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Abstract. The label tree is one of the popular approaches for the prob-
lem of large scale multi-class image classification in which the number of
class labels is large, for example, several tens of thousands of labels. In
learning stage, class labels are organized into a hierarchical tree, in which
each node is associated with a subset of class labels and a classifier that
determines which branch to follow; and each leaf node is associated with
a single class label. In testing stage, the fact that a test example travels
from the root of the tree to a leaf node reduces the test time significantly
compared to the approach of using multiple binary one-versus-all classi-
fiers. The balance of the learned tree structure is the key essential of the
label tree approach. Previous methods for learning the tree structure use
clustering techniques such as k-means or spectral clustering to group con-
fused labels into clusters associated with the nodes. However, the output
tree might not be balanced. We propose a method for learning effective
and balanced tree structure by jointly optimizing the balance constraint
and the confusion constraint. The experimental results on the datasets
such as Caltech-256, SUN-397, and ImageNet-1K show that the classi-
fication accuracy of the proposed approach outperforms that of other
state of the art methods.

1 Introduction

This paper considers the problem of multi-class image classification whose goal is
to classify an image belongs to one of the different pre-defined classes. It is one of
the essential problems in computer vision because of many potential applications
such as object categorization, scene classification, and semantic image retrieval
[5,6,13,14].

One approach to the multi-class classification problem is to use multiple
binary one-versus-all classifiers [19]. However, this approach is not scalable to
large-scale datasets (e.g., ImageNet [20] which includes 21,841 concepts with
each of them associated with 1,000 images), because all classifiers have to be
called at run-time for every image.

One popular approach to reduce the complexity is to use label tree [2,6,7,15].
In a label tree model, label of a test sample is assigned by traversing its tree.
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At each node visited, a small number of classifiers are applied to compute scores
to determine which branch to follow. This tree structure causes the classification
complexity to grow logarithmically, rather than linearly, with the number of
classes. The balance of the learned tree structure is therefore essential to the
label tree approach.

Using label tree requires two tasks of learning the tree and learning node
classifiers. Existing approaches [2,7,11,15] are either to separate or combine
these two tasks in one optimization framework. Although the combined methods
usually have higher classification performance, they are too costly because node
classifiers are trained multiple times until the algorithm is converged. In this
paper, we consider the methods that separate the two tasks as in [2] and focus
to the first task of learning the tree.

Given a set of class labels at each node (the root node contains all class labels,
and the leaf node contains a single class label) and the number of branches k,
the problem is to split these labels into k groups. There are two constraints: (i)
confused class labels should be in the same group and (ii) the number of class
labels of the branches should be equal. The first constraint is to reduce the tree
loss and to learn node classifiers with ease. The second constraint is to create
the balanced tree.

The popular method is to use clustering methods such as k-means and spec-
tral clustering [17]. For example, in [2], the confusion matrix is computed, and
spectral clustering is used to recursively split class labels. Because the objective
function of spectral clustering penalizes unbalanced partitions, it encourages bal-
anced trees. However, this method is not reliable because it assumes the high
correlation among the estimated confusion matrix and the real one. In practice,
this assumption is not hold, especially when binary one-versus-all classifiers have
poor accuracy due to small number of training samples and curse of dimension-
ality. Another method is to perform k-means clustering on training samples [16].
In this method, the mean of all feature vectors of the training samples of a class
is used as representation for each class. This representation implicitly enforces
the balanced constraint when using with k-means clustering. However, using the
mean is not an effective way for classes with high variations.

We propose a method for learning effective and balanced trees by jointly opti-
mize the balance constraint and confusion constraint. We avoid the unreliable
situation when using confusion matrix and single feature vector for class rep-
resentation described above by using all feature vectors of the training samples
in each class. We formulate the learning process in an optimization framework
in which the balance constraint is solved using integer linear programming and
the confusion constraint is solved using k-means clustering. We tested the pro-
posed method on several benchmarks datasets such as Caltech-256, SUN-397,
and ImageNet-1K, and the result shows the superiority over other state of the
methods.

