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Abstract. The paper proposes a procedure based on Kohonen’s Self
Organizing Maps (SOMs) to perform the unsupervised classification of
raw full-waveform airborne LIDAR (Light Detection and Ranging) data,
without the need of extracting features from them, that is without any
preprocessing. The proposed algorithm allows the classification of points
into three classes (“grass”, “trees” and “road”) in two subsequent stages.
During the first one, all the raw data are given as input to a SOM and
points belonging to the category “trees” are extracted on the basis of
the number of peaks that characterize the waveforms. In the second
stage, data not previously classified as “trees” are used to create a new
SOM that, together with a hierarchical clustering algorithm, allows to
distinguish between the classes “road” and “grass”. Experiments carried
out show that raw full-waveform LIDAR data were classified with an
overall accuracy of 93.9%, 92.5% and 92.9%, respectively.

Keywords: Airborne LIDAR data - Full-waveform - Unsupervised
classification - Self organizing maps

1 Introduction

The aerial laser scanner is an instrument used to survey the ground level morphol-
ogy and the size and shape of natural and man-made objects, that exploits the time
of flight of a reflected very short laser pulse (4 ns for the sensor used in this study),
usually of wavelength between 0.8 and 1.55 um. During its path, the laser ray can
be reflected by more than one surface, placed at different heights. The earliest laser
scanners could register just one return echo for each emitted one, later instruments
allowed the use of 5/6 reflections for each emitted pulse. Since 2004, a new category
of instruments are available on the market, the so called full-waveform airborne
laser scanners, that are finally able to record the entire waveform of the reflected
signal. The shape and size of the received waveform is related to the reflectance
characteristics of the surface. Recording the complete waveform of the incoming
pulse means that it is possible to obtain more information about geometrical and
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physical characteristics of the target hit by the laser ray, that can be useful for the
classification of the 3D sampled points.

Over the last years, several classification methods have been proposed in the
literature using full-waveform data and the features extracted from them [6].
Among these, we mention decision trees [5] or simple thresholds both set up
manually [18] and automatically [1]. These methods exploit features extracted
from the waveforms, such as amplitude, pulse width and number of pulses, and
they have the advantage of not requiring assumptions regarding the distribution
of input data. Other methods are based on statistical learning classifiers like
Support Vector Machines (SVM, [11]), which belong to non-parametric meth-
ods and perform non-linear classification. This algorithm is well suited for high
dimensional problems with limited training set. Hofle et al. [8] use instead an
artificial neural network classifier consisting of a single hidden layer of neurons
and trained by back propagation.

The present paper proposes the application of Kohonen’s Self Organizing
Maps (SOMs), a kind of neural networks introduced in the 80s of the last
century by Kohonen [10] as a method for clustering and visualization of high
dimension datasets. The basic principle of SOMs is that a higher level knowl-
edge organization can be carried out by learning using algorithms that perform
a self-organization in a spatial order. A SOM consists of a bi-dimensional grid of
a predetermined number of equally spaced nodes, that can vary from few units
to few thousand, according to the nature of the data set. Each node, also known
with the term “neuron”, is represented by a vector (the so called “code vector”)
with the same size of the vectors that constitute the data of the sample to be
analyzed and is connected with the other neurons to form the network. During
the training process the SOM evolves by changing the neurons’ vector values as
the data vectors sequentially enter into the process [2].

In the past, Self Organizing Maps found application in multispectral imagery
classification and, more recently, in the Earth sciences ([9], [4]). However, meth-
ods based on the SOM concept have not been yet extensively exploited for the
classification of LIDAR point clouds. Salah et al. [16] apply Self Organizing
Maps for building detection from LIDAR data and multispectral aerial images.
Zaletnyk et al. [19] exploit the SOM algorithm to investigate in particular the
correlation between the shape of the LIDAR waveforms, using various statisti-
cal parameters (amplitude, standard deviation, skewness and kurtosis), and the
properties of the reflecting surface. Toth et al. [17] and Molnar et al. [12] apply
a 2x2 neural grid SOM to classify four different features types (trees, grass, roof
and pavement).

