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Abstract. Computer Vision technology plays a fundamental role in Video Sur-
veillance applications with the possibility to detect different categories of ob-
jects (human beings, faces, vehicles, car plates etc) in a regular stream of video 
recorded by surveillance cameras. Moreover, the detection process must be 
validated for a sufficiently long time interval (by tracking), to provide more in-
stances of the same object/subject, and increase the rate of successful recogni-
tion/identification (including the possibility of human supervision). The paper 
address the problem of object detection and tracking and the proposed solution 
is based on visual appearance model learning during the tracking process. Sim-
plified HOG-like texture features are used, to achieve computationally effective 
solutions to be applied in practical applications of video analytics. A contrast 
gradient normalization solution has been adopted, with adaptive threshold esti-
mation, to increase tracking capability along the video flow. Performance of the 
tracking processing chain is evaluated using the public available TLD dataset 
[1], to achieve quantitative and comparable data. 
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1 Introduction 

Object detection and tracking represents a fundamental processing step in any imple-
mentation of video analysis. In security applications it is used to collect multiple 
views of the same object as a support to classification and recognition. It represents a 
topic of great interest in the vision community with many publications and research 
studies. A recent tutorial paper [2] describes the state of the art of this technology and 
the most promising lines of research under investigation.  

Our research has been developed within the context of industrial video surveillance  
to improve the performance of Aitek Video Analytics solution [3] with the primary 
objective to deal with real every-day life constraints, like poor video quality and the 
availability of low processing power in embedded camera applications. We intend to 
face the problem of generic object detection and tracking from fixed cameras (with 
possible calibration tools) as well as from mobile platforms, including PTZ sensors 
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and surveillance cameras installed on-board of  security vehicles and police cars. The 
driving line of our research study comes from a security application of supervised 
detection and tracking of humans and vehicles from video recorded sequences. The 
final objective is hiding-blurring some selected targets, to prevent their identification 
in the output video stream (privacy constraints). This operation is performed in a su-
pervisory mode (man-in-the-loop), with a selection of the initial position, and the 
bounding box, of the target object (it may be the face, the full body of a person, a car 
or a plate in the scene). The tracking process should be able to follow the target, try-
ing to manage most of its variability including light, scale, translation and 3D pose. 
The initial information alone is often not sufficient to track the target for long, which 
means increasing the cost of human supervisor involvement, to select again the target 
for a next step of the tracking process. The best solution will be a fully autonomous 
process, able to learn different appearance models along the processing chain and 
keep track of the selected target as long as possible without human intervention. 
These are typical specifications of most advanced tracking solutions in the computer 
vision community, where tracking performance has significantly improved in the  
last decade.  

Among the wide scientific literature on the subject we refer to the most recent re-
sults obtained in [4], marketed as “Predator”, which exhibits superior performance 
level as compared to other tracking-by-detection methods. The TLD framework com-
bines together a detector and an optical flow tracker (based on Lucas Kanade tech-
nique [5]). The purpose of the detector is to prevent the tracker from drifting away 
from the object as well as to recover tracking after temporary occlusions. Updates of 
the learning classifier are accepted only if the discovered image patch is similar to the 
initial object box, which represents the only prior information about the object.  

In the paper the tracking task is addressed as a search problem, at the object level, 
where the appearance model of the object is searched in the following frames of the 
video sequence, to recover a consistent trajectory with time and space constraints. The 
main objective is to demonstrate that a model matching approach, where the appear-
ance model of the object is continuously updated along the tracking process, can be 
successful in object tracking with competitive performance w.r.t. the most advanced 
solutions. The choice of a continuous model update and matching process, instead of 
classical optical flow analysis [6], is motivated by the noisy nature of most commonly 
used video surveillance data, the possible occurrence of sharp motion displacements 
between consecutive frames, and the irregularity of intensity image differences at 
pixel level, mainly due to motion blurring. In [7] HOG based feature descriptors have 
been already used to deal with large displacement motion, but the research objective, 
in that case, was to recover an estimation of the continuous optical flow. 