The rest of the paper is organized as follows. In Sec 2, related works are
presented. In Sec 3, the proposed method is describe. The experimental results
are presented in Sec 4. Finally, Sec 5 concludes the paper.
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2 Related Work

Learning tree structure is one of the main issues of a label tree-based approach. In
[2], Bengio et al. proposed an approach to learn a tree structure base on spectral
clustering. The approach utilizes confusion matrix generated by applying one-
versus-all classifiers to a validation set as affinity measure to split classes into
disjoint subsets. Each subset is corresponding to a child node of the tree. Such
splitting procedure is repeated recursively until the whole tree is created. This
approach has several limitations. Firstly, to obtain confusion matrix, multiple
binary classifiers are learned with one-versus-all strategy. It therefore becomes
costly when the number of classes increases. Secondly, since the spectral clus-
tering approach does not guarantee equal partitions, the tree structure can be
unbalanced, which leads to a sub-optimal test efficiency. Thirdly, the similarity
between classes may not be reflected correctly via the affinity matrix due to low
accuracy of the one-versus-all classifiers. As a result, classifiers of child nodes
which are learned by using the set of class labels split by the above spectral
clustering may give incorrect prediction.

In [7], Deng et al. proposed an approach which jointly performs class parti-
tioning and learning a classifier for each child node. The one-versus-all training
step is eliminated. Learning the classifier weights and determining the partitions
are formulated as an optimization problem. It is then solved by two alterna-
tive optimization steps. However, by allowing overlapping of classes among child
nodes to reduce false navigation, it at the same time increases the test cost thus
cannot ensure a desired speedup.

Liu et al. in [15] proposed a probabilistic approach for learning tree struc-
ture. Each node of the probabilistic label tree is associated with a categorical
probability distribution and a maximum likelihood classifier defined as a multi-
nomial logistic regression model. Training process at each node is formulated as
a maximum optimization of a log likelihood function which is then solved by
using alternating convex optimization. Firstly, the maximum likelihood classi-
fiers are learned based on the categorical distribution of each child node. Then,
the categorical distribution associated with each child node is learned.

There are other solutions introduced for reducing the number of classifiers
such as ECOC-based methods [1,4,8,9,18]. They mainly involve designing an
optimal coding matrix which requires a small number of bits for efficiency, good
row and column separation for robustness, and high accurate bit predictors.
Sparse random codes and random codes described in [1, 8] require a large number
of bit predictors (15.log(N) and 10.log(N) respectively where N is the number of
classes) to achieve a reasonable accuracy. However, it is shown in [19], the accu-
racy of these methods is worse than that of the one-versus-all approach. Spectral
ECOC [24] is based on spectral decomposition on the normalized Laplacians of
the similarity graph of the classes. The resulting eigenvectors are used to define
partitions. Because it uses one-versus-one classifiers to generate the similarity
matrix, it is not scalable for classification problems with large number of classes.
Recently, Sparse Output Coding (SpOC) [25] is a new encoding and decoding
scheme that learns coding matrix and bit predictor separately but still has good
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balance between error-correcting ability and bit prediction accuracy. However,
it uses a predefined class taxonomy to build a semantic relatedness matrix for
the both stages.

3 Learning a Balanced Tree for Image Classification

3.1 Overview of Label Tree

Following the definition in [2,7], a set of class labels L = {1, ..., C} are organized
into a label tree T' = (V, E) with a set of nodes V and a set of edges E. Each node
v € V is associated with a set of class labels I(v) C L that indicates information
about class belonging to node v and a set of children o(v) C V. Note, a set of
class labels of the root node contains all classes I(v = root) = L and a set of class
labels of a leaf node only contains one class (v = leaf) C L, |l(v = leaf)| = 1.
The edges connect each node v € V' to a set of children o(v).

To make a branching decision at a node v, we train |o(v)| one-versus-all
classifiers corresponding to its child nodes.

To classify the class of a test image = in the label tree, starting from the
root node, classifiers are applied to the feature vector of x to determine response
values. The child node which takes the largest value will be selected to go on.
This process is then repeated until a leaf node is reached. The test image is
classified into the class whose label associated with this leaf node. Since we only
need to evaluate classifiers of nodes along the path from the root to a leaf node,
the testing complexity is sub-linear. If the tree is balanced, the complexity is the
logarithm of the number of classes.

Following the notation in [7], we use T g to denote a label tree having @
children for each non-leaf node and maximum depth H. Depth of each node is
defined as the maximum distance to the root (the root has the depth 0). These
two parameters should be set so that the tree structure is balanced and QY
approximate the number of classes

3.2 The Proposed Approach

In order to create a balanced label tree, the number of class labels in each child
node, which have the same parent node, need to approximate each others. For
example, if node v has N class labels and we want to split them into @ child
nodes. Each child node has the maximum 7,,., class labels. The value of T},42
can be calculated with the following formula:

Tmax = QH_l (1)

where, H = logg (V) is maximum level. For example, if the node v has N = 1000
class labels and @) = 32, we obtain T},,, = 32.

