replacing the terminal time T by an increasing sequence of stopping times
τn converging to T as n goes to infinity, and arguing as in [6] we see that we may
assume that all the local martingales appearing in the calculations below are martin-
gales.

Much of the proof is similar to the proof of Theorem 3.1 in [6], but due to the
predictivemean-field feature of theBSDE (1)–(3), there are also essential differences.
Therefore, for the convenience of the reader, we sketch the whole proof:

Choose u ∈ A and consider

J (u) − J (û) = I1 + I2 + I3, (14)

with

I1 := E

[∫ T

0
{ f (t) − f̂ (t)}

]
dt, I2 := E[ϕ(X (T ))−ϕ(X̂(T ))], I3 := ψ(Y (0))−ψ(Ŷ (0)),

(15)
where f̂ (t) = f (t, Ŷ (t), Â(t), û(t)) etc., and Ŷ (t) = Y û(t) is the solution of (1)–(3)
when u = û, and Â(t) = E[Ŷ (t) | Ft ].

By the definition of H we have

I1 = E

[∫ T

0
{H(t) − Ĥ(t) − p̂(t)b̃(t) − q̂(t)σ̃ (t)

−
∫
R

r̂(t, ζ )γ̃ (t, ζ )ν(dζ ) − λ̂(t)g̃(t)

]
, (16)

where we from now on use the abbreviated notation

H(t) = H(t, X (t), Y (t), A(t), Z(t), K (t, ·), u(t), λ̂(t))

Ĥ(t) = H(t, X̂(t), Ŷ (t), Â(t), Ẑ(t), K̂ (t, ·), û(t), λ̂(t))
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and we put

b̃(t) := b(t) − b̂(t),

and similarly with X̃(t) := X (t)− X̂(t), Ỹ (t) := Y (t)− Ŷ (t), Ã(t) := A(t)− Â(t),
etc.

By concavity of ϕ, (9) and the Itô formula,

I2 ≤ E[ϕ′(X̂(T ))X̃(T )]
= E[ p̂(T )X̃(T )] − E[λ̂(T )h′(X̂(T ))X̃(T )]

=
(

E

[∫ T

0
p̂(t−)d X̃(t) +

∫ T

0
X̃(t−)d p̂(t) +

∫ T

0
q̂(t)σ̃ (t)dt

+
∫ T

0

∫
R

r̂(t, ζ )γ̃ (t, ζ )ν(dζ )dt

])
− E[λ̂(T )h′(X̂(T ))X̃(T )]

= E

[∫ T

0
p̂(t)b̃(t)dt +

∫ T

0
X̃(t)

(
−∂ Ĥ

∂x
(t)

)
dt

+
∫ T

0
q̂(t)σ̃ (t)dt +

∫ T

0

∫
R

r̂(t, ζ )γ̃ (t, ζ )ν(dζ )dt

]

− E[λ̂(T )h′(X̂(T ))X̃(T )]. (17)

By concavity of ψ and h, (10) and the Itô formula we have

I3 ≤ E
[
ψ ′(Y (0))Ỹ (0)

]
= E[λ̂(0)Ỹ (0)]

= E[λ̂(T )Ỹ (T )] − E

[∫ T

0
λ̂(t)dỸ (t) +

∫ T

0
Ỹ (t)dλ̂(t) +

∫ T

0
d[Ỹ , λ̂](t)

]

= E[λ̂(T )(h(X (T )) − h(X̂(T )))]

− E

[∫ T

0
λ̂(t)dỸ (t) +

∫ T

0
Ỹ (t)dλ̂(t) +

∫ T

0
d[Ỹ , λ̂](t)

]

≤ E[λ̂(T )h′(X̂(T ))X̃(T )]

+ E

[∫ T

0
λ̂(t)g̃(t)dt +

∫ T

0
Ỹ (t)

[
−∂ Ĥ

∂y
(t) − ∂ Ĥ

∂a
(t − δ)χ[δ,T ](t)

]
dt

+
∫ T

0

∂ Ĥ

∂z
(t)Z̃(t)dt +

∫ T

0

∫
R

d∇k Ĥ

dν
(t, ζ )K̃ (t, ζ )ν(dζ )dt

]
(18)
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Adding (16), (17) and (18) we get, by (9),

J (u) − J (û) = I1 + I2 + I3

≤ E

[∫ T

0

{
H(t) − Ĥ(t) − ∂ Ĥ

∂x
X̃(t) − ∂ Ĥ

∂y
Ỹ (t)

− ∂ H

∂a
(t − δ)χ[δ,T ](t)Ỹ (t) − ∂ H

∂z
(t)Z̃(t) −〈∇k Ĥ(t, ·), K̃ (t, ·)〉

}
dt

]
.

(19)

Note that, since Y (s) = Ŷ (s) = L for s ∈ (T, T + δ] by (1), we get

E

[∫ T

0

∂ Ĥ

∂a
(t − δ)Ỹ (t)χ[δ,T ](t)dt

]
= E

[∫ T −δ

0

∂ Ĥ

∂a
(s)Ỹ (s + δ)ds

]

= E

[∫ T −δ

0
E

[
∂ Ĥ

∂a
(s)Ỹ (s + δ) | Fs

]
dt

]

= E

[∫ T −δ

0

∂ Ĥ

∂a
(s)E

[
Ỹ (s + δ) | Fs

]
ds

]
= E

[∫ T

0

∂ Ĥ

∂a
(s) Ã(s)ds

]
. (20)

Substituted into (19) this gives, by concavity of H ,

J (u) − J (û) = I1 + I2 + I3

≤ E

[∫ T

0

{
H(t) − Ĥ(t) − ∂ Ĥ

∂x
(X (t) − X̂(t)) − ∂ Ĥ

∂y
(Y (t) − Ŷ (t))

− ∂ H

∂a
(t)(A(t) − Â(t)) − ∂ H

∂z
(t)(Z(t) − Ẑ(t))

−〈∇k Ĥ(t, ·), (K (t, ·) − K̂ (t, ·)〉
}

dt

]

≤ E

[∫ T

0

∂ Ĥ

∂u
(t)(u(t) − û(t))dt

]

= E

[∫ T

0
E[∂ Ĥ

∂u
(t)|Gt ](u(t) − û(t))dt

]
≤ 0, (21)

since u = û(t) maximizes E[Ĥ(t)|Gt ]. �
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3.2 A Necessary Maximum Principle

We proceed to prove a partial converse of Theorem 1, in the sense that we give
necessary conditions for a control û to be optimal. In this case we can only conclude
that û(t) is a critical point for the Hamiltonian, not necessarily a maximum point.
On the other hand, we do not need any concavity assumptions, but instead we need
some properties of the set A of admissible controls, as described below.

Theorem 2 (Necessary maximum principle) Suppose û ∈ A with associated solu-
tions X̂ , Ŷ , Ẑ , K̂ , p̂, q̂, r̂ , λ̂ of (1)–(3) and (8) and (9). Suppose that for all processes
β(t) of the form

β(t) := χ[t0,T ](t)α, (22)

where t0 ∈ [0, T ) and α = α(ω) is a bounded Gt0 -measurable random variable,
there exists δ > 0 such that the process

û(t) + rβ(t) ∈ A for all r ∈ [−δ, δ].

We assume that the derivative processes defined by

x(t) = xβ(t) = d

dr
Xû+rβ(t) |r=0, (23)

y(t) = yβ(t) = d

dr
Y û+rβ(t) |r=0, (24)

a(t) = aβ(t) = d

dr
Aû+rβ(t) |r=0, (25)

z(t) = zβ(t) = d

dr
Zû+rβ(t) |r=0, (26)

k(t) = kβ(t) = d

dr
K û+rβ(t) |r=0, (27)

exist and belong to L2(m × P), L2(m × P), L2(m × P), and L2(m × P × ν),
respectively.

Moreover, we assume that x(t) satisfies the equation
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) =
{

∂b

∂x
(t)x(t) + ∂b

∂y
(t)y(t) + ∂b

∂a
(t)a(t) + ∂b

∂z
(t)z(t) + 〈∇kb, k(t, ·)〉

+ ∂b

∂u
(t)β(t)

}
dt

+
{

∂σ

∂x
(t)x(t) + ∂σ

∂y
(t)y(t) + ∂σ

∂a
(t)a(t) + ∂σ

∂z
(t)z(t) + 〈∇kσ, k(t, ·)〉

+∂σ

∂u
(t)β(t)

}
d B(t)

+
∫
R

{
∂γ

∂x
(t, ζ )x(t) + ∂γ

∂y
(t, ζ )y(t) + ∂γ

∂a
(t, ζ )a(t) + ∂γ

∂z
(t, ζ )z(t)

+〈∇kγ (t, ζ ), k(t, ·)〉 + ∂γ

∂u
(t, ζ )β(t)

}
Ñ (dt, dζ ) ; t ∈ [0, T ]

x(0) = 0
(28)

and that y(t) satisfies the equation

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dy(t) = −
{

∂g
∂x (t)x(t) + ∂g

∂y (t)y(t) + ∂g
∂a (t)a(t) + ∂g

∂z (t)z(t)

+〈∇k g(t), k(t, ·)〉 + ∂g
∂u (t)β(t)

}
dt

+z(t)d B(t) + ∫
R

k(t, ζ )Ñ (dt, dζ ) ; 0 ≤ t < T

y(T ) = h′(X (T ))x(T )

y(t) = 0 ; T < t ≤ T + δ,

(29)

where we have used the abbreviated notation

∂g

∂x
(t) = ∂

∂x
g(t, x, y, a, z, k, u)x=X (t),y=Y (t),a=A(t),z=Z(t),k=K (t),u=u(t) etc.

Then the following, (i) and (ii), are equivalent:

(i)
d

dr
J (û + rβ)r=0 = 0 for all β of the form (22)

(ii)
d

du
E[H(t, Ŷ (t), Â(t), Ẑ(t), K̂ (t), u, λ̂(t))u=û(t)|Gt ] = 0,

where (Ŷ , Â, Ẑ , K̂ , λ̂) is the solution of (1), (3) and (9) corresponding to u = û.

Proof As in Theorem 1, by replacing the terminal time T by an increasing sequence
of stopping times τn converging to T as n goes to infinity, we obtain as in [6] that
we may assume that all the local martingales appearing in the calculations below are
martingales. The proof has many similarities with the proof of Theorem 3.2 in [6],
but since there are some essential differences due to the predictive mean-field term,
we sketch the whole proof. For simplicity of notation we drop the hats in the sequel,
i.e. we write u instead of û etc.
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(i) ⇒ (ii): We can write
d

dr
J (u + rβ) |r=0= I1 + I2 + I3, where

I1 = d

dr
E

[∫ T

0
f (t, Y u+rβ(t), Au+rβ(t), Zu+rβ(t), K u+rβ(t), u(t) + rβ(t))dt

]

r=0

I2 = d

dr
[ϕ(Xu+rβ(T ))]r=0

I3 = d

dr
[ψ(Y u+rβ(0))]r=0.