In all these works, some features have been preliminary extracted from the
original full-waveform data and submitted to the SOM procedure. On the con-
trary, in this paper the raw full wave data vectors have been directly analyzed
and classified. Although Molnar et al. [12] stated in their paper the impracticabil-
ity to directly use the original waveforms as input for a classification procedure,
this paper shows a successful result thanks to the implementation of a SOM
with a number of neurons much greater than the number of the required classes.
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In [12] a network with a number of nodes equal to the number of classes is used.
Tests carried out in this work have shown that presenting the raw waveform
data to a SOM of small dimensions leads to a high error in the classification.
Large networks, instead, allow to use the original signal for the classification
procedure, despite the waveforms can be different for each reflection.

On the other hand, considering a number of nodes much greater than the
number of classes, implies the necessity to successively apply a proper algorithm
for clustering the nodes.

2 Methodology

As mentioned before, the classification method proposed in this paper is based on
the SOM algorithm. SOMs are a particular kind of unsupervised artificial neural
networks that promote self-organization of data vectors in a spatial order by
suitable learning algorithms. The first stage is the so called global initialization,
in which a map of predefined size, not organized at all, is considered. At the
beginning, a first set of random values - usually extracted from the experimental
data - is assigned to each node vector. Successively, three iterative processes are
repeated for all the data vectors until a global convergence is reached ([2], [3]).

The first one is the competitive process, that aimed at finding the neuron
whose code vector is nearest to the input vector in the n-dimensional space,
where n is the dimensionality of input data. The winning neuron (Best Matching
Unit, BMU) determines the spatial location of a topological neighbourhood of
excited neurons on the map. To carry out the competitive process, it is necessary
to introduce a discriminant function able to measure the similarity between the
input vector z; (t) at the ¢-th iteration and each neuron of the map. The winning
neuron at the t-th iteration is the one having the greatest similarity with the
input vector z; (¢). It has been demonstrated [7] that various similarity criteria
of two functions, f (y) and g (y), including the sum of squared differences and
the correlation coefficient, are related to the cross-correlation function Ry 4 (7)
at T =0:

Ry (r /f g(y+7)dy (1)

Thus, they cannot provide any information about patterns that are shifted rel-
atively to each other. In this work, a generalized expression for similarity [7],
S¢g(7), is used, which is based on a weighted cross-correlation function, a
weighting function z (7) normalized with the product of the two weighted auto-
correlation functions, that is:

J 2 () Ryg (1)dr
\/f T) Ry g (T de (1) Rg,q (T)dr

where z (7) is a triangular weighting function of width defined as z (1) = 1—|7|/h
if |7 < hand z(7r) = 0 if |[7] > h . The BMU is then the neuron w, (¢) that

Sf g (2)
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maximizes the value of the function Sy, (7). Once the competitive process has
selected the BMU, the next step is the so called cooperative process. During this
stage, a neighbouring function, h.) ; (), determines how strongly the various
neurons are connected to the winner at a certain iteration ¢. A typical choice of
Re(a),; (t) is the Gaussian function [13].

The last process is the adaptive one. During the adaptive process an adjust-
ment of the neuron vector values is carried out in order to minimize the distance
of each data input from the corresponding neuron of the map and to slowly
allow the map to be partitioned into relevant clusters at the end of the process.
Usually the model applied is the following [13]:

wj (t+1) = w; (8) + @ (t) heg),; (1) [2i (1) = w; ()] 3)

where w; (t + 1) is the j-th updated neuron vector at iteration t+1, a (t) =
ag-exp (—t/T) is the learning-rate factor parameter and 7 is a new time constant.

The three steps process just presented is applied at each iteration to the entire
data set and the entire learning process is stopped when no more substantial
changes to the code vectors are observed.