In our approach, after an early detection phase of the candidate object (a rectangu-
lar patch in the image), there is a continuous loop of tracking search (i.e. the identifi-
cation of the most likely object patch in the following frames of the video sequence), 
followed by a learning step, with a continuous update of the target model to be used in 
the detection and re-initialization phase.  
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In section 2 we discuss the appearance model which is based on a modification of 
the widely used texture HOG features. Section 3 describes the forward-backward 
tracking process and the adopted acceptance-rejection criteria. The process of object 
appearance model updating is referred in section 4. In spite of the apparent simplicity 
of the process, the achieved results are quite encouraging, as briefly discussed in sec-
tion 5, using some of the video sequences collected in [1]. Then, a critical discussion 
is devoted to the sensitivity to processing parameters and the stability and robustness 
of the results. 

2 HOG Features and the Matching Process 

The descriptive features of the both tracking and detection models are selected as a 
collection of histograms of oriented gradients, HOG, following the basic approach as 
proposed in [8], with the introduction of some minor modifications. The normaliza-
tion proposed in [8] was found not appropriate when dealing with a very limited 
number of learning examples, as it happens in the implementation of an on-line track-
ing process. As such, we have modified the HOG feature representation as follows: 

• The object model is divided in a predefined number of cells (NC); the cell-size 
(Cx, Cy) has a squared aspect ratio (Cx = Cy) and is not fixed a-priori; rather, it 
depends on the overall size of the selected sample patch (scale factor of the initial 
model). The resulting appearance-model size (Nx*Cx, Ny*Cy) may differ by a 
few pixels from the initial selection, due to cell-size quantization effects. 

• Cells are not grouped in blocks, and there is no block overlapping; the reason of 
this choice is to improve specialization capability over the generalization proper-
ties of standard HOG models, since we are not planning to use an SVM classifier. 
Moreover, the 4 corner cells are not considered in the feature representation, to 
reduce background interference in the tracking process. This choice does not af-
fect the performance even in case of box-like shapes like cars or trucks, since the 
corner cells do not contain useful information due to projected shape onto the  
image plane. 

• 1-D local histograms of gradient directions are computed for each cell, following the 
standard scheme of [8]. As usual, each pixel in the cell casts a weighted vote for an 
orientation, within a pre-defined range of discrete angles. The weight is the gradient 
magnitude itself, above a suitable noise threshold (as discussed in the following sub-
section). In our implementation we are using signed-gradient representation, with 8 
direction channels in the local 3x3 neighbourhood, for maximum computational ef-
ficiency. No histogram normalization is performed at cell-level,   

• The local histograms of the different cells are collected together in lexicographic 
order to obtain a vector of features. This vector is normalized to the overall sum 
of all features to achieve histogram-like properties (unitary integral value)  
and the similarity matching between the image patch hypothesis and the running 
appearance model is computed using a standard Bhattacharyya distance 
[www.opencv.org]. 
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2.1 Gradient Contrast Normalization 

Gradient based features are strongly affected by the contrast variability of the video 
sequence. For that reason it is always necessary to perform some kind of gradient 
normalization. In our implementation the spatial gradient function is computed on the 
luminance component of the video signal, as briefly summarized in the following. 

Local Contrast Gradient. Spatial derivatives are computed using a Sobel mask in a 3 
x 3 neighbourhood and they are normalized to the average grey intensity (in the same 
local window). In this way it is possible to achieve a better contrast normalization 
across the whole image frame. At this level, signed-edge orientations are also com-
puted, on the same local window (3 x 3)  in the quantized range of 8 directions (0°, 
45°, 90°, 135°, 180°, 225°, 270°, 315°). Tracking performance is not much affected 
by this approximation, as shown in the experimental results of section 5.  

Dynamic Range Expansion. An additional normalization is performed on the com-
puted contrast gradient in order to fill the available dynamic range of the signal  
(0-255 level) for each frame in the video sequence. As such, even relevant contrast 
variations during time can be successfully managed by the tracking process. 