Let matrix Sy« contains splitting information of N class labels as they are
split into @ children nodes. The value of S; ; means:

1, if i*"class belong toj*child node

Sii= 2
7 {0, otherwise @)
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Since a class only belong to one child node, we have:

Z Sij=1 (3)

In addition, the constrain which each node has maximum 7,,,, class labels can
be represented as:

N
Z Si,j é Tma:n (4)
j=1

We follow the main idea of k-means algorithm, let Fiyxg be a matrix with Fj ;
to be the average distance from all images of class i to the center of cluster j.
Each cluster is corresponding to a child node. If class i belongs to cluster 7,
the value of F; ; is minimized. This implies that the sum of average distance of
classes belongs to £(j) must to be minimized.

min Fi,j (5)

In general, we find values S; ; so that the sum of average distances between all
images of classes and its nearest cluster center is minimized.

N Q
rgi}lzzsi,j - Fy (6)

Toi=1 =1

subject to the constraints (3) and (4).

The problem (6) is a minimum optimization problem with two variables S
and F. It can be solved by using two alternating convex optimizations. In the first
step, F' is fixed, the problem (6) can be regraded as an integer linear program-
ming problem subject to the constraints (2), (3) and (4), where S represents the
integer variable to be determined, F' are coefficients. Next, S is fixed, we update
the cluster centers of classes which correspond to the non-zero values in columns
of S, then we can obtain F' by calculating the average distance from all images
to these centers. This optimization can be repeated with a fixed number of iter-
ations ¢ (in our implementation, we set ¢ = 5) or repeated until the solution is
converged.

We summarize the algorithm for splitting set of class labels at node in
Algorithm 1.

4 Experiments

4.1 Datasets

We conduct experiments on several benchmark datasets including Caltech-256
[12], SUN-397 [23] and ImageNet-1K [20]. These datasets are widely used to
evaluate both hierarchy-based and flat-based approaches for large-scale image
classification.
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Algorithm 1. Splitting set of class labels ¢(v) into @ child nodes
Input: X = {(zi,y:)}, Uy = £(v), [€(v)| = N: the set of training images
Q: the number of child nodes.

t: the fixed number of iterations
Output: The class label sets of @ child nodes.

1. Initialize: Compute the mean of all feature vectors of the training images of
a class, namely, X. And then, use k-means algorithm for clustering X into Q
clusters with centers Cq: Cq = k-means(X, Q).

2. For each class, compute averge distance from all feature vectors of the training

images to centers Cg. We obtain Fnxq = ave_distance(X, Cq).

Fix F, solve (6) for S and update centers Cq

4. Repeat step 2 until (6) convergence or a specified number of iterations ¢ is
reached.

@

— Caltech-256 [12] dataset. This is a multi-class object recognition dataset
with 29,780 images of 256 classes. Each class contains at least 80 images of
varying size and quality. Most of classes are relatively independent of one
another.

— SUN-397 [23] dataset. This is a scene classification dataset. It contains
108,754 images of 397 classes well-sampled from 908 scene classes of the
SUN dataset. There are at least 100 images per class.

— ImageNet-1K or ILSVRC2010 [20] is a subset of ImageNet. It provides
images of 1,000 classes, separated into three parts. The first part is a set
of 1,261,406 images for training (at least 668 images per class). The second
part includes 50,000 images for validation (50 images per class). And, the
third part contains 150,000 images for testing (150 images per class).

4.2 Experimental Setting

With Caltech-256 and SUN-397, we split the original dataset into three disjoint
subsets as following: 50% of images are for training, 25% of images for valida-
tion, and the last 25% of images are for testing. With ImageNet-1K, we use the
provided image sets for validation and testing. We randomly pick 100 images of
each class for training.

For each image, we extract dense SIFT features using VLFeat toolbox [21].
These features are then encoded using LLC encoding approach [22] with two
level spatial pyramid (1 x 1 and 2 x 2 grids) [13] for pooling. Using a codebook
with 10,000 visual words, we obtain a 50,000 dimensional feature vector for each
image. LIBLINEAR (version 1.96) library [10] is used for training linear SVM
classifiers with one-versus-all strategy.