As pointed out before, the purpose of the proposed method here is to classify
LIDAR data into three categories: “trees”, “grass” and “road”. Fach input data
is the entire waveform of the reflected signal, i.e. a vector whose components are
the amplitude values registered and stored by the instrument at a certain sam-
pling interval. No preprocessing procedure is applied to the data. More details
about the structure of the data to be classified will be given in Sec. 3.

First of all, the extraction of the waveforms reflected from trees is performed,
exploiting the fact that waveforms belonging to this class are generally charac-
terized by the presence of two or more echoes, unlike those of the road and
grass, which include only one echo. Nevertheless, as highlighted in [11], wave-
forms recorded by the receiver are affected by the “ringing effect”, i.e. after the
peak corresponding to a reflecting surface, a small secondary maximum due to
the effects of the hardware waveform processing chain can be seen. So it is not
possible to distinguish between trees and the other two classes only on the basis
of the number of peaks of each raw signal, without first dealing with the “ring-
ing” problem. As suggested in [15], the “ringing effect” can be recognized and
removed if its amplitude is smaller than a certain fraction of the amplitude of
the first peak and if the second peak is closer than a certain distance to the
first one. The experiments carried out during this work have shown that, due
to the variability of the waveforms reflected, it is difficult to identify a single
threshold value to be applied to the raw data, which allows to eliminate only
false peaks. For this reason, the SOM algorithm, described above, is used a first
time, performing the training of the map with all the data set. A threshold value
is then applied to the code vectors of the map, rather than directly to the raw
data, in order to remove the “ringing effect”. Since the code vectors of the SOM
are a sort of “abstraction” of the data, the great variability of the waveforms is
smoothed, and a more reliable threshold value can be identified.
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At the end of this stage, the data associated with the code vectors that still
have more than one peak after the application of the threshold, are labeled as
trees. The remaining, i.e. those characterized by a single peak, are not classified.
Tests have shown that using the SOM algorithm for this purpose can significantly
reduce the error in the classification of the points belonging to the class “road”
and increase the overall accuracy of the classification. In fact, if the “ringing
effect” is removed applying the threshold value directly to the raw waveforms,
even taking into account the fact that the second false peak occurs between 10
and 12 ns after the first one, the overall accuracy is reduced by 10%.

Once the points belonging to the category “trees” have been separated, it is
possible to classify waveforms reflected by grass and roads. A new network of
the same size of the previous one is created and only the waveforms that have
not been labeled in the previous stage are used as input. As suggested in [16],
the chosen size of the map is high (e.g. 15x15). In fact, small networks result
in some unrepresented classes, while large networks lead to an improvement in
the overall classification accuracy. After each piece of data has been associated
with one neuron on the new map, a hierarchical clustering procedure, performed
by the agnes function (R environment [14], cluster package), is applied. Each
code vector is initially considered a small one-node cluster [3], that is then pro-
gressively merged with similar clusters, until only a unique cluster, containing
all the code vectors, is formed. At each stage the two most similar clusters are
combined. The result is a graph called “dendrogram”, where the clustering pro-
cess described above can be seen proceeding from bottom to top (Fig. 1). The
clustering procedure can be interrupted at any vertical level by establishing an
appropriate threshold. In this work, the threshold is chosen in order to determine
two clusters on the map: one is associated with the class “grass” and the other
with the class “road”. Finally, the two obtained clusters need to be “labelled”;
an automatic way to perform the interpretation of the clusters can be based on
the maximum value of the average vector that represents the cluster. Surfaces
covered with grass have higher reflectivity than the road; for this reason, the
cluster represented by the average vector that has the highest value of ampli-
tude is labeled as grass. It is important to underline that the information related
to the amplitude is exploited only to label the two classes obtained at the end of
the clustering procedure; the entire process that leads to the separation between
waveforms belonging to the category “road” and waveforms belonging to the
category “grass” is totally independent from this feature. Figure 2 shows the
identification of the two clusters on the map.

