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Abstract. Image classification is intrinsically a multiclass, nonlinear
classification task. Support Vector Machines (SVMs) have been suc-
cessfully exploited to tackle this problem, using one-vs-one or one-vs-all
learning schemes to enable multiclass classification, and kernels designed
for image classification to handle nonlinearities. To classify an image at
test time, an SVM requires matching it against a small subset of the
training data, namely, its support vectors (SVs). In the multiclass case,
though, the union of the sets of SVs of each binary SVM may almost
correspond to the full training set, potentially yielding an unacceptable
computational complexity at test time. To overcome this limitation, in
this work we propose a well-principled reduction method that approx-
imates the discriminant function of a multiclass SVM by jointly opti-
mizing the full set of SVs along with their coefficients. We show that
our approach is capable of reducing computational complexity up to two
orders of magnitude without significantly affecting recognition accuracy,
by creating a super-sparse, budgeted set of virtual vectors.

1 Introduction

In the last decade, Support Vector Machines (SVMs) [23] have gained increas-
ing popularity in the field of image classification, due to their high generaliza-
tion capability [1,14,25]. In addition, the introduction of novel kinds of feature
descriptors, like the Scale-Invariant Feature Transform (SIFT) [15] and the His-
togram of Oriented Gradients (HoG) [8], extracted following the Bag-of-Words
(BoW) paradigm and the spatial pyramid framework [11], has caused a signif-
icant increase in the dimensionality of the corresponding feature spaces. This
change, along with the ability of SVMs to retain a high generalization capability
even in high-dimensional feature spaces, has favored a wide diffusion of SVMs
in image classification tasks.

Under this setting, high-dimensional image descriptors in combination with
linear classifiers are used. The use of linear classifiers is usually motivated by
computational efficiency reasons. This is especially important when dealing with
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a large number of classes and images, even if it may not attain a very high
classification accuracy [1,14]. To overcome this drawback, the use of kernel-
based approaches has become widely popular. Although being frequently used,
this approach has the disadvantage of requiring a large number of computations
during testing, as it requires matching each test image against a potentially large
number of images in the training set. For instance, to classify a test image, an
SVM requires computing the kernel values between the test image and the so-
called Support Vectors (SVs), whose number increases linearly with the training
set size [6,20]. Usually, in image classification, researchers aim to optimize the
training phase and use parallel computing to manage the complexity at test time
while preserving classification accuracy [14].

The use of nonlinear classifiers, besides bringing clear benefits in terms of
classification performance, demands for a higher complexity at test time. In fact,
if linear classifiers can classify a test image by simply computing a scalar product
between its feature vector and the set of learned feature weights [23], the use
of kernels requires a much higher number of comparisons, as mentioned above.
It is thus clear that enabling the use of kernel-based methods on large image
datasets while retaining a reduced computational complexity at test time can
be considered a relevant open research issue. In the field of pattern recognition,
diverse methods have been proposed to tackle this problem. In particular, several
methods have been proposed to reduce the number of SVs in SVMs [19,21]
but, to the best of our knowledge, no one has been ever exploited for image
classification purposes.

Although SVMs have been designed for binary classification, in object recog-
nition and image classification tasks they have to deal with several classes. To
this end, several multiclass extensions have been considered (see Sect. 2).

In this paper, we propose a novel algorithm that can drastically reduce the
number of required matchings without significantly affecting recognition accu-
racy. To this end, our algorithm creates a small set of virtual support vectors,
and jointly optimizes the objective function of all SVMs (one for each class)
at once. In particular, our algorithm optimizes a unique, budgeted set of vir-
tual vectors along with an optimal set of coefficients for their combination (see
Sect. 3). It is also worth noting that the proposed method may be exploited to
speed up other non-parametric approaches besides SVMs, making it suitable for
a wider range of pattern recognition tasks.

The reported results show that our approach is capable of reducing compu-
tational complexity up to two orders of magnitude, while only worsening the
recognition accuracy of about 5% in the worst case (see Sect. 4).