By our assumptions on f and ψ we have

I1 =
[∫ T

0

{
∂ f

∂x
(t)x(t) + ∂ f

∂y
(t)y(t) + ∂ f

∂a
(t)a(t) + ∂ f

∂z
(t)z(t)

+〈∇k f (t, ·), k(t, ·)〉 + ∂ f

∂u
(t)β(t)

}
dt

]
(30)

I2 = E[ϕ′(X (T )x(T )] = E[p(T )x(T )] (31)

I3 = ψ ′(Y (0))y(0) = λ(0)y(0). (32)

By the Itô formula and (28)

I2 = E[p(T )x(T )] = E

[∫ T

0
p(t)dx(t) +

∫ T

0
x(t)dp(t) +

∫ T

0
d[p, x](t)

]

= E

[∫ T

0
p(t)

{
∂b

∂x
(t)x(t) + ∂b

∂y
(t)y(t) + ∂b

∂a
(t)a(t) + ∂b

∂z
(t)z(t)

+〈∇kb(t), k(t, ·)〉 + ∂b

∂u
(t)β(t)

}
dt +

∫ τn

0
x(t)

(
−∂ H

∂x
(t)

)
dt

+
∫ τn

0
q(t)

{
∂σ

∂x
(t)x(t) + ∂σ

∂y
(t)y(t) + ∂σ

∂a
(t)a(t) + ∂σ

∂z
(t)z(t)

+〈∇kσ(t), k(t, ·)〉 + ∂σ

∂u
(t)β(t)

}
dt

+
∫ T

0

∫
R

r(t, ζ )

{
∂γ

∂x
(t, ζ )x(t) + ∂γ

∂y
(t, ζ )y(t) + ∂γ

∂a
(t, ζ )a(t) + ∂γ

∂z
(t, ζ )z(t)

+ < ∇kγ (t, ζ ), k(t, ·) > +∂γ

∂u
(t, ζ )β(t)

}
ν(dζ )dt

]

= E

[∫ T

0
x(t)

{
∂b

∂x
(t)p(t) + ∂σ

∂x
(t)q(t) +

∫
R

∂γ

∂x
(t, ζ )r(t, ζ )ν(dζ ) − ∂ H

∂x
(t)

}
dt

+
∫ T

0
y(t)

{
∂b

∂y
(t)p(t) + ∂σ

∂y
(t)q(t) +

∫
R

∂γ

∂y
(t, ζ )r(t, ζ )ν(dζ )

}
dt

+
∫ T

0
a(t)

{
∂b

∂a
(t)p(t) + ∂σ

∂a
(t)q(t) +

∫
R

∂γ

∂a
(t, ζ )r(t, ζ )ν(dζ )

}
dt
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+
∫ T

0
z(t)

{
∂b

∂z
(t)p(t) + ∂σ

∂z
(t)q(t) +

∫
R

∂γ

∂z
(t, ζ )r(t, ζ )ν(dζ )

}
dt

+
∫ T

0

∫
R

〈k(t, ·), ∇kb(t)p(t) + ∇kσ(t)q(t)

+
∫
R

∇kγ (t, ζ )r(t, ζ )ν(dζ )〉ν(dζ )dt

]

= E

[∫ T

0
x(t)

{
−∂ f

∂x
(t) − λ(t)

∂g

∂x
(t)

}
dt

+
∫ T

0
y(t)

{
∂ H

∂y
(t) − ∂ f

∂y
(t) − λ(t)

∂g

∂y
(t)

}
dt

+
∫ T

0
a(t)

{
∂ H

∂a
(t) − ∂ f

∂a
(t) − λ(t)

∂g

∂a
(t)

}
dt

+
∫ T

0
z(t)

{
∂ H

∂z
(t) − ∂ f

∂z
(t) − λ(t)

∂g

∂z
(t)

}
dt

+
∫ T

0

∫
R

k(t, ζ ){∇k H(t) − ∇k f (t) − λ(t)∇k g(t)}ν(dζ )dt

+
∫ T

0
β(t)

{
∂ H

∂u
(t) − ∂ f

∂u
(t) − λ(t)

∂g

∂u
(t)

}
dt

]

= −I1 − E

[∫ T

0
λ(t)

{
∂g

∂x
(t)x(t) + ∂g

∂y
(t)y(t) + ∂g

∂z
(t)z(t)

+〈∇k g(t), k(t, ·)〉 + ∂g

∂u
(t)β(t)

}
dt

]

+ E

[∫ T

0

{
∂ H

∂y
(t)y(t) + ∂ H

∂z
(t)z(t) + 〈∇k H(t), k(t, ·)〉 + ∂ H

∂u
(t)β(t)

}
dt

]
(33)

By the Itô formula and (29),

I3 = λ(0)y(0) = E

[
λ(T )y(T ) −

(∫ T

0
λ(t)dy(t) +

∫ T

0
y(t)dλ(t) +

∫ T

0
d[λ, y](t)

)]

= E[λ(T )y(T )]

−
(

E

[∫ T

0
λ(t)

{
−∂g

∂y
(t)y(t) − ∂g

∂a
(t)a(t) − ∂g

∂z
(t)z(t)

−〈∇k g(t), k(t, ·)〉 − ∂g

∂u
(t)β(t)

}
dt

+
∫ T

0
y(t)

∂ H

∂y
(t)dt + y(t)

∂ H

∂a
(t − δ)χ[δ,T ](t)dt +

∫ T

0
z(t)

∂ H

∂z
(t)dt

+
∫ T

0

∫
R

k(t, ζ )∇k H(t, ζ )ν(dζ )dt

])
. (34)
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Adding (30), (33) and (34) and using that

E[
∫ T

0
y(t)

∂ H

∂a
(t − δ)χ[δ,T ]dt] = E[

∫ T −δ

0
y(s + δ)

∂ H

∂a
(s)ds]

= E[
∫ T

0

∂ H

∂a
(s)E[y(s + δ)|Fs]ds] = E[

∫ T

0
y(t)

∂ H

∂a
(s)a(s)ds], (35)

we get
d

dr
J (u + rβ) |r=0= I1 + I2 = E

[∫ T

0

∂ H

∂u
(t)β(t)dt

]
.

We conclude that
d

dr
J (û + rβ) |r=0= 0

if and only if

E

[∫ T

0

∂ Ĥ

∂u
(t)β(t)dt

]
= 0 for all bounded β ∈ AG of the form (12.3.17).

Since this holds for all such β, we obtain that if (i) holds, then

∫ T

t0
E

[
∂ Ĥ

∂u
(t) | Gt0

]
dt = 0 for all t0 ∈ [0, T ). (36)

Differentiating with respect to t0 and using continuity of
∂ Ĥ

∂u
(t), we conclude that

(ii) holds.
(ii) ⇒ (i): This is proved by reversing the above argument. We omit the details. �

4 Existence and Uniqueness of Predictive Mean-Field
Equations

In this sectionwe study the existence and uniqueness of predictivemean-field BSDEs
in the unknowns Y (t), Z(t), K (t, ζ ) of the form

⎧⎪⎨
⎪⎩

dY (t) = −g(t, Y (t), A(t), Z(t), K (t, ·), ω)dt + Z(t)d B(t)

+ ∫
R

K (t, ζ )Ñ (dt, dζ ) ; t ∈ [0, T )

Y (t) = L ; t ∈ [T, T + δ] ; δ > 0 fixed,

(37)
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where L ∈ L2(P) is a givenFT -measurable random variable, and the process A(t)
as before is defined by

A(t) = E[Y (t + δ) | Ft ] ; t ∈ [0, T ]. (38)

To this end, we can use the same argument which was used to handle a similar, but
different, time-advanced BSDE in [7]. For completeness we give the details:

Theorem 3 Suppose the following holds

E[
∫ T

0
g2(t, 0, 0, 0, 0)dt] < ∞ (39)

There exists a constant C such that

|g(t, y1, a1, z1, k1) − g(t, y2, a2, z2, k2)| ≤ C(|y1 − y2| + |z1 − z2|+
(

∫
R

|k1(ζ ) − k2(ζ )|2ν(dζ ))
1
2 ) (40)

for all t ∈ [0, T ], a.s. Then there exists a unique solution triple (Y (t), Z(t), K (t, ζ ))

of (37) such that the following holds:

{
Y is cadlag and E[supt∈[0,T ] Y 2(t)] < ∞,

Z , K are predictable and E[∫ T
0 {Z2(t) + ∫

R
K 2(t, ζ )ν(dζ )}dt] < ∞.

Proof We argue backwards, starting with the interval [T − δ, T ]:
Step 1. In this interval we have A(t) = E[L|Ft ] and hence we know from the theory
of classical BSDEs (see e.g. [8, 9] and the references therein), that there exists a
unique solution triple (Y (t), Z(t), K (t, ζ )) such that the following holds:

{
Y is cadlag and E[supt∈[T −δ,T ] Y 2(t)] < ∞,

Z , K are predictable and E[∫ T
T −δ

{Z2(t) + ∫
R

K 2(t, ζ )ν(dζ )}dt] < ∞.

Step 2. Next, we continue with the interval [T − 2δ, T − δ]. For t in this interval, the
value of Y (t +δ) is known from the previous step and hence A(t) = E[Y (t +δ)|Ft ]
is known.Moreover, by Step1 the terminal value for this interval, Y (T −δ), is known
and in L2(P). Hence we can again refer to the theory of classical BSDEs and get a
unique solution in this interval.
Step n. We continue this iteration until we have reached the interval [0, T − nδ],
where n is a natural number such that

T − (n + 1)δ ≤ 0 < T − nδ.

Combining the solutions from each of the subintervals, we get a solution for the
whole interval. �
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5 Applications

In this section we illustrate the results of the previous sections by looking at two
examples.

5.1 Optimal Portfolio in an Insider Influenced Market

In the seminal papers by Kyle [4] and Back [2] it is proved that in a financial market
consisting of

• noise traders (where noise is modeled by Brownian motion),
• an insider who knows the value L of the price of the risky asset at the terminal
time t = T and

• a market maker who at any time t clears the market and sets the market price,

the corresponding equilibrium price process (resulting from the insider’s portfolio
which maximizes her expected profit), will be a Brownian bridge terminating at the
value L at time t = T . In view of this we see that a predictive mean-field equation
can be a natural model of the risky asset price in an insider influenced market.

Accordingly, suppose we have a market with the following two investment pos-
sibilities:

• A risk free asset, with unit price S0(t) := 1 for all t
• A risky asset with unit price S(t) := Y (t) at time t , given by the predictive mean-
field equation

{
dY (t) = −A(t)μ(t)dt + Z(t)d B(t); t ∈ [0, T )

Y (t) = L(ω); t ∈ [T, T + δ], (41)

whereμ(t) = μ(t, ω) is a given bounded adapted process and L is a given bounded
FT -measurable random variable, being the terminal state of the process Y at time
T .

Let u(t) be a portfolio, representing the number of risky assets held at time t . We
assume thatG = F. If we assume that the portfolio is self-financing, the correspond-
ing wealth process X (t) = Xu(t) is given by

{
d X (t) = u(t)dY (t) = u(t)A(t)μ(t)dt + u(t)Z(t)d B(t); t ∈ [0, T )

X (0) = x > 0.
(42)

LetU : [0,∞) �→ [−∞,∞) be a given utility function, assumed to be increasing,
concave and C1 on (0,∞). We study the following portfolio optimization problem:
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Problem 1 Find u∗ ∈ A such that

sup
u∈A

E[U (Xu(T ))] = E[U (Xu∗
(T ))]. (43)

This is a problem of the type discussed in the previous sections, with f = ψ =
N = 0, ϕ = U and h(x, ω) = L(ω), and we can apply the maximum principles
from Sect. 3 to study it.

By (6) the Hamiltonian gets the form

H(t, x, y, a, z, k, u, p, q, r, λ) = uaμ(t)p + uzq + aμ(t)λ. (44)

The associated backward-forward system of equations in the adjoint processes
p(t), q(t), λ(t) becomes

• BSDE in p(t), q(t):

{
dp(t) = q(t)d B(t) ; 0 ≤ t ≤ T

p(T ) = U ′(X (T )),
(45)

• SDE in λ(t):

⎧⎪⎨
⎪⎩

dλ(t) = μ(t − δ)[u(t − δ)p(t − δ) + λ(t − δ)]χ[δ,T ](t)dt

+u(t)q(t)d B(t) ; 0 ≤ t ≤ T

λ(0) = 0.