3 Experiments and Results

The proposed method has been validated for three test areas in Horn, Austria.
The data set was acquired by the company RIEGL Laser Measurement System
GmbH with the sensor RIEGL LMS-Q680i during a flight at the altitude of 800
m. The emitted laser pulse has a length of 4 ns and each return waveform is
composed of 60 samples, with 1 ns sampling interval. The data format used as
input in the proposed procedure is amplitude vs. time series samples.
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Fig. 1. Dendrogram summarizing the clustering of nodes of the SOM performed during
the second stage of the classification algorithm.
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Fig. 2. SOM showing the nodes assigned to each of the clusters. Cells which do not
contain a number use a gray scale to show the similarity of the nearby neurons code

vectors: light gray indicates a strong similarity and vice versa.
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The classification procedure preliminarily requires the operator to choose
the size of the Self Organizing Map. Maps of different dimensions were tested,
from 2x2 to 25x25. Results showed that maps of size 15x15 are a good trade-off
between classification accuracy and execution time. In fact, using larger maps
does not lead to a significant improvement of the results, while it increases
considerably the computational costs. For these reasons, the dimension of the
maps chosen for all the experiments is 15x15. In order to increase the precision of
the classification method, the training process of the SOM networks is repeated
for each data set.

The first study area is represented in Fig. 3. 15000 waveforms were extracted
from the complete data set and used for the validation of the algorithm, and
among these 2926 (19.5%) were randomly picked and manually classified for
evaluation purposes. The waveforms recorded by the instrument were given as
input to a first SOM network of size 15x15. At the end of the training process,
the code vectors associated with each neuron were normalized to the maximum
value, and the threshold 0.075 was applied to them. In this way, waveforms
with more than one peak were classified as trees. At the end of this stage,
12850 out of 15000 waveforms had not yet been classified. These were then
used as input data for a second Self Organizing Map of size 15x15. As described
in Sec. 2, once the data have been projected on the new map, a hierarchical
clustering algorithm was applied and the dendrogram was produced. Finally,
the two clusters obtained through the dendrogram were interpreted on the basis
of the maximum amplitude value of the average code vector related to each
cluster and the classes “road” and “grass” were identified.

Fig. 3. First study area.

In order to verify the accuracy of the classification method, the results
obtained with the proposed algorithm were compared with the manually per-
formed classification. As shown in Table 1, the overall classification accuracy for
this study area is 93.9%. The error matrix highlights that the proposed method
allows to classify the data belonging to the “road” and “grass” categories with
very high accuracy, respectively 97.6% and 98.6%. However, the algorithm shows
more difficulty in discriminating waveforms relating to trees. This may be due to
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the fact that some waveforms reflected from the trees can present only one peak,
or secondary peaks have low amplitude and they are not distinguished from the
noise. In these cases, the method is not able to correctly establish the class, and
these data are erroneously assigned to the categories “road” or “grass”.

Table 1. Error matrix for the first study area, computed with 2926 manually classified
points.

Grass Trees Road Total  User’s accuracy
Grass 1451 86 7 1544 94.0%
Trees 13 595 3 611 97.4%
Road 22 48 701 771 90.9%
Total 1486 729 711 2926
Producer’s accuracy 97.6% 81.6% 98.6% 93.9%

Figure 4 represents the second test area. In this case 10000 waveforms were
extracted from the complete data set and among these 1086 (10.9%) were ran-
domly picked and manually classified. A new SOM of size 15x15 was trained,
using this second data set. At the end of the first stage, carried out as described
in the previous experiment, 8870 out of 10000 waveforms had not yet been clas-
sified. These were then used as input data for the second stage of the algorithm,
which led to the results reported in Table 2.

Fig. 4. Second study area.