2 Image Classification with Visual Descriptors

Classifying a scene depicted in an image amounts to labeling it among a set of
categories, according to its semantic meaning. In recent years, scene classifica-
tion has been an active and important research topic, ranging from computer
vision to content-based image retrieval, as witnessed by the large number of
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related approaches proposed in the last decade [11,13,26]. Despite this, a num-
ber of challenging aspects in scene classification can be still considered open
issues, including inter-class similarity, intra-class variability, and the wide range
of illumination and scale changes. Along with the considerable progress made in
this field, tougher challenges have been posed by researchers, in terms of more
difficult benchmark datasets, i.e., bigger datasets with an increasing number of
images: 8-category scenes [16], 13-category scenes [13], 15-category scenes [11],
and 397-category scenes (SUN-dataset) [24].

Feature extraction and classification algorithms play an important role in
scene classification problems [5,18]. Regarding feature descriptors, researchers
have recently employed histograms of local descriptors instead of global image
features. The former are indeed able to better model the content of images in
order to fill the semantic gap between low-level features and high-level concepts.

The most famous approach uses the so-called bag-of-features paradigm to
model visual scenes in image collections [13]. This approach has been first
exploited with SIFT descriptors [15] but it has been quickly used also with
other descriptors. One of the main drawbacks of the bag-of-features represen-
tation is that it does not account for spatial information. To overcome this
limitation, an efficient extension of this approach, called spatial pyramid match-
ing (SPM), has been proposed in [11]. It exploits spatial relationships between
neighboring local regions. Compared with methods based on low-level features,
both the aforementioned approaches achieve very good results for multiple scene
classification, although they suffer a high computational cost and generate very
high-dimensional feature spaces.

Due to their good generalization ability also in the presence of high-
dimensional feature spaces, SVMs are among the most used classifiers in scene
classification tasks [7,24,26]. SVMs have been designed for binary classification,
but they can be exploited for multiclass classification by decomposing the mul-
ticlass problem into several two-class sub-problems, e.g., using the One-vs-One
(OVO) and the One-vs-All (OVA) approaches. The first method trains each
binary classifier on two out of N classes and builds N(N − 1)/2 classifiers, sub-
sequently combined through majority voting. Conversely, the second approach
constructs a set of N binary classifiers, each aiming to discriminate one given
class from the remaining ones. During classification, a sample is assigned to the
class exhibiting the highest support, i.e., the one corresponding to the classifier
that outputs the most confident prediction.

Another important aspect of statistical learning approaches like SVMs is the
choice of the kernel, since an inappropriate kernel can lead to poor performance.
There are currently no techniques available to know which kernel to use, so it easy
to understand why several authors exploit well-known kernels such as the poly-
nomial kernel or the Radial Basis Function (RBF) kernel. In image classification,
however, several studies have investigated this issue, reporting that histogram-
intersection kernels usually outperform polynomial and RBF kernels.[2,3,7,11].
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3 Reducing Multiclass Support Vector Machines

In this section, we extend the SVM reduction method originally proposed in
[4] for binary classification problems to the multiclass classification case. Let us
assume we are given a set D = {xi, yi}n

i=1 ∈ X n × Yn of n images along with
their labels y ∈ Y = {1, . . . , c}, being c the number of classes.1 Training a one-
vs-all multiclass SVM on D amounts to learning a binary SVM for each class
k = 1, . . . , c, using the samples of class k as positive training samples, and the
remaining ones as negative. Its decision function is then given as:

y� = arg max
k=1,...,c

gk(x) =
n∑

i=1

αk
i k(x,xi) + bk, (1)

where y� is the predicted class label, gk(x) is the kth SVM’s discriminant func-
tion, and the set {αk

i }n
i=1 are its signed dual coefficients (positive if yi = k, and

negative otherwise). Although each binary SVM has a sparse solution, i.e., only
a subset of the values in {αk

i }n
i=1 are not null (corresponding to its support vec-

tors), their number grows linearly with the training set size [6,20]. Furthermore,
in the multiclass case, classifying an input image requires matching it against
the set of SVs of each binary SVM, which yields a number of matchings (i.e.,
kernel computations) equal to the size of the union of the sets of SVs of each
binary SVM. In the sequel, we refer to this number as m, and, as we will see in
Sect. 4, m may be very close to the full training set size n.