(46)

The Hamiltonian can only have a maximum with respect u if

A(t)μ(t)p(t) + Z(t)q(t) = 0. (47)

Substituting this into (45) we get

{
dp(t) = −θ(t)p(t)d B(t); 0 ≤ t ≤ T

p(T ) = U ′(X (T )),
(48)

where

θ(t) := A(t)μ(t)

Z(t)
. (49)

From this we get

p(t) = c exp(−
∫ t

0
θ(s)d B(s) − 1

2

∫ t

0
(θ(s))2ds); 0 ≤ t ≤ T (50)
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where the constant

c = p(0) = E[U ′(X (T )] (51)

remains to be determined.
In particular, putting t = T in (50) we get

U ′(X (T )) = p(T ) = c exp(−
∫ T

0
θ(s)d B(s) − 1

2

∫ T

0
(θ(s))2ds) (52)

or

X (T ) = (U ′)−1(c exp(−
∫ T

0
θ(s)d B(s) − 1

2

∫ T

0
(θ(s))2ds)). (53)

Define

�(T ) = exp(
∫ T

0
θ(s)d B(s) − 1

2

∫ T

0
(θ(s))2ds). (54)

Then by the Girsanov theorem the measure Q defined onFT by

d Q(ω) = �(T )d P(ω) (55)

is an equivalent martingale measure for the market (41). Therefore, by (53),

x = EQ[X (T )] = E[(U ′)−1(c exp(−
∫ T

0
θ(s)d B(s) − 1

2

∫ T

0
(θ(s))2ds))�(T )].

(56)
This equation determines implicitly the value of the constant c and hence by (53)
the optimal terminal wealth X (T ) = Xu∗

(T ). To find the corresponding optimal
portfolio u∗ we proceed as follows:

Define

Z0(t) := u∗(t)Z(t). (57)

Then (Xu∗
(t), Z0(t)) is found by solving the linear BSDE

{
d Xu∗

(t) = A(t)μ(t)Z0(t)
Z(t) dt + Z0(t)d B(t); 0 ≤ t ≤ T

Xu∗
(T ) = E[(U ′)−1(c exp(− ∫ T

0 θ(s)d B(s) − 1
2

∫ T
0 (θ(s))2ds))�(T )]. (58)

We have proved:
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Theorem 4 (Optimal portfolio in an insider influenced market) The optimal port-
folio u∗ for the problem (43) is given by

u∗(t) = Z0(t)

Z(t)
, (59)

where Z0(t), Z(t) are the solutions of the BSDEs (41), (58), respectively, and c and
θ are given by (56) and (49), respectively.

5.2 Predictive Recursive Utility Maximization

Consider a cash flow X (t) = Xc(t) given by
⎧⎪⎨
⎪⎩

d X (t) = X (t)[μ(t)dt + σ(t)d B(t)

+ ∫
R γ (t, ζ )Ñ (dt, dζ )] − c(t)X (t)dt; t ∈ [0, T )

X (0) = x > 0.

(60)

Here μ(t), σ (t), γ (t, ζ ) are given bounded adapted processes, while u(t) := c(t) is
our control, interpreted as our relative consumption rate from the cash flow. We say
that c is admissible if c is F-adapted, c(t) > 0 and Xc(t) > 0 for all t ∈ [0, T ). We
put G = F.

Let Y (t) = Y c(t), Z(t) = Zc(t), K (t, ζ ) = K c(t, ζ ) be the solution of the
predictive mean-field BSDE defined by

⎧⎪⎨
⎪⎩

dY (t) = −{α(t)A(t) + ln(c(t)X (t))}dt + Z(t)d B(t)

+ ∫
R K (t, ζ )Ñ (dt, dζ ); t ∈ [0, T )

Y (T ) = 0,

(61)

where α(t) > 0 is a given bounded F-adapted process. Then, inspired by classical
definition of recursive utility in [3], we define Y c(0) to be the predictive recursive
utility of the relative consumption rate c.

We now study the following predictive recursive utility maximization problem:

Problem 2 Find c∗ ∈ A such that

sup
c∈A

Y c(0) = Y c∗(0). (62)

We apply the maximum principle to study this problem. In this case we have
f = ϕ = h = 0, ψ(x) = x , and the Hamiltonian becomes

H(t, x, y, a, z, k, u, p, q, r, λ) = x[(μ(t) − c)p + σ(t)q +
∫
R

γ (t, ζ )r(ζ )ν(dt, dζ )]
+ [aα(t) + ln c + ln x]λ. (63)
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The associated backward-forward system of equations in the adjoint processes
p(t), q(t), λ(t) becomes

• BSDE in p(t), q(t):

⎧⎪⎨
⎪⎩

dp(t) = −[(μ(t) − c(t))p(t) + σ(t)q(t) + ∫
R

γ (t, ζ )ν(dt, dζ ) + λ(t)
X (t) ]dt

+q(t)d B(t) + ∫
R

r(t, ζ )Ñ (dt, dζ ) ; 0 ≤ t ≤ T

p(T ) = 0,
(64)

• SDE in λ(t):

{
dλ(t) = α(t − δ)λ(t − δ)]χ[δ,T ](t)dt ; 0 ≤ t ≤ T

λ(0) = 1.
(65)

The delay SDE (65) does not contain any unknown parameters, and it is easily seen
that it has a unique continuous solution λ(t) > 1, which we may consider known.

We can now proceed along the same lines as in Sect. 5.2 of [1]: Maximizing H
with respect to c gives the first order condition

c(t) = λ(t)

X (t)p(t)
. (66)

The solution of the linear BSDE (64) is given by

�(t)p(t) = E[
∫ T

t

λ(s)�(s)

X (s)
ds|Ft ], (67)

where
{

d�(t) = �(t−)[(μ(t) − c(t))dt + σ(t)d B(t) + ∫
R

γ (t, ζ )Ñ (dt, dζ )] ; 0 ≤ t ≤ T

�(0) = 1.
(68)

Comparing with (60) we see that

X (t) = x�(t) ; 0 ≤ t ≤ T . (69)

Substituting this into (67) we obtain

p(t)X (t) = E[
∫ T

t
λ(s)ds|Ft ] ; 0 ≤ t ≤ T . (70)
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Substituting this into (66) we get the following conclusion:

Theorem 5 The optimal relative consumption rate c∗(t) for the predictive recursive
utility consumption problem (62) is given by

c∗(t) = λ(t)

E[∫ T
t λ(s)ds|Ft ]

; 0 ≤ t < T, (71)

where λ(t) is the solution of the delay SDE (65).
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Modelling the Impact of Wind Power
Production on Electricity Prices
by Regime-Switching Lévy Semistationary
Processes

Almut E.D. Veraart

Abstract This paper studies the impact of wind power production on electricity
prices in the European energy market. We propose a new modelling framework
based on so-called regime-switching Lévy semistationary processes to account for
forward-looking information consisting of predicted wind power generation. We
show that our new regime-switching model, where the regime switch depends on the
so-called wind penetration index, can describe recent electricity price data well.

1 Introduction

Renewable sources of energy are of increasing importance in modern energy mar-
kets. For instance, the European Union has set the target of increasing the share of
energy from renewable sources by 2020 to 20%. In the German and Austrian energy
market, which will be the focus of this paper, the most important source of renew-
able energy is wind, followed by biogas and solar. Since many renewable sources are
highly dependent on weather conditions, they tend to increase the volatility of the
corresponding energy prices. It is hence urgent and important to find reliable models
which can describe electricity prices in these changing market conditions which can
be used for risk assessment and management in energy markets.

The recent literature has presented a variety of both discrete-time and continuous-
time time series models which promise to describe the stylised facts of energy
markets, see e.g. [3, 17] for reviews. However, reliable models which incorporate
information on renewable sources have only recently emerged and have currently
been restricted to discrete-time models, see e.g. [9–12, 18].

This paper contributes to the continuous-time literature by introducing for the first
time a modelling framework which takes the forward-looking information avail-
able to market participants through wind production forecasts into account when
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modelling electricity day-ahead prices. In doing so, it extends recent work by [1]
who proposed to model electricity spot prices by so-called Lévy semistationary
processes. Their model consists of a reduced form approach, which only considers
electricity prices directly and does not take any price information from other fuels
or commodities into account. Note that other types of forward-looking information,
such as capacity constraints, have been incorporated in models for electricity prices
by [8]. Also, [2] have developed a framework for incorporating forward-looking
information in electricity or weather markets through an enlargement of filtrations
approach.

With the increasing power generation through wind farms, we have observed
that electricity prices at the European Energy Exchange (EEX) started to become
negative, which happened for the first time in October 2008, and partially even
exhibited rather extremenegative price spikes, see e.g. [16] and the references therein.
Also, various articles have argued that increasing wind power production seems to
decrease the overall price level, but tends to increase the observed volatility in the
market, see e.g. [12]. These are important findings, which need to be incorporated
into a modelling framework, one of which will be presented in this paper.

The outline for the remaining part of this article is as follows. In Sect. 2 we give
a detailed description of the data from the EEX which will be used in our empirical
analysis and we carry out an exploratory data analysis to motivate the new model we
are going to introduce in this paper. Section3 contains the main contribution, where
we introduce the new class of regime-switching Lévy semistationary processes and
show how they can be calibrated to our empirical data. Finally, Sect. 4 concludes.

2 Exploratory Data Analysis

This section presents the results of an exploratory data analysis of electricity price
and wind production data from the European Energy Exchange, which motivates the
new modelling framework which we will introduce in Sect. 3.

2.1 Description of the Data

Our empirical data analysis focuses on electricity prices and wind data for a time
period from 01.01.2011 to 31.07.2014, i.e. consisting of 1308days.

We consider three sets of data: electricity prices, their corresponding volumes
(sometimes called loads) and wind production data. More precisely, daily EEX
Phelix baseload and EEX Phelix baseload volume data (for Germany and Austria)
were downloaded from Datastream and the EPEX spot website. In addition, we
downloaded the forecasted wind production data for the four German Transmission
System Operator (TSOs) (50Hz Transmission, Amprion, Tennet TSO, EnBW
Transportnetze (Transnet) ) and one Austrian TSO (Verbund (APG)). These data
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Table 1 Summary statistics of the EEX Phelix baseload from 01.01.2011 to 31.07.2014

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

–56.87 33.87 43.10 41.96 50.69 98.98

have been aggregated to obtain daily forecasts for the wind production for each of
the five TSOs.

2.2 EEX Phelix Baseload Prices

First of all, we want to explore the specific properties of the time series of the
electricity price data. We focus on the day-ahead electricity prices determined by a
daily auction at 12:00 pm, 7days a week all year (including statutory holidays). The
underlying quantity to be traded is the electricity for delivery the following day in
24h intervals. The prices are bounded (currently between [–500, 3000] EUR/MWh).
The EEX Phelix baseload is obtained as the daily averages of the 24h day-ahead
prices for Germany and Austria.

From the summary statistics in Table1, we notice that the times series does not
feature any truly extremes spikes, which have occurred in older data sets from the
EEXmarket. In addition, we notice that there are negative prices even in the baseload
prices which consists of the average of the 24h prices, see also Fig. 1. The plot of
the autocorrelation function reveals a clear weekly pattern which is one of the well-
known stylised facts of such data.