In this case, the overall accuracy is equal to 92.5%, while the producers
accuracy related to each category is 93.9% for the class “grass”, 91.9% for the
class trees and 89.4% for the class “road”. Unlike the previous example, the
results of this experiment show that also the points belonging to the class trees
are identified with high accuracy, more than 90%.

The third test area is shown in Fig. 5. 12000 waveforms were used in this
experiment and among these 1588 (13.2%) were randomly picked and manually
classified. The classification procedure was carried out as described above, cre-
ating a first SOM network of size 15x15 that led to the identification of 1688
points belonging to the class “trees”, and a second map of dimension 15x15 for
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Table 2. Error matrix for the second study area, computed with 1086 manually clas-
sified points.

Grass Trees Road Total  User’s accuracy
Grass 559 15 24 598 93.5%
Trees 2 226 2 230 98.3%
Road 34 5 220 259 84.9%
Total 595 246 246 1086
Producer’s accuracy 93.9% 91.9% 89.4% 92.5%

the distinction between the class “grass” and the class “road”. Table 3 shows the
confusion matrix, computed from the comparison between the results obtained
with the proposed algorithm and the manually performed classification.

Fig. 5. Third study area.

Table 3. Error matrix for the third study area, computed with 1588 manually classified
points.

Grass Trees Road Total  User’s accuracy
Grass 801 3 42 846 94.7%
Trees 27 344 8 379 90.8%
Road 27 5 331 363 91.2%
Total 855 352 381 1588
Producer’s accuracy 93.7% 97.7% 86.9% 92.9%

The overall accuracy achieved is 92.9%, which is a value similar to the previ-
ous cases. The accuracy with which points belonging to the classes grass and road
were identified, 93.7% and 86.9% respectively, is similar to the second experi-
ment, while the accuracy related to the class trees is very high, equal to 97.7%.

4 Discussion and Conclusion

The goal of this work was to implement a method for the classification of data
acquired with a full-waveform airborne laser scanner, based on Kohonen’s Self
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Organizing Map. The algorithm proposed in this paper uses the entire waveform
recorded by the instrument, without any pre-processing, in order to distinguish
the data into three categories: “trees”, “grass” and “road”. Although Molnar
et al. [12] stated in their paper the impracticability to directly use the original
raw data as input for a classification procedure, since the waveforms can be
really different for each reflection, this paper shows a successful result thanks
to the implementation of a SOM with a number of neurons much greater than
the number of the required classes. In fact, large networks manage to overcome
the problem of the variability of the waveforms and the classification is then made
possible by the subsequent application of the hierarchical clustering algorithm
to the nodes of the map. One may argue about the necessity to pass through a
SOM procedure and not directly to the clustering of the original data. In this
regard, applying a clustering algorithm to the nodes of the grid and not directly
to the original data vectors, is surely much more reliable since neuron’s values
are in some way “averaged” values.

The experiments carried out to validate this method showed that, on average,
the overall accuracy provided by the proposed algorithm is 93.1%, and the three
categories “grass”, “trees” and “road” can be distinguished with an average pro-
ducer’s accuracy of 95.1%, 90.4% and 91.6%, respectively, and an average user’s
accuracy of 94.1%, 95.5% and 89%, respectively. It is important to emphasize
that the method is almost fully automatic, and the user needs only to choose
the threshold for the elimination of the “ringing effect”. Unlike other methods
([5], [17], [19]), it is not required to extract features from the waveforms of the
data set.

Moreover, since the SOM is a tool that realizes an unsupervised classification,
any manual pre-classification of a subset of data is not necessary, as instead
required by methods that perform a supervised classification.

If the user is interested only in a particular category of points, this method
can be very useful because it allows to extract preliminarily some classes of data
and then to process only the waveforms of interest and not the entire data set.

At the time the method is applicable to the classification of points belonging
to areas without buildings. Further research is being carried out in order to
extend the applicability of the algorithm.
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