Our goal is to reduce the number of required matchings m to a much smaller
number r, by approximating each SVM’s discriminant function gk(x) with a
much sparser linear combination hk(x), such that all functions hk(x), for k =
1, . . . , c share the same set of SVs z = (z1, . . . ,zr) ∈ X r, but have a different
set of weighting coefficients βk = (βk

1 , . . . , βk
r ) ∈ R

r. In other words, we aim to
approximate the decision function given by Eq. (1) as:

y� = arg max
k=1,...,c

hk(x) =
r∑

j=1

βk
j k(x,zj) + bk . (2)

To find the coefficients {βk}c
k=1 and the shared SVs z, we extend our recent work

in [4] to the multiclass case. In that work, inspired by the earlier work in [19],
we proposed a reduction method based on the idea of minimizing the squared
Euclidean distance between the values of gk and hk computed on the training
points, with respect both to βk and to the choice of the SVs z. In practice,
we did not require the SVs z to be samples of D, but allow for the creation of
novel, virtual vectors. In the multiclass case, the initial formulation in [4] can be
modified by considering k distinct SVMs that share the same SVs z, as:

min
β,z

Ω =
c∑

k=1

n∑

i=1

ui (hk(xi) − gk(xi))
2 + λβ�

k βk , (3)

1 For simplicity, we assume here that each image can belong only to one class, i.e., we
focus on single-label classification. Although our approach can be easily extended to
the multi-label classification case, we leave this investigation to future work.
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Algorithm 1. Reduced Multiclass SVM (RMSVM), adapted from [4]

Input: the training data D = {xi, yi}n
i=1; the kernel function k(·, ·); the parameters C

and λ; the initial vectors {z
(0)
j }r

j=1; the gradient step size η; a small number ε.
Output: The coefficients β and the SVs {zj}r

j=1.

1: Learn a one-vs-all multiclass SVM on D, with kernel k(·, ·) and regularizer C.
2: Compute {gk}c

k=1 by classifying D with each binary SVM.
3: Set the iteration count q ← 0.
4: Compute {β

(0)
k }c

k=1 (Eq. 5) using z
(0)
1 , . . . , z

(0)
r .

5: repeat
6: Set j ← mod(q, r) + 1 to index a support vector.
7: Compute ∂Ω

∂zj
using Eq. (6).

8: Increase the iteration count q ← q + 1
9: Set z

(q)
j ← z

(q−1)
j + η ∂Ω

∂z
(q−1)
j

.

10: if z
(q)
j �∈ X , then project z

(q)
j onto X .

11: Set z
(q)
i = z

(q−1)
i , ∀i �= j.

12: Compute {β
(q)
k }c

k=1 (Eq. 5) using z
(q)
1 , . . . , z

(q)
r .

13: until
∣∣∣Ω

(
β(q), z(q)

)
− Ω

(
β(q−1), z(q−1)

)∣∣∣ < ε

14: return: β = β(q), and z = z(q).

where the scalars u1, . . . , un can be used to balance the contribution of each
point xi to the empirical loss (e.g., if classes are unbalanced), the regularizer
β�

k βk controls overfitting, and λ is a regularization parameter.2 By denoting
with gk,hk ∈ R

n the values of gk and hk for the training points, and with
U ∈ R

n×n the diagonal matrix diag(U) = (u1, . . . , un), we can rewrite Eq. (3)
in matrix form as:

Ω (β,z) =
∑c

k=1

(
h�

k Uhk − 2h�
k Ugk + g�

k Ugk

)
+ λβ�

k βk . (4)