Adaptive Threshold Estimation. Instead of using a fixed threshold of the contrast-
gradient magnitude, an adaptive value is computed to track signal changes along the 
video flow. The histogram distribution of the image gradient magnitude can be 
roughly approximated by an exponential decreasing function, and a good estimate of a 
noise threshold can be computed as the median value of this function. 

3 Tracking as a Search Problem 

Due to the presence of noise and possible large displacements of the object trajectory, 
a classical optical flow approach [6], based on time differences was found not suit-
able. Moreover, it is necessary to perform a robust and early detection of any devia-
tion from the right object tracking, to avoid unrecoverable drifts.  

The adopted solution is a forward-backward implementation of a HOG-feature 
tracker. The best estimate of the target position in the other frame of the video se-
quence is computed by searching, in a pre-defined search space, centred on the previ-
ous target position, the target patch which exhibits the best matching score with the 
current object features. Starting from object Ot-1 (at time t-1) we obtain an estimate of 
the target position Ot (in the frame at time t). The same search procedure is repeated 
in the backward direction from target Ot to achieve an estimate Ôt-1 (in the past frame 
at time t-1). The matching overlap measure IoU (intersection over Union) is computed 
between the starting object Ot-1 and the back-projected object Ôt-1. Any drop of the 
IoU measure is a clear hint of failure which determines the activation of a local detec-
tor to re-instantiate the tracking process. As mentioned before, the similarity measure 
between two HOG feature vectors {Hv(n)} and {Hw(n)} is the Bhattacharyya distance 
dB and is computed as: 

 dB = ( 1 – cb)                                                     (1) 
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where 

 cb =[ ∑ n ϵ (0, NF) (Hv(n) * Hw(n))1/2 ] / (∑ n ϵ (0, NF)  Hv(n) * ∑ n ϵ (0, NF) Hw(n) )1/2    (2) 

NF is the length of the overall feature vector. This distance measure is defined in 
the range ( 0 – 1) where zero means full match and 0.5 is already representative of 
large dissimilarities between the two descriptive vectors. To achieve a processing 
speed-up, each tracking step is performed in a hierarchical way.  

• A first Search space bucketing is performed, by segmenting the search space into 
non-overlapping blocks having the same size of the target cells (Cx, Cy) at the 
current tracking step (reference scale factor). Local 1-D histogram features are 
computed for each bucket and are stored in a working memory {W}. The best-
matching target position (minimum distance (1)) is computed by a sliding-
window scanning of the search space, with integer steps (Cx, Cy). The computa-
tion of the normalized HOG descriptive feature vectors is based on the stored 
values {W} with significant computational savings. During the tracking process 
this search area around the previous target object is extended of a few cells in all 
directions (3 cells in the experimental tests of section 5). 

• A refinement step is repeated in the neighbourhood of the best match with 
decreasing sampling step (half size at each step until unit shift), by tracking 
always the minimum score target. During this phase HOG features are fully 
computed on the contrast-gradient map for each new window shift (without using 
the stored values in {W}), although some kind of interpolation might be possible 
[9], with further potential improvements. 

• Finally, a scale search is performed, around the minimum-score target, to check if a 
zoomed version of it (± 1 in the cell size) may exhibit a better match (i.e. a lower 
distance score) with the previous object model. In this way it is possible to track 
expansion/compression effects of the target-object in the video stream. This 
approximation is quite acceptable due to the short time distance between consecutive 
frames.  

3.1 Acceptance/Rejection Criteria 

In any visual tracking implementation it is extremely important to manage the risk of 
drift from the real trajectory. An early and reliable missed-target detection is needed, 
to stop the tracking process and activate a new boot-strap detection procedure on a 
wider search area of the image. In our approach the following parameters are used to 
classify a positive matching candidate: 

• The IoU measure between objects Ot-1 and Ôt-1 in forward-backward tracking is a 
already strong and reliable measure of tracking failure. In case of success it 
should be very close to 1. Smaller values below 98% are already representative of 
possible drifts which cannot be corrected by a simple displacement of the pre-
dicted object coordinates. 