Whenwe study the distributional properties of the price data, see Fig. 2, we clearly
observe that the empirical distribution is not well described by a Gaussian distribu-
tion, but appears to be asymmetric and features heavier tails, the latter is particularly
pronounced when we focus on the left tail of the distribution.
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Fig. 1 Time series plot of the baseload prices (in EUR/MWh) and autocorrelation plot
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Fig. 2 Distributional properties of the prices: The standardised histogram of the empirical distrib-
ution and estimated kernel density function of the prices are depicted in the first plot. The second
plot compares the empirical distribution to a Gaussian distribution via a quantile-quantile plot

2.3 Predicted Wind Energy Feed-In

Next we investigate the data from the five Transmission System Operator (TSOs) in
Germany and Austria. Note that we are studying the one-day ahead predicted wind
feed-in since we assume that this is the quantity which impacts the one-day ahead
electricity prices determined in the daily auction.

Note that for each TSO, the data is available in 15min intervals, where the unit of
measurement is Megawatt (MW). In order to get the hourly forecasts, we aggregated
the data as follows. Let V (q)

t,q(i) denote the 15min wind power forecast for quarter
i within hour t . We then obtain the hourly forecasts (recorded in Megawatt hours
(MWh)), denoted by V (h)

t ( j), where t ( j) denotes the j th hour on the t th day, from

V (h)
t ( j)[MW · h] =

4∑
i=1

1

4
[h]V (q)

t ( j),q(i)[MW].

Further, we obtain the daily forecasts, denoted by V (d)
t from

V (d)
t [MW · h] =

24∑
j=1

V (h)
t ( j)[MW · h].

The data are summarised by TSO in Table2.
In the following study, we focus on the aggregated time series which accumulates

the predicted wind feed-in of all five TSOs, see Table3 for the summary statistics
and Fig. 3 for the time series plot. We clearly observe a yearly cycle in the wind data
showing that the predicted wind feed-in is always highest during the winter time
period.
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Table 2 Forecasted wind feed-in in Gigawatt hours (GWh) (rounded)

50 Hz Amprion APG Tennet Transnet Total

2011 19490 6687 18 18484 416 45095

2012 20203 7253 25 20464 246 48191

2013 19129 7742 31 21259 425 48585

2014 (Until July) 11648 4799 21 13412 399 30279

Table 3 Summary statistics of the forecasted aggregated wind production data (in GWh) from
01.01.2011 to 31.07.2014

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

12510 53870 98940 131600 176000 572600
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Fig. 3 Time series of the forecasted aggregated wind production data from 01.01.2011 to
31.07.2014 reported in GWh

2.4 Wind Penetration Index

Jónsson et al. [10] pointed out that there is a non-linear and time dependent relation-
ship between wind power forecasts and spot prices. Moreover, they found that “it is
in fact the ratio between the forecasted wind power generation and the forecasted
load that has the strongest association with the spot prices”, see [10, p. 314]. Hence,
in the following analysis, we will not use the predicted wind feed-in data directly, but
rather focus on the so-called wind penetration index, which describes the percentage
of the wind feed-in compared to the total energy production.
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Table 4 Summary statistics of the wind penetration index from 01.01.2011 to 31.07.2014

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

0.02104 0.08796 0.15480 0.19050 0.26450 0.67540

In order to compute this index, we follow the approach outlined in [10]: They
argued that according to recent work by [15], state-of-the-art forecasting models
lead to load forecasts where the predicted load equals the actual load plus an error
term, i.e. let ALt denote the actual load on day t and let Lt denote the corresponding
predicted load. Then

ALt = Lt + εt , where εt ∼ N (0,σ2).

Typically, the standard deviation σ is chosen as 2% of the average load for the period
considered.

Following thismethodology,we downloaded the actual load data fromDatastream
and the EPEX website and computed the predicted load data by adding Gaussian
perturbations to the actual load data. Clearly, this is not exactly the same as working
with the predicted load information from each TSO directly, see [10] for a discussion,
but the practical impact of this approximation has been found to be marginal.

We can now define the so-called wind penetration index on day t as

W Pt := V (d)
t

Lt
.

This is in fact the prediction of the wind penetration on day t , which is available on
day t − 1 and can hence be considered as forward-looking information. We provide
the summary information of the wind penetration index for our sample in Table4.

Moreover, a time series plot and the corresponding histogram of the wind pene-
tration index is depicted in Fig. 4. We observe that the time series plot of the wind
penetration index resembles the one for the original wind data—including a yearly
seasonal pattern. Also, the wind penetration index is overall rather low, which is
indicated by the histogram and the quantile information contained in Table4. This
is not surprising since the conventional fuels still account for the majority of the
electricity production in the European energy market.

2.5 The Relation Between Prices and Wind Data

Finally, we carry out an exploratory study of the relation between the electricity
prices and the wind penetration index. In Fig. 5, we plot the electricity prices versus
the wind penetration index to check whether we can spot any association between the
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Fig. 5 The electricity prices are plotted versus the wind penetration index. The five horizontal
lines correspond to the minimum, the 25%, 50%, 75% quantiles and the maximum of the wind
penetration index, respectively

two variables. We observe that the two lowest electricity prices are associated with
a rather high wind penetration index. Also, for a very high wind penetration index,
the prices seem to be below their mean value. This is in line with earlier studies
which found that a high wind production typically results in lower electricity prices.
However, we need to keep in mind that by comparing the wind and the electricity
prices, we can only obtain a partial picture, since clearly other fuels, such as coal,
gas and nuclear, play a key role in determining the corresponding electricity price
and are for the purpose of this study excluded from the analysis.
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Fig. 6 Distribution of the electricity prices for different quartiles of the wind penetration index.
E.g. the first plot corresponds to a low wind penetration index (the first quartile) and the last one to
a rather high wind penetration index (the fourth quartile)

We also compare the distribution of the electricity prices associated with different
quartiles of the wind penetration index. That is, we have divided our price data into
four groups corresponding to the 1st, 2nd, 3rd and 4th quartile of thewind penetration
index. When comparing the corresponding marginal distributions, we observe again
that smaller price data are associated with a higher wind penetration index, see Fig. 6.

The finding from this exploratory study motivates the new modelling framework
which we are going to introduce in the next section.

3 Model Building

Recent work by [1] suggests that the class of so-called Lévy semistationary (LSS)
processes is very suitable formodelling electricity day-ahead prices. In theirwork, the
class of LSS processes was used in a truly reduced form modelling set-up, meaning
that the (deseasonalised) electricity prices were modelled directly by LSS processes
and no other external variables were included in the analysis.

Here we will go one step further and explore the possibility of including forward-
looking information in form of the wind penetration index into a new modelling
framework which is based on LSS processes.

In a first step, we are going to review the basic traits of LSS processes and then we
will discuss howanLSS-basedmodel can be extended to account for forward-looking
information.
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An LSS process Y = {Y (t)}t∈R on R without drift is defined as

Y (t) =
∫ t

−∞
g(t − s)σ(s−)d L(s), (1)

where L denotes a two-sided Lévy process, g : R → R denotes a determinis-
tic weight function satisfying g(s) = 0 whenever s < 0 and σ denotes a càdlàg,
adapted stochastic volatility process, which is assumed to be independent of L . In
order to ensure the existence of the stochastic integral, we need suitable integrability
conditions on the kernel function g, see [1] for details.

Note that the name Lévy semistationary process indicates that the process Y is
stationary as soon as the stochastic volatility process σ is a stationary process. The
reason for choosing a stationary process for modelling deseasonalised electricity
prices is that commodity prices typically exhibit strong mean reversion. A stationary
process can in fact mimic such a behaviour since it ensures that the process cannot
move away from its long term mean indefinitely, but will need to return to it since
otherwise the stationarity would not be preserved.

Many well-known stochastic processes belong to the LSS class, including volatil-
ity modulated Ornstein-Uhlenbeck processes, continuous-time autoregressive mov-
ing average (CARMA) processes and fractionally integrated CARMA processes.

It is important to note that LSS processes are in general not semimartingales,
which has been discussed in detail in [1]. However, in this paper, we will in fact be
staying within the traditional semimartingale framework since we will be working
with volatility modulated CARMA processes as the main building blocks for our
new model. To this end, let us briefly recall their definition.

Suppose we have nonnegative integers p > q and we wish to define a CARMA
(p, q) process. We introduce the autoregressive (AR) and moving average (MA)
polynomials:

PAR(p)(z) = z p + a1z p−1 + · · · + ap,

PMA(q)(z) = b0 + b1z + · · · + bp−1z p−1,

where bq = 1 and b j = 0 for q < j < p. Moreover, we assume that the polynomials
have no common roots and then write formally

PAR(p)(D)Y (t) = PMA(q)(D)DL(t),

where D = d
dt . We can make sense of the “derivative” of the Lévy process through

a state space representation, where we write

Y (t) = b�V(t) , for dV(t) = AV(t)dt + ed L(t), where
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A =
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Assuming that all eigenvalues of A have negative real parts, we know that

V(t) =
∫ t

−∞
eA(t−s)e d L(s)

is the (strictly) stationary solution of the stochastic differential equation above, see
[5]. That is, in our LSS specification we can choose g(x) = b�eAx e and σ ≡ 1 to
obtain a CARMA(p, q) process. As soon as a stochastic volatility process is added,
wewould call the correspondingLSSprocess a volatility modulated CARMA process.

3.1 Deseasonalising the Data

We argued before that stationary processes can easily accommodate key stylised
facts of commodity prices. However, at the same time, we cannot ignore that strong
seasonal effects are typically present in such markets and need to be accounted for.
We proceed by introducing an arithmetic model for the electricity day-ahead price,
denoted by S = (S(t))t≥0, where

S(t) = Λ(t) + Y (t).

Here, Λ denotes a deterministic seasonality and trend function and Y denotes a sto-
chastic process. In the original framework proposed by [1], the process Y was chosen
to be an LSS process. In the following, however, we will introduce a modification of
that modelling framework.

The seasonality and trend function is chosen to be

Λ(t) = c0 + c1t + c2 cos

(
τ1 + 2πt

365

)
+ c3 cos

(
τ2 + 2πt

7

)
,

which accounts for a linear trend and weekly and yearly seasonal cycles. We used a
robust least squares estimation procedure to estimate the parameters (by truncating
the spikes in the estimation procedure) and obtained the following estimates and
standard errors, see Table5, all of which were highly significant. The estimated
parameters in the seasonality function confirm the existence of both weekly and
yearly seasonality as well as the presence of a negative trend.
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Table 5 Estimated parameters in the seasonality and trend function Λ

c0 c1 c2 c3 τ1 τ2

Estimate 53.47 –0.01724 2.377 –6.815 349.25 33.59

Standard error 0.4693 0.0006203 0.3356 0.3302 50.46 0.3394
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Fig. 7 Electricity day-ahead data and fitted seasonality and trend function

Figure7 shows a graph of the original data with the fitted seasonality function
super-imposed. Also, Fig. 8 depicts the deseasonalised price data and their autocor-
relation function.