Problem (4) can be solved by iteratively modifying β and z, as detailed below.
The full procedure is given as Algorithm 1. We also report a two-dimensional
example in Fig. 1, in which our algorithm reduces the number of SVs of approx-
imately 24 times, from m = 73 to r = 3.
β-Step. The coefficients βk for each reduced SVM are computed assuming that
the SVs z are fixed. This yields a standard ridge regression, which can be ana-
lytically solved by deriving Eq. (4) with respect to βk, assuming z constant, and
then setting the gradient to zero:

βk =
(
K�

xzUKxz + λI
)−1

︸ ︷︷ ︸
M−1

(
K�

xzU
)

︸ ︷︷ ︸
N

gk , (5)

where I ∈ R
r×r is the identity matrix, and Kxz ∈ R

n×r denotes the kernel
matrix computed between x1, . . . ,xn and the set of SVs z.
2 Here, for convenience, the bias values bk are set equal to those of the initial SVMs

gk. In general, they can be jointly optimized with the coefficients βk, with minor
variations to our subsequent derivations.



Fast Image Classification with Reduced Multiclass Support Vector Machines 83

Multiclass SVM (m=73)
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Fig. 1. A two-dimensional classification example with three classes (cyan, green, and
red points). Left: Decision boundaries (black lines) for the one-vs-all multiclass SVM,
that requires m = 73 SVs (circled in black). Middle: Decision boundaries for our
reduced multiclass SVM, using only r = 3 SVs (black points). The path followed
by each SV during the optimization is also reported (in black), starting from points
denoted with ‘×’. Right: Objective function values (Eq. 3) during the minimization
process.

z-Step. To update z, the objective can be minimized through gradient descent
(no analytical solution is available). Its gradient with respect to a given zj is:

∂Ω
∂zj

= 2
∑c

k=1 (hk − gk)� U
(
βk

j

∂Kxzj

∂zj
+ Kxz

∂βk

∂zj

)
+ 2λβ�

k
∂βk

∂zj
, (6)

where Kxzj
is the jth column of Kxz, and we use the numerator-layout conven-

tion for matrix derivatives, i.e., all the derivatives with respect to zj are vectors
or matrices with the same number of columns as the dimensionality of zj . The
term ∂β

∂zj
can be obtained by deriving Eq. (5) (before inverting M), which yields:

∂βk

∂zj
= −M−1

(
βk

j Kxz + S
)�

U
∂Kxzj

∂zj
, (7)

where S is an n × r matrix of zeros, with the jth column equal to (hk − gk).
Gradient of k(xi,zj). Our approach can be readily applied to many numeric
kernels, as most of them are differentiable. In our experiments, we will use the
exponential χ2 (exp-χ2) kernel, given as k(xi,zj) = exp

(
−γ

∑d
l=1

(xil−zjl)
2

xil+zjl

)
,

where xil and zjl are the lth feature of xi and zj , and d is the dimensionality of
the input space. It is easy to see that the lth element of the gradient ∂k(xi,zj)

∂zj
is

given as γ(xil − zjl)
3xil+zjl

(xil+zjl)
2 k(xi,zj).

4 Experiments

In this section, we report a set of experiments to show how significantly our
RMSVM algorithm can reduce computations required by a kernel-based app-
roach in an image classification scenario. For a fair comparison with current
state-of-the-art approaches, we reproduce the image classification setup origi-
nally adopted by Xiao et al. [24]. The data, the extracted feature values for each
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suburb (241) coast (360) forest (328) highway (260) inside city (308)

mountain (374) open country (410) street (292) tall building (356) office (215)

bedroom (216) industrial (311) kitchen (210) living room (289) store (315)

Fig. 2. Example images from the 15-category scenes dataset. We also report the num-
ber of available acquisitions for each category.