We re-implemented the approaches proposed by Liu et al. [16] and Bengio
et al. [2] as a base-line for comparison. Specially, [2] is considered as the original
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label tree based learning approach. First, we train n classifiers independently
with one-versus-all strategy. We then apply these classifiers on a validation set
to obtain a confusion matrix C'. For each node v of the tree, we obtain a matrix
A= %(C’ + C7T) with C;; = Cr(v), t(v);- Regarding A as the affinity matrix,
a standard spectral clustering is then used to partition the label sets between
classes. However, since the objective function of spectral clustering penalizes
unbalanced partitions, it might generate an unbalanced tree. In our experiments,
we used the constrained k-means [3] instead of the k-means in clustering step to
obtain a better balanced tree.

4.3 Evaluation Measurement

We employ standard measurements, global accuracy and test speedup [7], for
evaluating the proposed approach and other approaches for comparison.

Global Accuracy. The global classification accuracy (Acc) is defined following:
Ace=13" it = w @
cc = m WYi = Yi

where, m is the total number of testing images and fi(9; = y;) is an indicator
function. fi(g; = y;) = 1 if the predicted class ¢; is similar to the assigned class
y; of the image x;; otherwise, fi(§; =y;) = 0.

Test Speedup. Test speedup (S;.) is measured as the test cost of one-versus-all
based approach divided by the test cost of the label tree based approach. Test
costs are computed as the average number of vector operations (dot-products)
required for classifying a testing image. If linear classifiers are used, the values
of Sie can be defined as following;:

Ste = ) (8)

where n is the number of classes, m is the total number of testing images,
and N is the total number of vector operations performed for classifying m
testing images. A higher value of S, indicates more efficient approach in terms
of computational cost. It also means less number of classifiers evaluated on a
test image to give the final class decision.

4.4 Experimental Results

Experimental results are presented in Table 1, 2, 3 corresponding to dataset
ImageNet-1K, SUN-379, and Caltech-256 respectively.

To obtain stable experimental results, we trained and evaluated the approaches
with different subsets selected by randomly sampling images in classes. We then
reported the average classification performance with the corresponding standard
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Table 1. Comparison the performance of the evaluated approaches on ImageNet-1K

[Approaches | Flat [ T322 [ Ti10,3 | T6,4 | T4,5 |
Acc%|Sie| Acc% | Sie [Acc% | Sie [Acc%| Sie | Acc% | Ste

Bengio et al. [2] 7.22| 15.78 5.20| 33.33| 4.61| 42.28| 4.05| 49.89
+ 0.21|£ 0.03|+£ 0.03|£ 0.00|+£ 0.10|£ 0.20|+£ 0.06|% 0.27

Deng et al. [7] 11.90 10.3 8.92| 18.20 5.62 31.3

Liu et al. [16] 12.12| 15.64| 9.73| 33.33| 9.39| 40.93| 8.68| 49.94
+ 0.03|4 0.01|£ 0.15|4 0.00|£ 0.33|% 1.56|+£ 0.34|% 0.22

Our approach 13.14 | 15.77|10.74| 33.33] 9.85| 42.24| 9.61| 50.06
4 0.04|4 0.00|% 0.07|4 0.00|4 0.09| % 0.9|4 0.13|4 0.02

One-versus-All | 26.01| 1

deviation. Moreover, the accuracy of multi-class classification using one-versus-all
classifiers trained with LIBLINEAR [10] are also reported for reference.

We compare our proposed approach with other tree-based approaches pro-
posed Bengio et al. [2], Deng et al. [7], and Liu et al. [16]. Each row of the table
presents performance of one approach. Meanwhile, columns are related to tree
configurations with different numbers of branches at a node and tree levels. For
example, T3 2 in Table 1 indicates a 2-level tree with 32 branches at a node.
Note that the flat-based approach can be considered a special case of a tree-
based approach. Given the number of level equals to 1, a tree becomes flat. And,
the performance of a tree-based approach is strongly affected by the changes of
tree configuration.

Generally, as we increase the number of level of a tree, the path from the
root to a leaf node i.e. an individual class is lengthened. However, since the
number of branches at a node i.e. the number of classifier evaluated at a node
is decreased, the test speed up is significantly improved. But, this also results in
accuracy drop. Tree configuration therefore can be adaptively selected to balance
accuracy and computational cost for a specific practical need.