It should be noted that a variety of alternative procedures could be followed to deal
with the problem of seasonality in the electricity prices. Here we are dealing with a
rather simple deterministic parametric function to mimic the trend and the seasonal
cycles.Using e.g.weekly and yearly dummyvariables could refine this approach even
further, but would result in a less parsimonious model. A more interesting alternative
to the approach pursued here is to acknowledge the fact that the seasonality cannot
only be determined by historical data, but also through other market data available to
market participants. Example, it has been observed that gas and coal prices, given that
they are important fuels used to produce electricity, play a key role in determining
trend and also seasonal cycles of electricity prices. This suggests that e.g. forward
curve data for gas and/or coal could be used to model the trend, see e.g. [8] for
research along those lines. Also [14] give a detailed account on robust estimation
procedures of the long-term seasonal component of electricity prices.
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Fig. 8 Time series and autocorrelation plot of the deseasonalised electricity day-ahead data

Table 6 Estimated parameters of the associated ARMA(2,1) process

AR1 AR2 MA

Estimate 1.1480 –0.2324 –0.6962

Standard error 0.0597 0.0447 0.0501

Here AR1 and AR2 corresponds to the first and second autoregressive parameter, respectively, and
MA corresponds to the moving average parameter

3.2 Fitting a CARMA Process

After the seasonality has been removed, we need to find a suitable model for the
stochastic process Y . Following the success of the CARMA processes in describing
electricity prices, we choose a Lévy semistationary process where the kernel function
is given by a kernel associated with a CARMA(p,q) process. More specifically we
choose p = 2 and q = 1. Note that when choosing the order of the CARMA(p,q)
process, we need to consider pairs (p, q) such that p > q so that the CARMA
process is well defined. We choose a CARMA(2,1) process due to reasons of analyt-
ical tractability and increased flexibility compared to a simple Ornstein-Uhlenbeck
model. In our goodness-of-fit study, we indeed find that such a model choice is
suitable here.

Note that [6] have discussed in detail how a discretely sampled CARMA process
can be represented as a weak ARMA process. Using this representation we have first
estimated the correspondingARMA(2,1) parameters by a quasi-maximum likelihood
method. The corresponding parameters estimates and standard errors are provided
in Table 6.
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Fig. 9 Empirical (bars) and estimated (solid line) autocorrelation function of the estimated
CARMA(2,1) process

Following the procedure outlined in [6] we can then recover the corresponding
continuous-time parameters. In our case, we have a1 = 1.459, a2 = 0.162, b0 =
0.383. Note that one can easily verify that the estimates satisfy the condition that
the eigenvalues of A have negative real parts, which implies a stationary model. We
compare the empirical and estimated autocorrelation function in Fig. 9, where we
observe a good fit.

Under the assumption that the CARMA process is driven by a subordinator, [6]
have shown how the corresponding increments of the driving Lévy process can be
recovered from a discretely observed CARMAprocess, see also [7] for the multivari-
ate case. Here we have implemented their algorithm for the case of a CARMA(2,1)
process and have recovered the driving process. Note that the original algorithm
was designed for driving Lévy processes, but can in fact be adapted to the case of
volatility modulated Lévy processes as well, the case which will be relevant in the
next section.

Let us briefly recap our estimation procedure until now:We started off with a spot
price model S(t) = Λ(t) + Y (t), where we have estimated the seasonality function
Λ and have removed it from the data. In the next step, we have assumed that Y is an
LSS process of the form

Y (t) =
∫ t

−∞
g(t − s)d M(s),
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where g corresponds to the kernel function associated with a CARMA(2,1) process
and initially M was assumed to be a Lévy process, which can be recovered from the
observations of the CARMA process. We will now leave this traditional framework
behind and will introduce a new regime-switching model based on LSS processes.

3.3 The New Model Based on a Regime-Switching LSS
Process

The predicted wind penetration index can be viewed as forward-looking information
since the information is available before the prices for the next day are determined
in the auction market. Hence it is reasonable to try to incorporate this information in
the model.

Previous studies have included such information in discrete-time models such as
e.g. ARMAX-GARCHX models, see [12], where the wind is treated as an exoge-
nous variable.However,we are interested in a continuous-timemodelling framework.
E.g. one could consider CARMA-X models or regime-switching models. Here we
will follow the latter approach which is motivated by the work by [8] who incorpo-
rated forward-looking capacity constraints into a jump-diffusionmodel for electricity
prices.

We introduce an exogenous regime-switching variable based on the forward-
looking variable given by the predicted wind penetration index ρ, where

ρ(s) =
{
1, if the predicted wind penetration at time s is “high”

0, if the predicted wind penetration at time s is “low”.
(2)

The new spot price model is then given by S(t) = Λ(t) + Y (t), where

Y (t) =
∫ t

−∞
g(t − s)d M(s), t ≥ 0.

Here

d M(s) = ρ(s)d M (1)(s) + (1 − ρ(s))d M (2)(s),

where

d M (i)(s) = a(i)(s)ds + σ(i)(s−)d L(i)(s),

for independent Lévy processes L(1) and L(2). Also, a(i) denote suitable drift and
σ(i) stochastic volatility processes, for i ∈ {1, 2}.

The key question which remains to be addressed is how exactly the regime-
switching variable ρ should be chosen, given that the expression in (2) appears
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Fig. 10 Standardised histograms of the increments of M for different levels (associated with the
four quartiles) of the wind penetration index

rather casual. In order to answer this question, we study the empirical properties of
the recovered driving process M . More precisely, we investigate how the marginal
distribution of the driving process of the CARMA process changes in relation to
different levels of the wind penetration index. We split the sample of the recovered
increments of M into four parts corresponding to the four quartiles of the wind
penetration index, which are given in Table4.

Their empirical distributions are described in form of standardised histograms,
which describe the empirical probability density functions, in Fig. 10. Similarly to
the finding in our exploratory data analysis, we observe that also the distribution
of the increments of the driving process M changes quite remarkably for different
levels of the wind penetration index. In particular, we observe that rather extreme
negative increments are associated with a relatively high wind penetration index.

One can imagine a variety of rather sophisticatedmethods for choosing the cut-off
point for our regime-switching variable. Here we are interested in a rather simple
rule, which at the same time allows for a reasonable amount of observations in the
high regime so that inference is still feasible and does not just rely on a very small
number of observations. Hence, we choose the cut-off point to be 26.4% as a hard
threshold, meaning that all increments of M associated with a wind penetration index
in the fourth quartile belong to the high regime.
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3.4 Model for M Based on the Generalised Hyperbolic
Distribution

Motivated by the empirical study in [1], wewill fit the class of generalised hyperbolic
(GH) distributions to the increments of M in the two regimes.

Our notation for the GH distribution follows the one used in [13]. See also [4] for
more details on the implementation of the corresponding estimation procedures in R
available through the ghyp package.

Let us denote by d, k ∈ N some constants and let X denote a k–dimensional
random vector. Recall that we say that the law of X is given by the multivariate
generalised hyperbolic (GH) distribution if

X law= μ + Wγ + √
W CZ,

whereZ ∼ N (0, Ik),C ∈ R
d×k ,μ,γ ∈ R

d . Here W ≥ 0 denotes a one-dimensional
random variable, independent of Z and with Generalised Inverse Gaussian (GIG)
distribution, i.e. W ∼ G I G(λ,χ,ψ). The density of the GIG distribution with
parameters (λ,χ,ψ) has the following functional form:

fG I G(x) =
(

ψ

χ

) λ
2 xλ−1

2Kλ(
√

χψ)
exp

(
−1

2

(χ

x
+ ψx

))
,

where Kλ denotes the modified Bessel function of the third kind, and the parameters
have to satisfy one of the following three restrictions

χ > 0,ψ ≥ 0,λ < 0, or χ > 0,ψ > 0,λ = 0, or χ ≥ 0,ψ > 0,λ > 0.

The parameter μ is called the location parameter, Σ = CC′ is the dispersion matrix
andγ is the symmetry or skewness parameter. The three (scalar) parametersλ,χ,ψ of
the GIG distribution determine the shape of the GH distribution. The parametrisation
described above is referred to as the so-called (λ,χ,ψ,μ,Σ, γ)–parametrisation of
theGHdistribution. Since this parametrisation causes an identifiability problemwhen
one tries to estimate the parameters, we will work with the so-called (λ,α,μ,Σ, γ)–
parametrisation in our empirical study. One can show that the (λ,χ,ψ,μ,Σ, γ)–
parametrisation can be obtained from the (λ,α,μ,Σ, γ)–parametrisation by setting

ψ = α
Kλ+1(α)

Kλ(α)
, χ = α2

ψ
= α

Kλ(α)

Kλ+1(α)
,

and λ,Σ, γ remain the same, cf. [4].
We estimated 11 distributions within the GH class—consisting of the asymmetric

and symmetric versions of the GH, hyperbolic, Student’s t, variance gamma, nor-
mal inverse Gaussian distribution and the Gaussian distribution and compared them
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Table 7 Parameter estimates for the Student’s t-distribution in the low regime (symmetric case)
and high regime (asymmetric case)

ν̂ μ̂ σ̂ γ̂

Low regime 6.70 2.26 9.77 0

High regime 4.76 0.57 11.31 –7.68

Note that the parameter α = 0 in the case of the Student’s t-distribution
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Fig. 11 Diagnostic quantile-quantile plots: The first picture compares the empirical quantiles of the
data in the low regime with the estimated symmetric Student’s t-quantiles, and the second picture
compares the empirical quantiles of the data in the high regime with the estimated asymmetric
Student’s t-quantiles

according to the Akaike information criterion. We found that the best model for
the low regime is given by the symmetric Student’s t-distribution and for the high
regime by the asymmetric Student’s t-distribution, see Table7 for the corresponding
parameter estimates.

When comparing the parameter estimates for the low and the high regime provided
inTable7,weobserve that the skewness, fatness of the tails and the volatility increases
for the high regime and that the mean parameter decreases compared with the low
regime. This is in line with previous findings in the literature, which suggest that
the price level typically decreases with increasing wind energy production and that
the volatility and the risk for negative spikes (represented through negative skewness
and fatter tails) typically increases.

Also, we have provided quantile-quantile plots to assess the goodness-of-fit of the
Student’s t-distribution in Fig. 11, which overall look reasonable.

The estimation results suggest that a good model for the driving process M in the
regime-switching LSS specification is given by
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d M(s) = ρ(s)d M (1)(s) + (1 − ρ(s))d M (2)(s),

where

d M (1)(s) =
(

μ(1) + γ
(
σ(1)(s)

)2)
ds + σ(1)(s)dW (1)(s),

d M (2)(s) = μ(2)ds + σ(2)(s)dW (2)(s),

for independent Brownian motions W (1) and W (2). Here the stochastic volatility
processes σ(i) are chosen as Ornstein-Uhlenbeck processes with inverse Gamma
marginal distribution, since a mean-variance mixture with the inverse Gamma dis-
tribution results in the Student’s t-distribution.

Note that the reason for choosing volatility modulated Brownian motions rather
than Lévy processes with Student’s t-distribution is that we found a significant short
term (2 lags) autocorrelation in the increments of the recovered process M suggesting
that a stochastic volatilitymodel ismore suitable than a pure jumpmodel. This finding
reveals that stochastic volatility is a key feature in energy markets, but it typically
only exhibits short memory. Stochastic volatility is naturally incorporated into the
LSS framework making it a convincing modelling tool for energy markets.

4 Conclusion

This paper has presented an extension of the modelling framework based on Lévy
semistationary (LSS) processes introduced by [1]. Since forward-looking informa-
tion in terms of weather forecasts is available to market participants, the corre-
sponding predictions for the day-ahead wind production can be derived and used
when determining day-ahead electricity spot prices. We incorporated this informa-
tion through the so-called predicted wind penetration index in a regime-switching
model based on LSS processes. We have observed that the flexibility offered through
the regime switching component allows to model electricity prices in a more refined
way than it was possible in the original (reduced form) LSS modelling framework.
In particular, we have found that a relatively high wind penetration index leads to a
lower mean level, higher skewness, fatter tails and increased volatility in the distribu-
tion of the electricity prices. This confirms earlier findings in the literature and for the
first time links them to a flexible continuous-time stochastic modelling framework.

Given the increasing importance of renewable sources of energy, it will be inter-
esting to extend the current investigation to include a wider range of renewables,
including solar and biogas which up to now do not play as big of a role as wind
power generation in the European energy market.