• A grey level image patch is collected for each output box of the tracked object in 
the frame sequence. It is obtained as a projection of the image pixels onto a small 
size box (typically 20 x 20 pixels) which is normalized to the maximum dynamic 
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range and is masked to reduce the peripheral border effects of the background.  
A Normalized Cross Correlation (NCC) measure is computed between such im-
age box and the reference image patch which has been acquired from the initial 
target object at the beginning of the tracking process. When the NCC value falls 
below a confidence level (in the experimental results such threshold was 0.9) the 
tracking process is considered to fail and a detection search is issued. Since the 
starting image patch is quickly evolving and modifying during the video flow 
(due to light changes and 2D - 3D shape variations) and the NCC is a rigid simi-
larity measure, a buffer of image patches is stored and updated for each success-
ful tracking (high IoU of the forward-backward estimates), to keep track of the 
object evolution. 

• Additional structural constraints are used like the distance to the border of the 
image (the selected processing region) and the tracking displacement from frame 
to frame of the target trajectory; it must be smaller than a threshold maximum 
value, which is context dependent (either fixed or mobile platforms). 

If the previous constraints are not satisfied, a detection search has been imple-
mented, to manage temporarily occlusions or disappearance of the target and re-
initialize the tracking process. Ultimately, if the previous conditions persist, tracking 
is definitely stopped and a new start-object-detection process is issued (manual or 
automatic procedures) 

4 Object Detection by HOG Model Appearance Updating 

The use of an adaptive appearance model, which evolves during the tracking process, 
has proved to be the right choice in many applications of visual tracking [10]. In our 
approach, due to the choice of the descriptive HOG feature vector {Hv}, such model 
updating is computed as 

 Avi  = λ Hv  + ( 1 – λ ) Avi-1                                    (4) 

where {Avi} represents the appearance model at step (i); the parameter λ represents a 
learning-rate of the new validated tracking features {Hv}. λ = 0.5 has been selected in 
all experimental results referred in section 5. This short-term estimate of the appear-
ance model gives more weight to the last validated instance of the tracked object and 
it ensures a good continuity of the tracking process.  

As mentioned before, the detection process is activated only when the continuous 
forward-backward tracking fails. Beside the appearance model update, as in (4), the 
average size of the target is estimated during the phase of successful tracking, as well 
as the predicted area of activity. This information provides a useful constraint for the 
search space and scale of the detection. The detector implementation follows a 
scheme quite similar to the one-step tracking process as before. 

• The search region is defined around the target missing area, and will be expanded 
progressively in the following video frames, up to a maximum selected size. The 
range of search scales (cell size) are defined according to the tracking history 
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• For each selected scale a search region bucketing is performed, with non-
overlapping blocks having the same size of the target cells (Cx, Cy) and the his-
togram features are stored. 

• The best target hypothesis is computed again in two consecutive phases: the first 
one by a sliding window scanning of the search region with integer steps (Cx, 
Cy) on the stored feature cells, and the second refinement step up to the pixel 
level.  

Once the minimum distance target has been found at multiple scales, a suitable ac-
ceptance-rejection criterion is needed. Since we are using positive models only, we 
must establish a threshold of the distance measure (1). In all examples of section 5 a 
lower threshold of 0.2 has been used. In our reference video privacy application the 
presence of the human supervisor plays an important role to fix any possible matching 
error and reduce the risk of error propagation. 

4.1 Boot-Strap and First Model Selection 

The first instance of the object-target in the scene has particular relevance for the 
tracking process, since it provides the necessary information to build the first instance 
of the appearance model. In the experimental results of section 5 the initial object 
patch is always taken from the ground-truth list of the dataset [1]. In video security 
applications the automatic detection of the first object instance in the scene is often 
based on a selected object category (human body, head shape, car-plate, size/type of 
vehicle, etc.).  

In this domain human detection has become a quite consolidated line of research 
with many contributions mainly based on the use of generalized HOG models [8],  [9]  
[11].  When dealing with fixed surveillance cameras it is possible to take advantage of 
foreground-background detection to focus the attention on the foreground blobs only, 
like in security applications of Video Analytics technology [3]. Moreover, using cam-
era calibration constraints, there is an additional possibility to reduce the search space, 
by prediction of the object size and scale [12]. 