image, and the training-testing splits are publicly available [9,24] To implement
the multiclass SVM classifier and our regression-based algorithm, we exploit the
open-source machine-learning library scikit-learn [17]. We test our method
by selecting a different number of virtual SVs, fixed in advance (i.e., budgeted).
Dataset. According to [24], we use a widely-used benchmark dataset for image
classification [11,13,16,24,26], i.e., the 15-category scenes dataset.3 It consists
of fifteen scene categories. Each class has different number of grayscale images,
from 200 to 400 acquisitions, with an average size of 300 × 250 pixels. In Fig. 2
a selection of images of different classes is shown for reference purpose.
Experimental Setup. We consider a classification problem where each one-
vs-all classifier is trained using a subset of randomly-selected images from each
available class, while the remaining ones are used to build the test set. In the
training set, the number of samples per category is the same for each class.
In the test set, the number of samples per class is different, as it depends on
the number of images belonging to each class. Results are averaged over 10
repetitions, considering different training-test pairs.

To compare our results to those obtained in [11,24], we exploit HoG descrip-
tors as in [8,24]. Each descriptor consists of 124 feature values, obtained by
stacking 2 × 2 neighboring HoG descriptors each consisting of 31 dimensions.
The descriptors extracted from the training images are clustered using the
k-means algorithm to identify 300 representative centroids (one per cluster).
A histogram of 300 bins is computed from each image. Each bin represents the
number of image’s descriptors assigned to the corresponding centroid. A number
of additional histograms are computed using the same procedure, respectively
splitting the image into 2 × 2 and 4 × 4 blocks, eventually yielding a total of
3 http://www-cvr.ai.uiuc.edu/ponce grp/data/

http://www-cvr.ai.uiuc.edu/ponce_grp/data/
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Fig. 3. Recognition rate of the unpruned SVM, and of RMSVM (with different number
r of SVs) using the exp-χ2 kernel on the 15-category scenes dataset. Results are averaged
over 10 repetitions, and reported against an increasing number of samples per class.

21 histograms per image (i.e., 21 × 300 = 6, 300 features). The exp-χ2 kernel is
used for both SVMs and regressors. According to [24], for each SVM classifier,
we set the regularization parameter C = 1 and the exp-χ2 kernel parameter
γ = ( 1

n2

∑n
i,j k(xi,xj))−1, yielding γ ≈ 0.2 in each run. The gradient step η and

the parameter λ of our RMSVM (see Algorithm 1) are set as η = 0.5 and λ = 0.1
by maximizing classification accuracy through a 3-fold cross validation.
Results. Results for the unpruned SVM and RMSVM on the 15-category scenes
dataset are reported in Fig. 3 in terms of recognition rate (i.e., fraction of
correctly-classified test images) against an increasing number of training samples
per class. For RMSVM, we consider a different number of SVs. In particular, we
consider one SV per class (yielding a total of r = 15 SVs), and a number of SVs
corresponding to the 20% of the training set size (r = 0.2n).

It is easy to see that the proposed method for multiclass SVM reduction
performs significantly well even when using a very small set of virtual SVs; e.g.,
in the case of n = 1500 training samples (100 images per class), the RMSVM
trained with r = 15 virtual SVs worsens the recognition rate of less than 5%. This
result is exceptionally good considering the extreme reduction rate; in fact, the
number of matchings needed is lowered by 100 times. All other reported cases
have a proportional behavior, as the number of SVs (i.e., required matchings
for classification) found by the standard SVM classifier grows linearly with the
training set size [6,20]. It is worth noting also that the RMSVM with r = 0.2n
SVs only worsens the recognition rate of about 1%, while reducing the required
number of matchings of 5 times.

In Fig. 3, we also report the performance of the multiclass SVM trained
with one image per class (requiring n = 15 matchings at test time). Our results
show that an equally-sized set of well-principled optimized SVs can significantly
outperform a standard SVM; in particular, the RMSVM using only 15 virtual
SVs (r = 15, synthesized from a larger training set) achieves recognition rates
ranging from 60% to 76%, while that of the unpruned SVM is only 36%. While
the training complexity of our approach is increased, computational complexity
at test time remains unaffected.
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Table 1. Number of matchings required by the unpruned SVM and RMSVM with
r = 0.2n SVs, corresponding to the results reported in Fig. 3.