Another area for future research would be to develop a stochastic model for the
wind penetration index, which could either result in a regime-switching model with
a stochastic switching parameter or in a joint model for electricity prices and the
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wind generation index. A preliminary analysis along those lines has revealed that
a reasonable model for ρ needs to take both yearly seasonality and clusters into
account. This could be seen as a first step for constructing models which can be used
for mid-term forecasts of electricity prices influenced by renewables and would help
to findmodelling and inference tools for reliable riskmanagement in energymarkets.
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Pricing Options on EU ETS Certificates
with a Time-Varying Market Price of Risk
Model

Ya Wen and Rüdiger Kiesel

Abstract To price options on emission certificates reduced-form models have
proved to be useful. We empirically analyse the performance of the model proposed
in Carmona and Hinz [2] and Hinz [8]. As we find evidence for a time-varying mar-
ket price of risk, we extend the Carmona-Hinz framework by introducing a bivariate
pricing model. We show that the extended model is able to extract information on
the market price of risk and evaluate its impact on the EUA options.

Keywords Carbon market · EUA futures · Risk-neutral valuation ·Market price of
risk · Option pricing

1 Introduction

The European Union Emissions Trading Scheme (EU ETS) was launched in 2005
and constitutes still the world’s largest carbon market. The EU ETS was set up
as a cap-and-trade scheme and split up into three phases, namely Phase I (2005–
07) without the possibility to bank unused permits; Phase II (2008–12) in which
banking was allowed; and the current Phase III (2013–20) which, compared to the
two previous periods, introduced significant changes, such as the abolishment of
national allocation plans and the auctioning of permits.

Besides permits, futures and options on permits are being traded. Various authors
have discussed the design of the market and the pricing of the permits and the
derivatives traded. The fundamental concepts for emission trading and the market
mechanism have been reviewed in the paper of Taschini [15], which also provides
a literature overview. Equilibrium models for allowance permit markets have been
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widely used to capture the theoretical properties of emission trading schemes. Exam-
ples are the dynamic but deterministic model proposed by Rubin [13] and stochastic
equilibrium approaches such as Seifert et al. [14], Wagner [16] and Carmona et al.
[3]. These models use optimal stochastic control to investigate the dynamic emission
trading in the risk-neutral framework. Carmona et al. [4] derive the permit price for-
mula which can be described as the discounted penalty multiplied by the probability
of the excess demand event. Its historical model fit has been evaluated by Grüll and
Taschini [6]. Grüll and Kiesel [5] used the formula to analyse the emission permit
price drop during the first compliance period. Carmona and Hinz [2] and Hinz [8]
propose a reduced-formmodel which is particular feasible for the calibration of EUA
futures and options as it directly models the underlying price process. Both Paolella
and Taschini [12] and Benz and Trück [1] provide an econometric analysis for the
short-term spot price behavior and the heteroscedastic dynamics of the price returns.
For the option pricing, Carmona and Hinz [2] derive a option pricing formula from
their reduced-formmodel for a single trading period. They also discuss the extension
of the formula to two trading periods.Hitzemann andUhrig-Homburg [9, 10] develop
an option pricing model for multi-compliance periods by considering a remaining
value component in the pricing formula capturing the expected value after a finite
number of trading periods.

As emission certificates are traded assets their price paths carry information on
the market participant expectations on the development of the fundamental price
drivers of the certificates including the regulatory framework. In particular, prices
of futures and options of certificates carry forward-looking information which can
be extracted by using appropriate valuation models. In this paper we derive such
a model by extending the reduced-form pricing model of Carmona and Hinz [2].
Using an extensive data set we extract a time series for the implied market price of
risk, which relates to the risk premium the investors attach to the certificates. This
requires a calibration of themodel to historical price data during varying time periods
and with different maturities of futures and options. A crucial step in the calibration
procedure is a price transformation of normalized futures prices of permits from a
pricingmeasure to the historicalmeasure.Wefind that the impliedmarket price of risk
possesses stochastic characteristics. Therefore, we extend the existing reduced-form
model bymodeling the dynamics of themarket price of risk as anOrnstein-Uhlenbeck
process and show that the extended model captures the appropriate properties of the
market. The market price of risk is an implied value related to the permit prices, this
requires an extension of the univariate permit pricing model to a bivariate one. In
this context, the standard Kalman filter algorithm is considered to be an effective
way to calibrate to the historical prices. We apply this methodology and estimate the
implied risk premia. Once the risk premia have been determined, EUA option prices
can be derived to fit the bivariate model setting, which helps to improve the accuracy
of the pricing.

This paper is organized as follows. In Sect. 2 we introduce the basic reduced-form
model based on a risk-neutral framework. We calibrate the model with an extended
data series and compare the calibration results. In Sect. 3 an extended bivariate pricing
modelwill be introduced in order to capture themarket information of the risk premia.
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We demonstrate how to calibrate the extended model by applying the standard
Kalman filter algorithm, we present the estimation results of this procedure and
discuss the model fit. In Sect. 4 we evaluate the option pricing performance by taking
into account the calibration results of the bivariate model. Section5 concludes.

2 Univariate EUA Pricing Model and Parameter Estimation

The basic reduced-form model based on a risk-neutral framework was introduced
by Carmona and Hinz [2]. Here, the aggregated normalised emissions are modelled
directly and it can be shown that the emission certificate futures process solves a
stochastic differential equation. In this section we give a brief introduction to the
model and discuss the quality of the model calibration.

2.1 Univariate Model

We consider an emission trading scheme with a single trading phase with horizon
[0, T ]. The price evolution of emission permits is assumed to be adapted stochastic
processes on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) with an equivalent
risk-neutral measure Q ∼ P. Based on the assumption of a market compliance
at time T the price has only two possible outcomes, namely zero or the penalty
level. The argument is as follows. If there are sufficient emission allowances in
the market to cover the total emissions at compliance time, surplus allowances will
become worthless. Otherwise, for undersupplied permits the price will increase to
the penalty level.

We introduce the reduced-form model of Carmona and Hinz [2]. Here the nor-
malized futures price process is a martingale under Q given by

at = E
Q[1{ΓT ≥1}|Ft], t ∈ [0, T ]. (1)

The process (Γt)t∈[0,T ] denotes the aggregated normalized emission, and is assumed
to follow a lognormal process given by

Γt = Γ0e
∫ t
0 σsdW̃s− 1

2

∫ t
0 σ 2

s ds, Γ0 ∈ (0,∞),

where σt stands for the volatility of the emission pollution rate. t ↪→ σt is a determi-
nistic function which is continuous and square-integrable. (W̃t)t∈[0,T ] is a Brownian
motion with respect to Q. Carmona and Hinz [2] prove that at solves the stochastic
differential equation

dat = Φ ′(Φ−1(at))
√

ztdW̃t, (2)
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with the function t ↪→ zt , t ∈ (0, T), given by

zt = σ 2
t∫ T

t σ 2
u du

. (3)

In order to calibrate the model, Carmona and Hinz [2] suggest to use the function

zt = β(T − t)−α,

with α ∈ R and β ∈ (0,∞), so one has

dat = Φ ′(Φ(at))
√

β(T − t)−αdW̃t . (4)

To estimate the parameters one has to determine the distribution of the price variable.
For this purpose one considers the price transformation process ξt defined by at =
Φ(ξt), where Φ denotes the cumulative distribution function of the standard normal
distribution. By applying Itô’s formula one has

dξt =
(
1

2
ztξt + √

zth

)
dt + √

ztdWt, (5)

where Wt denotes the Brownian motion under the objective measure P and h is the
market price of risk which is assumed to be constant. Moreover, it can be shown that
ξt is conditional Gaussian with mean μt and variance σ 2

t so that the log-likelihood
can be calculated and Maximum-likelihood estimation can be applied to find the
model parameters.

2.2 Estimation

We calibrate the model to different emission trading periods during the first and
second EU ETS trading phases. We consider the daily prices of the EUA futures
with maturities in December from 2005 to 2012. Their historical price series are
shown in Fig. 1.

The price transformation ξt is conditional Gaussian with its mean μt and vari-
ance σ 2

t . We consider the daily historical observations of the EUA futures at time
t1, t2, . . . , tn. Their corresponding price transformations can be determined using the
definition at = Φ(ξt). Thus the parameters α, β, h can be estimated by maximizing
the log-likelihood function given by

Lξti ,...,ξtn
(h, α, β) =

n∑
i=1

(
− (ξti − μi(h, α, β))2

2σ 2
i (α, β)

− ln

(√
2πσ 2

i (α, β)

))
. (6)
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Fig. 1 Historical prices of the EUA futures with maturities in December from 2005 to 2012

Under the model assumptions the residuals

wi = ξti − μi(h, α, β)√
σ 2

i (α, β)

, i = 1, . . . , n, (7)

must be a series of independent standard normal random variables. So standard
statistical analysis can be applied to test the quality of the model fit. We show our
estimation results in Table1. The horizons of the price data are two years, starting
from the first trading day in January of the previous trading year to the last trading
day in December of the next year.

Comparing the estimation values in Table1, the instability of the parameter va-
lues in each cell for different time periods can be observed. Note the value for the
market price of risk changes its sign during the first and second trading phase. This
implies the inappropriateness of the assumption for a constant market price of risk.
The fourth value in each cell is the negative of LLF. Note the -LLF are much lower
after the first trading phase because the price collapse during 2006 to 2007 affects
the data partially.

FromFigs. 2, 3, 4, 5 and 6wedisplay the time series of the residualswi, their empir-
ical auto-correlations, empirical partial auto-correlations and quantile-quantile-plots.
We choose EUA futures with maturity in December 2007 (EUA 07) and EUA futures
with maturity in December 2012 (EUA 12) as examples.

The time series wi show an effect of volatility clustering. This is confirmed by
significant values to high lags in the sample autocorrelation and sample partial auto-
correlation. Also the Q-Q plots, especially for the first trading phase, indicate heavy
tails and a non-Gaussian behavior. A formal analysis with an application of Jarque-
Bera test rejects the hypothesis that the data set is generated fromnormally distributed
random variables. In order to improve the model fit we extend the model by intro-
duction of a dynamic market price of risk in Sect. 3.