5 Experimental Results 

This section is devoted to the evaluation of our approach, by comparing our experi-
mental results with reference solutions from the scientific literature. From dataset [1] 
we have selected 3 test video sequences, namely david, jumping and car, which seem 
more related to our reference application and quite representative of challenging mo-
tion conditions for a tracking task.  

5.1 Dataset and Performance Evaluation 

For each video sequence, the dataset contains a list of ground-truth box coordinates, as 
well as additional lists of bounding box results, obtained by the different algorithms  
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which have been tested in that challenge [1]. The comparative results referred in table 1 
are based on such data lists, considering only the best solution in that dataset, namely 
TLD1.0 [1].  

Table 1. Comparison of results of our system (AI-T) with the list of bounding boxes named 
TLD1.0 as provided in the dataset [1] 

Sequence TP P R F_M ACLE IoU 
david      761 frames       
 TLD1.0 761 1,00 0,999 0,999 2,75 0,75 
 AI-T 688 0,91 0,90 0.90 7,32 0,67 
car          945 frames       

 TLD1.0 832 0,98 0,97 0,97 13,70 0,66 
 AI-T 784 0,83 0,91 0,87 17,02 0,64 
jumping  313 frames       
 TLD1.0 311 0,99 0,99 0,99 3,84 0,73 
 AI-T 297 0,95 0,95 0,95 7,53 0,59 

 
Performance evaluation is based on the computation of the PASCAL overlap 

measure IoU (Intersection over Union) considering the bounding boxes of the track-
ing result and the ground-truth. In the following, a tracking result is considered suc-
cessful (true positive TP) when IoU > 0.5, a quite challenging goal as compared to the 
lower value (0.25) which is often adopted in other recent papers. The overall system 
performance is evaluated using standard precision P, recall R and F-measure statistics. 
Precision P is the rate of valid (IoU successful) boxes, among all target predictions; 
recall R is the rate of correct detections over the number of object occurrences that 
should have been detected. The value ACLE (Average centre Location Estimation) 
was used in [10] to measure the deviation of the target box with respect to the ground 
truth. IoU stands for the average overlap measure along the tracking sequence. 

5.2 Detailed Performance Analysis 

The results obtained for the first sequence (david: 761 frames length) are shown in 
table 1 as well as in fig 1; this video exhibits significant contrast variations from the 
initial frames (in the dark side of the room) to the last ones (the subject moving in full 
light). During the video sequence there is a consistent pose variation of the face, from 
frontal to lateral view and return. A total number of 52 cells has been selected for the 
target, with 8-bin signed gradient directions, for a descriptive vector of 416 elements 
(corner cells removed). During visual tracking the cell size was varying from a mini-
mum of (6 x 6) pixels to a maximum value of (10 x 10) pixels. The appearance model 
has been updated (on-line learning) 413 times. The average value of IoU along the 
full sequence has been 0.67, and the number of correctly tracked frames, TP (IoU > 
0.5), has been 688, with an F-Measure 0.90. Fig. 2 shows two different frames of the 
sequence (at the beginning and towards the end) with the bounding boxes of the 
ground truth data (blue color) and the tracking result (red color). 
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       a)          b) 

Fig. 1. Video sequence “david”; ground-truth box are displayed in (blue) and tracking result 
(red) a) frame n.92 b) frame n. 512  

The same experimental test has been performed with the “car” sequence (945 
frames length). This is a low-contrast video sequence, with partial and temporary 
occlusions of the vehicle by waving trees. The selected target model is made of 78 
cells, the length of the vector feature is 592, and the cell dimensions remain quite 
unchanged through the full tracking sequence, with an average size of (7 x 7) pixels.  

During the tracking process the appearance model has been updated 73 times. A 
sample of the tracking results is referred in fig.2, with an average score of IoU = 0.64, 
as computed along the whole sequence. The number of correctly tracked frames was 
TP = 784 (IoU > 0.5) with an F-Measure of 0.87.  