Number of Matchings

SVM m = 75 150 300 746.7 ± 1.3 1472.4 ± 4.2

RMSVM (20%) r = 15 30 60 150 300

We finally report an analysis of how well the considered algorithms perform
on each scene category in the dataset, by reporting the performance of each
of the one-vs-all (binary) base classifiers. In particular, in Table 2 we report
the Area Under the ROC Curve (AUC) for each category, and for both the
SVM and our RMSVMs using a training set of n = 1500 samples, averaged
over 10 repetitions. Although our method is able to reliably categorize most
of the dataset scenes, some categories, like store and industrial exhibit higher
differences in terms of AUC values with respect to the unpruned SVM. This is
mainly due to a very high intra-class variability that may not be thoroughly
captured by a significantly-reduced set of SVs.

Table 2. Area Under the ROC Curve (AUC %) for each category, using a training
set of 100 samples per class. The performance of the unpruned SVM (requiring m =
1472.4 ± 4.2 matchings per classification) is compared to the RMSVMs, respectively
budgeted to r = 15 and r = 300 matchings.
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SVM 100 98.8 99.6 99.0 97.3 99.1 97.1 99.4 98.8 99.8 96.4 94.5 97.7 97.6 97.0

RMSVM15 99.9 98.3 99.5 98.1 96.6 98.7 95.7 98.9 97.9 99.6 94.1 91.5 96.9 96.8 95.4

RMSVM300 100 98.8 99.7 98.7 96.3 98.9 96.3 99.1 98.3 99.7 96.0 90.2 95.3 94.8 95.1

5 Related Work on SVM Reduction

We have proposed a novel reduction method for multiclass SVMs by extending
a previously-proposed method for reducing the set of SVs in binary SVMs [4].
The latter method turned out to outperform existing reduction methods [19], as
it is not greedy: as ours, it iteratively modifies each SV during the optimization
process, while the methods in [19] optimize one SV at a time, without modifying
it when the remaining SVs change. Moreover, the former approach can also be
used when the kernel function k(·, ·) does not satisfy the Mercer condition, i.e.,
it is not a proper (positive semi-definite) kernel, but a generic similarity func-
tion, whereas the approaches in [19] are only suitable for definite kernels. There
are other versions of reduced SVMs [6,10,12], which are however all devoted to
the standard binary formulation of this classifier. To our knowledge, the prob-
lem of multiclass SVM reduction has only been more systematically investigated
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in [22]. Despite comparing this approach with ours remains an interesting future
development of this work, it is worth remarking that it considers an independent
reduction problem for each binary SVM in the one-vs-all scheme, then it con-
catenates the resulting sets of SVs, and retrains each binary SVM. Our method,
conversely, jointly learns a common set of SVs for all the binary SVMs involved.

6 Conclusions and Future Work

The proposed image classification approach allows us to overcome the limitation
of high computational complexity at test time, common to multiclass, nonlinear
classification tasks that exploit kernel-based or similar methods, by jointly opti-
mizing a unique, small set of virtual SVs along with an optimal set of coefficients
for their combination. We have shown that we can dramatically speed up the
test phase without significantly affecting the recognition rate given by the use of
nonlinear (though differentiable) kernel functions, and required by large multi-
category datasets. As future developments of this work, we plan to investigate the
use of our multiclass reduction algorithm with non-differentiable and indefinite
kernel functions, as already preliminary considered in [4]. This opens interest-
ing research directions, considering that well-known non-differentiable kernels,
like the histogram intersection kernel [3], have demonstrated high recognition
rates in various image classification tasks. Another potential future investiga-
tion regards the application of our method to speed up other non-parametric
approaches besides SVMs; in fact, the function g(x) in Eq. 3 (and subsequent
derivations) is not required to be an SVM’s discriminant function, but can be
any discriminant function (or target variable).
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