346 Y. Wen and R. Kiesel

Ta
bl

e
1

Pa
ra
m
et
er

es
tim

at
e
re
su
lts

T
im

e
pe
ri
od

M
at
ur
ity

A
pr
.0
5–
D
ec
.0
6

Ja
n.
06
–D

ec
.0
7

Ja
n.
07
–D

ec
.0
8

Ja
n.
08
–D

ec
.0
9

Ja
n.
09
–D

ec
.1
0

Ja
n.
10
–D

ec
.1
1

Ja
n.
11
–D

ec
.1
2

D
ec
.0
6

−0
.3
50
1

0.
78
18

0.
74
70

−6
44
.5
83
6

D
ec
.0
7

−0
.4
30
3

0.
13
26

0.
55
56

0.
75
99

0.
60
02

1.
39
59

−6
46
.0
24
0

−7
39
.0
30
1

D
ec
.0
8

−0
.8
02
2

−1
.9
96
0

0.
08
70

0.
06
32

0.
02
60

0.
07
51

−0
.1
47
3

−0
.3
91
8

0.
05
51

−9
89
.4
65
3

−1
27
6.
02
76

−1
32
4.
21
64

D
ec
.0
9

−0
.8
99
5

−3
.2
11
6

0.
01
91

−0
.2
60
2

0.
04
38

0.
00
28

0.
07
48

0.
08
11

−0
.2
26
0

−0
.4
05
1

0.
08
99

0.
40
49

−9
84
.3
74
0

−1
27
9.
05
03

−1
35
8.
37
49

−1
31
2.
40
67

D
ec
.1
0

−1
.1
85
2

−4
.3
38
5

0.
01
04

−0
.3
17
4

−0
.7
88
1

0.
02
21

0.
00
02

0.
07
50

0.
06
45

0.
05
44

−0
.2
48
0

−0
.4
15
7

0.
08
96

0.
60
54

0.
24
04

−9
86
.8
37
4

−1
28
1.
39
26

−1
35
7.
43
28

−1
33
1.
59
90

−1
45
5.
54
80

(c
on
tin

ue
d)



Pricing Options on EU ETS Certificates with a Time-Varying … 347

Ta
bl

e
1

(c
on
tin

ue
d)

T
im

e
pe
ri
od

M
at
ur
ity

A
pr
.0
5–
D
ec
.0
6

Ja
n.
06
–D

ec
.0
7

Ja
n.
07
–D

ec
.0
8

Ja
n.
08
–D

ec
.0
9

Ja
n.
09
–D

ec
.1
0

Ja
n.
10
–D

ec
.1
1

Ja
n.
11
–D

ec
.1
2

D
ec
.1
1

−1
.3
76
5

−5
.7
10
2

0.
05
79

−0
.4
09
8

−2
.2
93
9

0.
44
60

0.
01
29

0.
00
01

0.
07
91

0.
05
06

0.
00
92

0.
03
31

−0
.2
72
9

−0
.4
35
8

0.
08
34

0.
59
52

0.
13
49

0.
46
57

−9
78
.9
76
0

−1
27
9.
65
62

−1
36
1.
85
70

−1
33
2.
83
19

−1
49
7.
05
51

−1
52
8.
84
44

D
ec
.1
2

−1
.6
48
6

−6
.8
34
1

0.
02
77

−0
.5
41
9

−3
.5
80
5

1.
45
72

0.
12
79

0.
00
62

0.
00
00

0.
07
82

0.
03
73

0.
00
08

0.
10
90

0.
06
80

−0
.2
95
1

−0
.4
13
8

0.
06
11

0.
58
16

0.
18
23

0.
41
83

0.
69
48

−9
76
.2
66
4

−1
27
3.
22
28

−1
35
5.
51
16

−1
33
2.
00
14

−1
50
0.
66
28

−1
52
4.
73
10

−1
35
5.
86
39

In
ea
ch

ce
ll
th
e
fir
st
va
lu
e
st
an
ds

fo
r
α
,s
ec
on
d
fo
r
β
,t
hi
rd

fo
r
th
e
m
ar
ke
t
pr
ic
e
of

ri
sk

(M
PR

)
h,

th
e
la
st
on
e
fo
r
th
e
ne
ga
tiv

e
of

L
L
F.

N
ot
e
th
at

fr
om

20
05

to
20
07

is
th
e
fir
st
tr
ad
in
g
ph
as
e,
fr
om

20
08

to
20
12

is
th
e
se
co
nd

tr
ad
in
g
ph
as
e



348 Y. Wen and R. Kiesel

0 100 200 300 400 500
−10

−5

0

5

10

time in days

re
si

du
al

s

0 5 10 15 20
−0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function

0 5 10 15 20
−0.5

0

0.5

1

Lag

S
am

pl
e 

P
ar

tia
l A

ut
oc

or
re

la
tio

ns Sample Partial Autocorrelation Function

−4 −2 0 2 4
−4

−2

0

2

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

0 200 400 600
−10

−5

0

5

10

time in days

re
si

du
al

s

0 5 10 15 20
−0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function

0 5 10 15 20
−0.5

0

0.5

1

Lag

S
am

pl
e 

P
ar

tia
l A

ut
oc

or
re

la
tio

ns Sample Partial Autocorrelation Function

−4 −2 0 2 4
−4

−2

0

2

4

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

Fig. 2 Statistical analysis of EUA 07, time period 05–06 and 06–07
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QQ Plot of Sample Data versus Standard Normal
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QQ Plot of Sample Data versus Standard Normal

Fig. 3 Statistical analysis of EUA 12, time period 05–06 and 06–07
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QQ Plot of Sample Data versus Standard Normal
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Fig. 4 Statistical analysis of EUA 12, time period 07–08 and 08–09
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QQ Plot of Sample Data versus Standard Normal
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Fig. 5 Statistical analysis of EUA 12, time period 09–10 and 10–11
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Fig. 6 Statistical analysis of
EUA 12, time period 11–12
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3 Bivariate Pricing Model for EUA

The evidence in the previous section shows that the market price of risk is actually
time varying rather than constant. In order to illustrate the dynamic property of the
market price of risk we consider a bivariate permit pricing model in this section.

3.1 Model Description

We model the market price of risk as an Ornstein-Uhlenbeck process as its value
can be either positive or negative and denote it by λt . Recall the equation for the
normalized price process under the risk-neutral measure Q given by (2). According
to Girsanov’s theorem, the bivariate pricing model under the objective measure P is
given by

dat = Φ ′(Φ−1(at))
√

zt(λtdt + dW 1
t ),

dλt = θ(λ̄ − λt)dt + σλdW 2
t ,

dW 1
t dW 2

t = ρdt,

where W 1
t and W 2

t are two one-dimensional Brownianmotions with correlation coef-
ficient ρ. Note that under themodel assumptions, the filtration (Ft) in the probability
space must be assumed to be generated by the bivariate Brownian motion.

The use of Girsanov’s theorem in the bivariate model requires the condition that
the process Zt given by

Zt = exp
( ∫ t

0
λsdWs − 1

2

∫ t

0
λ2s ds

)
(8)

is a martingale. A sufficient condition for (8) is Novikov’s condition:

E

[
exp

(1
2

∫ T

0
λ2s ds

)]
< ∞. (9)
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Under our model assumptions, this condition is always satisfied.1

To calibrate the model we use the transformed price process to avoid complex
numerical calculations in the calibration procedure. The bivariatemodel can be refor-
mulated as

dξt =
(
1

2
ztξt + √

ztλt

)
dt + √

ztdW 1
t , (10)

dλt = θ(λ̄ − λt)dt + σλdW 2
t , (11)

dW 1
t dW 2

t = ρdt. (12)

In (11), λ̄ represents the long-term mean value. θ denotes the rate with which the
shocks dissipate and the variable reverts towards the mean. σλ is the volatility of the
market price of risk. According to Carmona and Hinz [2], the price transformation
is conditional Gaussian and its SDE can be solved explicitly.

3.2 Calibration to Historical Data

We consider the discretization of the model (10)–(12). By assuming the constant
volatility terms in the time interval [tk−1, tk], the model equations can be discretized
under Euler’s scheme given by

ξtk = √
ztk−1	tλtk−1 +

(
1 + 1

2
ztk−1

)
ξtk−1 +

√
ztk−1	tE 1

tk , (13)

λtk = (1 − θ	t)λtk−1 + θλ̄	t + σλ

√	tE 2
tk , (14)

Cov(E 1
tk ,E

2
tk ) = ρ, (15)

where 	t = tk − (tk−1), namely the time interval, and E 1
tk , E

2
tk ∼ N (0, 1). ztk can

be modeled by using the function β(T − tk)−α . The model parameter-set is therefore
ψ = [θ, λ̄, σλ, ρ, α, β].

As λtk is a hidden state variable related to the price transformation, and only values
of ξtk at time points t1, t2, . . . , tn can be determined from themarket observations, the
market price of risk series can be estimated by applying the Kalman filter algorithm.
We have chosen to use the transformation process instead of the normalized price atk .
Because of the linear form of Eqs. (13) and (14) the standard Kalman filter algorithm
is considered to be an efficientmethod for themodel calibration.A detailed procedure
to apply the standard Kalman filter can be found in [7]. To apply the Kalman filter
model Eqs. (13)–(15) must be put into the state space representation to fit the model
framework. The measurement equation links the unobservable state to observations.
It can be derived from (13) and (14). After some manipulations, the equations of the

1A proof can be found in Appendix 1.
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state space form for the model can be rewritten2 as

Stk = √
β(T − tk)−α	tλtk +

(
1 + 1

2
(β(T − tk)

−α)

)
ξtk + √

β(T − tk)−α	tĒ 1
tk ,

(16)
and

λtk =
[
θλ̄	t − σλρ√

β(T − tk)−α

((
1 + 1

2
(β(T − tk)

−α)

)
ξtk−1 − ξtk

)]

+(1 − θ	t − σλρ	t)λtk−1 + σλ

√
(1 − ρ2)	tĒ 2

tk , (17)

where Ē 1
tk and Ē 2

tk are independent, standard normally distributed random variables.
For the estimation of the parameter vector ψ = [θ, λ̄, σλ, ρ, α, β] consider

the variable ξtk . In each iteration of the filtering procedure, the conditional mean
E[ξtk |ξt1, . . . , ξtk−1 ] and the conditional variance Var(ξtk |ξt1, . . . , ξtk−1) can be cal-
culated. We denote mean and variance byμtk (ψ) andΣtk (ψ), respectively. The joint
probability density function of the observations is denoted by f (ξt1:n |ψ) and is given
by

f (ξt1:n |ψ) =
n∏

k=1

1√
2πΣtk (ψ)

exp

(
− (ξtk − μtk (ψ))2

2Σtk (ψ)

)
,

where ξt1:n summarize the observations from ξt1 to ξtn . Its corresponding log-
likelihood function is given by

Lobs(ψ |ξt1:n) = −n

2
log 2π − 1

2

n∑
k=1

logΣtk (ψ) − 1

2

n∑
k=1

(ξtk − μtk (ψ))2

Σtk (ψ)
. (18)

The estimation results, their standard errors, t-tests and p-values can be found in
Table2. Figure7 shows the estimation results of the market price of risk, compared
with the price transformation and the historical futures price. In Fig. 8, a negative
correlation between the price transformation and the market price of risk can be seen.
The market price of risk is the return in excess of the risk-free rate that the market
wants as compensation for taking the risk.3 It is a measure of the extra required rate
of return, or say, a risk premium, that investors need for taking the risk. The more
risky an investment is, the higher the additional expected rate of return should be.
So in order to achieve a higher required rate of return, the asset must be discounted
and thus will be sold at a lower price. Figure8 reveals this inverse relationship.

Moreover, we use themean pricing errors (MPE) and the root mean squared errors
(RMSE) given by

2For a derivation of the state equation see Appendix 2.
3For an economical explanation see [11], Chap.27. or [17], Chap.30.
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Table 2 Test of model parameters at significance level 5%, sample size 1536

Parameter Coeff Std Err t-test p-value

θ 1.5130 0.3195 5.7601 0.0000

λ̄ 0.4091 0.6117 4.0641 0.0001

σλ 0.2913 0.0193 17.6365 0.0000

ρ 0.0017 0.0016 9.0910 0.0000

α −1.5772 0.0256 61.5603 0.0000

β 0.0172 0.0005 35.6312 0.0000
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Fig. 7 MPR, futures price and price transformation from Jan. 2007 to Dec. 2012
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N

N∑
ti=1
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2

⎞
⎠

1
2
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Table 3 Performance of MPE and RMSE with 2000 observations

Maturity MPE RMSE

1 month −0.0153 0.0182

3 months −0.0208 0.0234

6 months −0.0366 0.0397

9 months −0.1273 0.1302
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Fig. 9 Statistical tests for the residuals in trading phase 2

respectively, to assess the quality of model fit. Here N denotes the number of obser-
vations, ξ̄ti,τ is the estimated price to maturity τ , and ξti,τ is the observed price. Their
values can be seen in Table3. The absolute values of MPE and RMSE increase with
time but still remain very low even 9 months before the maturity. Therefore, the
conclusion is that the model is able to reproduce the price dynamics.