The results in fig 3 are referred to the “jumping” sequence (313 frames). In this 
video the object-face trajectory is quite irregular due to the up-and-down motion of 
the subject. Many frames are also affected by motion blur, which makes more diffi-
cult to perform model matching. Anyway, the constraints applied to the learning-
updating process of the appearance model, are sufficient to achieve satisfactory  
tracking results: the number of appearance model updating has been 63; the average 
IoU has been 0.59 along the whole sequence, and the number of corrected tracking 
frames has been 297, with an F-Measure 0.95. 

 

   

Fig. 2. Video sequence “car”; ground-truth box is displayed in  blue color and tracking result in 
red; a) frame n.26 b) frame n.568 
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Fig. 3. Video sequence “jumping”; ground-truth box (blue) and tracking result (red) a) frame 
n.150 b) frame n.300, c) IoU profile along the video sequence 

Finally, the “motocross” sequence has been considered, as shown in fig. 4. The im-
age contrast is quite good through all video frames in the sequence, with strong ir-
regularities in the visual trajectory due to the relative motion of both the on-board 
camera sensor and the target-motocross. In this case we could not use the ground truth 
of the dataset, because it was limited to a small subset of the target (the driver shoul-
ders).  

By selecting a bounding box around the entire motocross object, it was possible to 
track almost all visual instances of the target during the video sequence (more than 
3000 frames) with a total of 65 updating steps of the appearance model. The selected 
structure of the target object was made of 72 cells, with variable size from a minimum 
of (6 x 6) pixels to a maximum of (12 x 12) pixels for close-up views. 

5.2.1 Discussion  
A limitation of our approach is that only positive examples are used during the  
appearance model updating. As such it is particularly important to select reliable sam-
ples to feed the learning process. Some additional experimental tests have been per-
formed, to evaluate the effects caused by small deviations from the ground-truth box, 
in term of spatial translation and scale factor, during the phase of the initial object 
selection and the corresponding appearance model. In general such deviations have no 
significant impact in the continuity of the tracking process. A small increase of the 
scale factor (object patch size) was always beneficial to capture wider properties of 
the object. On the contrary a significant shift on the image plane of the initial object 
detection may produce a wrong starting model which propagates along the full track-
ing chain. The most critical part of the process is the classification of a tracking result 
as a positive sample to contribute to the appearance model update. Misclassification 
results may lead to unstable learning and an early rejection of the tracking process.  
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Fig. 4. Video sequence “motocross”; a) frame n.234 b) frame n.667 

The current AI-T version is a research component still under development, and it is 
not yet optimized for optimal performance, so that we cannot provide precise figures 
in terms of processing speed. Regarding the computational cost of our approach we 
may consider the two most demanding components: the complexity of the target  
features and the search space (the number of search instances in the scene). The sim-
plified version of the HOG features (small size of the descriptive vector) and the hier-
archical search at different scale (cell size and pixel size) allow to achieve satisfactory 
results of near real-time on small-size video (640 x 480) on a 2.5 Ghz Intel i5 proces-
sor. In the referred experimental tests a few thousand vector distance measures are 
required, as compared to the hundred thousand windows needed by a standard sliding 
window approach at multiple scales. 

In the paper we have shown results of single target tracking, being that the avail-
able scenario in the TLD dataset. Actually, our approach has been already success-
fully tested with multiple-target tracking in the security field, where an industrial 
application of the AiVu technology [3] has been developed to detect and hide recog-
nizable human faces and car-plates from a standard surveillance video stream, for 
privacy protection.  

6 Conclusions 

The paper describes an approach to object tracking using adaptive appearance models 
based on HOG features, with performance results which are comparable with the most 
successful solutions recently published in the scientific literature. The main contribu-
tions of our research are the use of a modified version of the HOG feature descriptor, 
with a global normalization at target level, and the use of contrast gradient normaliza-
tion and adaptive threshold. The forward-backward tracking scheme represents a sim-
ple and computationally very effective solution to achieve stable tracking results in a 
set of challenging video sequences. 
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