The essential conclusion can be drawn from the experimental results is that
our proposed approach outperform other tree-based approach. At the same accu-
racy level, our approach is usually more efficient (i.e. higher Ste) than the other
tree based approaches. Meanwhile, at the same speed up level, we achieve higher
accuracy in most of the cases.

For example, as shown in Table 1, the average classification accuracy is signif-
icantly higher for the trees learned using our approach. For the tree T 3, there
are approximately 10 x 3 classifiers evaluated for a test image, so we achieved
1000/30 = 33.33 speedup with the accuracy 10.74+0.07%. Meanwhile, the aver-
age accuracy of the approaches proposed by Bengio et al. [2], Deng et al. [7],
and Liu et al [16] are 5.20 & 0.03%, 8.92% and 9.73 + 0.15% respectively. As
shown in Figure 1, the our method achieves comparable or significantly better
classification accuracy at the same test speedup. Note that as we evaluate the
approach proposed by Deng et al. [7], since it allows overlapping among child



Learning Balanced Trees for Large Scale Image Classification 11

ImageNet-1K: Accuracy vs Ste

—<— Begio at al.
Deng et al.

—o— Liuetal.

—+— Our method

i\\\\;

Accuracy (%)
©
T

Ste

Fig. 1. Performance of the evaluated approaches on ImageNet-1K

nodes, it usually requires more evaluation cost at each level (i.e. smaller Ste in
result).

Similar observation can be found in Table 2 and Table 3. The results in
Table 2 show that for all types of tree configurations, our method achieves com-
parable or significantly better classification accuracy at the same test speedup on
SUN-397 dataset. Table 3 shown the relationship between the average accuracy
and the test speedup on Caltech-256 dataset. It shows that the better perfor-
mance of our method compare to the others.

Table 2. Comparison the performance of the evaluated approaches on SUN-397

Approaches | Flat [  T202 [ T83 [ T54 [ T29 |
Acc%|Ste| Acc% | Ste |Acc% | Ste |Acc%| Sie | Acc% | Sie
Bengio et al. [2] 30.86| 9.96| 25.76| 17.28| 22.83| 20.83| 15.91| 22.70
+ 0.13|£ 0.02|£ 0.09|% 0.06|£ 0.98|+ 0.14|4 0.29|+£ 0.10
Liu et al. [16] 37.34| 9.93| 35.48| 16.96| 33.55| 20.36| 28.37| 22.51
+ 0.27|4 0.00|£ 0.37|% 0.08|% 0.55|+ 0.41|4 0.92|+ 0.02
Our approach 38.32| 9.97| 35.87| 17.16| 33.28] 20.90| 29.46| 22.73
+ 0.41|4 0.01|£ 0.57|% 0.04|£ 0.28|+ 0.14|4 0.31|£ 0.07
One-versus-All | 50.99| 1
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Table 3. Comparison the performance of the evaluated approaches on Caltech-256.
Our method achieves outperform accuracy than the others.

[Approaches ] Flat ] T16,2 [ T7,3 ] T4,4 ] T2,8 ]
Acc%|Ste| Acc% | Ste | Acc% | Sie |Acc% | Ste |Acc% | Ste
Bengio et al. [2] 31.79| 8.00| 27.56| 12.55| 25.47| 16.00| 22.87| 16.00
+ 0.69|% 0.00|£ 0.47|% 0.07|% 0.22|+ 0.00|% 0.29|+ 0.00
Liu et al. [16] 37.13| 8.00| 34.07| 12.40| 31.69| 16.00| 29.15| 16.00
+ 0.60|% 0.00|£ 0.94|+ 0.09|% 0.14|+£ 0.00|% 0.48|£ 0.00
Our approach 39.13| 8.00| 35.07| 12.70| 33.02| 16.00| 29.68| 16.00
+ 0.21|4 0.00|+£ 0.16|% 0.04|% 0.43|+ 0.00|% 0.68|+ 0.00
One-versus-All | 50.95| 1

5 Conclusion

The label tree approach is an efficient technique for the problem of large scale
multi-class image classification. We have proposed a method for learning an
effective and balanced tree that jointly optimize both the balance constraint and
confusion constraint. We compared our proposed method with other state of the
art methods in experiments on the large datasets such as Caltech-256, SUN-397,
and ImageNet-1K. The results show that our proposed method achieves the best
performance among the methods.

Acknowledgments. This research is funded by Vietnam National University Ho Chi
Minh City (VNU-HCM) under grant number B2015-26-01.
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