In Fig. 9 we show the standard statistical test results of the residuals by taking into
account the dynamic market price of risk. Comparing with the results from Figs. 2, 3,
4, 5 and 6, the time series of the residuals is relative stable with smaller variance. The
sample auto-correlations and sample partial auto-correlations reveal veryweak linear
dependence of the variables at different time points. Also, the Q-Q plot indicates a
better fit of a Gaussian distribution.

4 Option Pricing and Market Forward Looking Information

A general pricing formula of a European call is given by

Ct = e− ∫ τ
t rsds

E
Q[(Aτ − K)+|Ft],
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where {rs}s∈[0,T ] stands for a deterministic rate, At denotes the futures price, K ≥ 0
is the strike price, and τ ∈ [0, T ] is the maturity. The normalized price process at is
given by at = At/P, whereP denotes the penalty for each ton of exceeding emissions,
and therefore we have At = PΦ(ξt). A call option price formula written on EUA has
been derived by Carmona and Hinz [2] under the assumption of a constant market
price of risk. Under the assumption of a dynamic market price of risk, the option
price formula is coherent with the formula in [2] given by

Ct = e− ∫ τ
t rsds

∫
R

(PΦ(x) − K)+ϕ(μt,τ , σ
2
t,τ )dx,

where ϕ stands for the density function of a standard normal distribution. Here μt,τ

and σ 2
t,τ are the parameters of the distribution of ξt , which is conditional Gaussian.

Under the risk neutral measure Q, μt,τ and σ 2
t,τ are given by

μt,τ = e
1
2

∫ τ
t zsdsξt, σ 2

t,τ =
∫ τ

t
zse

∫ τ
s zududs.

In the following example, the penalty level is P = 100, the initial time t = 0
starts in April 2005. EUA futures has maturity T on the last trading day in 2012. The
European calls written on EUA futures with a strike at K = 15 and maturity T will
be considered under a constant interest rate at r = 0.05. Figure10 shows the call
option prices and the futures prices. The red curve stands for the option prices under
dynamic MPR while the green curve stands for the option prices under constant
MPR.

To measure the impact of the dynamic market price of risk on the EUA option for
different strikes we calculate the option price in the univariate and bivariate model
setting respectively. Durations from 1, 3, 6 and 12 months to maturity are chosen for
calls written on EUA 2012. The results are plotted in Fig. 11. The red curve stands for
the option prices evaluated by the bivariatemodel and the blue curve by the univariate
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Fig. 10 Futures price and call option prices with K = 15 from 2005 to 2012
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Fig. 11 Call option prices comparison for durations of 1, 3, 6, 12months on EUA 2012 for different
strikes

model. The green line is the corresponding futures price at the given time. In most
cases, one is interested in the option prices near the underlying price. According to
the figure, the option prices in different model settings coincide except for a interval
around the corresponding futures. In a short time before the maturity of EUA 2012,
Fig. 11 shows a price overestimation by the constant MPR. This result is consistent
with the result shown in Fig. 10, where we take K = 15 as a sample path.

Moreover, one notes that the call price process with constantMPR develops below
the call process with dynamic MPR in the first trading phase before 2008 and then
increases slowly and moves to the upside of the call process with dynamic MPR dur-
ing the second trading phase, before both processes vanish to the maturity because of
lower underlying prices. The reason for the price underestimation before 2008 and
overestimation thereafter can be explained as the assumption of a constant MPR in
the whole trading periods and thus causes a neglect on the information of the market
participants. Due to the regulatory framework of the carbon market, certificates carry
information on the market participant expectations on the development of the fun-
damental price drivers. Since the implied risk premia increase with time and exceed
their ’average’ level in 2008, asset price must be discounted to compensate the higher
risk. By using appropriate valuationmodels, this risk premia and the forward-looking
information carried by prices of futures and options of certificates can be extracted.

5 Conclusion

We extract forward-looking information in the EU ETS by applying an extended
pricing model of EUA futures and analyzing its impact on option prices. We find
that the implied risk premium is time-varying and has to be modeled by a stochastic
process. Using the information given by the risk premium we show that the option
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prices during the first and second trading phases are underestimated and overesti-
mated, respectively. The reason for the pricing deviation is caused by the assumption
of a constant market price of risk which rigidifies the market participant expectations
on the development of price drivers. The over- and underestimated prices are mostly
concentrated in the interval including the corresponding futures, which is the area
where the price most likely will evolve in the future. Although there is not a closed
form for the option pricing formula, a simple numerical approach can be used to
determine the price.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Appendix 1

In order to show the condition in (8), it is sufficient to prove the Novikov’s condition
given by

E

[
exp

(1
2

∫ T

0
λ2s ds

)]
< ∞.

In the bivariate EUA pricing model, where λt follows a Ornstein-Uhlenbeck-Process
given by

λt = θ(λ̄ − λt)dt + σλdW t,

this condition is always satisfied.

Proof We first show that there exists a constant ε > 0 such that for any S ∈ [0, T ],
we have

E

[
exp

(1
2

∫ S+ε

S
λ2t dt

)]
< ∞. (19)

To show (19) we consider the term in the expectation notation. By applying Jensen’s
inequality we have

exp
(1
2

∫ S+ε

S
λ2t dt

)
= exp

( ∫ S+ε

S

1

ε

ε

2
λ2t dt

)

= exp
(1

ε

∫ S+ε

S

ε

2
λ2t dt

)
≤ 1

ε

∫ S+ε

S
exp

(ε

2
λ2t

)
dt.

By applying Fubini’s theorem (19) becomes

1

ε

∫ S+ε

S
E

[
exp

(ε

2
λ2t

)]
dt. (20)
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The process λt is a Gaussian process with mean and variance given by

E[λt] = μt = λ0e−θ t + λ̄(1 − e−θ t),

Var(λt) = σ 2
t = σ 2

λ

2θ
(1 − e−2θ t).

We have λt ∼ N (μt, σ
2
t ). Now let Z be a standard normal-distributed random

variable Z ∼ N (0, 1). So in (20) we have

E

[
exp

(ε

2
λ2t

)]
= E

[
exp

(ε

2
(μt + σtZ)2

)]

= E

[
exp

(εμ2
t

2
+ εμtσtZ + εσ 2

t Z2

2

)]

=
∫
R

exp
(εμ2

t

2
+ εμtσtx + εσ 2

t x2

2

) 1√
2π

exp
(

− x2

2

)
dx

= exp
(εμ2

t

2

) ∫
R

1√
2π

exp
(

− 1 − εσ 2
t

2
x2 + εμtσtx

)
dx.

To calculate the integration term above, let at = 1− εσ 2
t and bt = εμtσt , and make

the integral-substitution. Then we have

∫
R

1√
2π

exp
(

− 1 − εσ 2
t

2
x2 + εμtσtx

)
dx

=
∫
R

1√
2π

exp
(

− 1

2
(atx

2 − 2btx)
)

dx

=
∫
R

1√
2π

exp
(

− 1

2

(
y2 − 2bt

1√
at

y
)) 1√

at
dy

= 1√
at

∫
R

1√
2π

exp
(

− 1

2

(
y2 − 2bt√

at
y +

( bt√
at

)2 −
( bt√

at

)2))
dy

= 1√
at

exp
( b2t
2at

) ∫
R

1√
2π

exp
(

−
(y − 2bt√

at
)2

2

)
dy

= 1√
at

exp
( b2t
2at

)
.

According to the assumptions at = 1 − εσ 2
t is positive and the expectation is con-

vergent for a small ε and its value is

E

[
exp

(ε

2
λ2t

)]
= 1√

at
exp

(εμ2
t

2

)
exp

( b2t
2at

)

= 1√
1 − εσ 2

t

exp
(εμ2

t

2

)
exp

( ε2μ2
t σ

2
t

2 − 2εσ 2
t

)
.
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Thus the integral in (20) is finite and the exponential term in (19) is integrable.
In order to show Zt is a martingale we first consider that Zt is a local martingale,

hence it is a supermartingale. Therefore, Zt is a martingale if and only if the condition
E[Zt] = 1, ∀t ∈ [0, T ], is satisfied. This martingale property can be shown by
induction. Suppose E[Z0] = 1 which is trivial and E[Zt] = 1 for t ∈ [0, S] for
S < T . Let now t ∈ [S, S + ε] and set

Zt
S = exp

( ∫ t

S
λsdWs − 1

2

∫ t

S
λ2s ds

)
.

According to Novikov condition and (19), Zt
S is a martingale. Then we have

E[Zt] = E[ZSZt
S] = E[E[ZSZt

S]|FS] = E[ZSE[Zt
S|FS]] = E[ZSZS

S ] = E[ZS],

since

ZS
S = exp

( ∫ S

S
λsdWs − 1

2

∫ S

S
λ2s ds

)
= exp(0) = 1.

It follows
E[Zt] = E[ZS] = 1 for t ∈ [S, S + ε].

Then we have E[Zt] = 1 for t ∈ [0, S + ε]. Repeat this induction for T−S
ε

times
we have E[Zt] = 1 for t ∈ [0, T ], which implies Zt defined in (8) is a
martingale. �

Appendix 2

The bivariate EUA pricing model can be described as follows:

ξtk = √
ztk−1	tλtk−1 +

(
1 + 1

2
ztk−1

)
ξtk−1 +

√
ztk−1	tE 1

tk ,

λtk = (1 − θ	t)λtk−1 + θλ̄	t + σλ

√	tE 2
tk ,

Cov(E 1
tk ,E

2
tk ) = ρ,

where E 1
tk and E

2
tk are both random variables of the standard normal distribution. We

want to put the model into the state space form. Price transformation depends on
the current level of the market price of risk, which is an unobservable variable and
therefore must be modeled in the equation of λtk . We first let

E 1
tk = Ē 1

tk , E 2
tk =

√
1 − ρ2Ē 2

tk + ρĒ 1
tk ,
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where Ē 1
tk and Ē 2

tk are both random variables of the standard normal distribution as
well. This fact can be easily seen since we have

Cov(Ē 1
tk

, Ē 2
tk

) = Cov

(
E 1

tk
,
E 2

tk
− ρE 1

tk√
1 − ρ2

)
= Cov

(
E 1

tk
,

E 2
t−k√

1 − ρ2

)
+ Cov

(
E 1

tk
, − ρE 1

tk√
1 − ρ2

)
= 0.

Note that

√
ztk−1	tλtk−1 +

(
1 + 1

2
ztk−1

)
ξtk−1 +

√
ztk−1	tE 1

tk − ξtk = 0.

Multiplying−σλρ(ztk−1)
− 1

2 at the both sides of the equation and sum it to the equation
of λtk , it follows that

λtk = (1 − θ	t)λtk−1 − σλρ	tλtk−1 + θλ̄	t,

− σλρ√
ztk−1

((
1 + 1

2
ztk−1

)
ξtk−1 − ξtk

)
+ σλ

√	tE 2
tk − σλ

√	tρE 1
tk

= (1 − θ	t − σλρ	t)λtk−1 +
[
θλ̄	t − σλρ√

ztk−1

((
1 + 1

2
ztk−1

)
ξtk−1 − ξtk

)]

+ σλ

√	t
√
1 − ρ2E 2

tk .

This is the transition equation in the state space form, and the measurement equation
would be

Stk = ξtk+1 = √
ztk 	tλtk +

(
1 + 1

2
ztk

)
ξtk + √

ztk 	tE 1
tk .
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