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Abstract. Hierarchical and multi-resolution models are well known
tools used in may application domains for representing an object at vary-
ing levels of detail. In the case of segmentations computed on a mesh,
a hierarchical model can be structured as a binary tree representing the
hierarchy of the region merging operations performed on the original
segmentation for reducing its resolution. In this paper, we address the
problem of modifying a hierarchical segmentation in order to augment
its expressive power. We adapt two well-known operators defined for
modifying binary trees, namely left and right rotation, to the case of
hierarchical segmentations. Such operators are then applied to modify-
ing a given hierarchy based on a user-defined function and based on a
user-defined segmentation.

1 Introduction

The area of mesh segmentation algorithms research is a mature one, having inher-
ited and adapted many of its approaches from the area of image segmentation.
In the many years since its inception, segmentation algorithms have proliferated,
each based on various distinct approaches and metaphors, including watershed,
graph-cut, and hierarchical methods, to name a few. In all cases, once a segmen-
tation is produced by the algorithm, it remains static and the client application
must use the obtained result. If a different segmentation is desired, for example
a refinement based on new objectives, an entirely new segmentation must be
computed.

What if, rather than remaining static, a segmentation could be automat-
ically refined in a principled way? By having segmentation-editing operations
at our disposal, we could conceive of each segmentation as living in a space of
candidate solutions, each connected to its neighbors by an edit operation appli-
cation. In this fashion, we could start from a candidate segmentation obtained
through the application of well-known and efficient algorithms. From here, with
the algorithmically-guided application of edit operations, we could explore the
space of nearby segmentations, i.e., the ”segmentation neighborhood”, in search
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of a result that better conforms to an objective that is new or more nuanced
than the first algorithm was suited to optimizing.

The above motivates a “black box” approach to segmentation, decoupling the
segmentation algorithm from the segmentation metric or objective function. This
effectively allows us to cast the segmentation problem into the effective meta-
heuristic search framework that has been successfully applied in the Artificial
Intelligence and Optimization communities. This brings a number of advantages.
On the one hand, it enables research into effective domain-specific objective func-
tions, which users are free to collect into libraries and reuse as needed. Simultane-
ously, the decoupled nature of the framework allows research into metaheuristic
search algorithms in a domain-independent way. Any theoretical and practical
improvements can then be ”swapped in”, immediately translating into improved
performance across domains in a way that will be effortless and transparent to
most users.

In this paper, we take a first step into the area of algorithmic segmentation
editing. Our proposal focuses on hierarchical segmentations and the guarded
application of rotation operations analogous to those applied for the rebalancing
of binary trees. After introducing our framework, we demonstrate its use by
applying it to two use case: the modification of a segmentation hierarchy based
on a changed objective function, and based on a segmentation outside the space
of segmentations encoded in the hierarchy.

2 Related Work

Hierarchical models for geometrical objects support the representation and
processing of spatial entities at different levels of detail (LOD) [13,4]. Such
representations are especially interesting because of their potential impact on
applications such as terrain modeling in Geographic Information Systems (GIS)
and scientific data visualization.

The basic ingredients of a hierarchical model for a spatial object are a base
complex, that defines the coarsest representation of the object, a set of updates
that provide variable resolution representations of the base complex when applied
to it, and a dependency relation among updates which allow them to be combined
to extract consistent intermediate representations.

The process of building a hierarchical model depends on the simplification
of a cell complex. Usually, such an operation is time consuming because sophis-
ticated techniques are required to optimize the shape of the cells and to bound
the approximation error. However, such structure-building operations can be
performed off-line so that the structure can then be efficiently queried on-line.

Hierarchies and multi-resolution models have been applied in a plethora of
areas, including geometric modeling [6,4], morphological analysis of 2D and 3D
images [11], and shape analysis [2]. Within the are of shape analysis, mesh seg-
mentation algorithms cover a huge area of this field [16,19].

Among the existing segmentation methods, we are particularly interested in
those which are often used to create an oversegmentation as a preprocessing
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step. These include mean-shift clustering [18], normalized cuts [10,9,22,14,21],
and, recently, an iterative approach which scales to high resolution meshes [20].

Complementary to the above algorithms is the idea of obtaining a hierarchical
clustering of elements. The construction of this hierarchy can be driven by an
error metric defined over the edges of the dual graph [7], or on fitting primitives
of the regions [2], for example.

The hierarchical organization can provide a representation of the functional
or semantic structure of a shape while reducing the emphasis on geometric
details. We find various examples of these kinds of hierarchies which differ in the
nature of the error function used in their construction. The hierarchy defined
in [8] and applied to triangulated meshes is based on the diffusion distance on
surfaces. In [17] a mesh partitioning and the corresponding hierarchy is built
based on combining the well known Shape Diameter Function and the k-way
graph-cut algorithm to include local geometric properties of the mesh. In [15]
Reuter introduced a method to hierarchically segment articulated shapes into
meaningful parts and to register these parts across populations of near-isometric
shapes. The hierarchical relation applies the notion of persistent homology [5]
for the elimination of topological noise.

Recently, in [12], the notion of co-hierarhical analysis has been applied to
shapes. At the base of the method is the construction of a family of hierarchies
for each single object. Among these hierarchies only the most representative ones
are selected and studied in order to identify similarities between objects.

3 Update Operators

A tree rotation is an update operator used for changing the shape of a binary tree
without changing the resulting in-order traversal of its elements. Two symmetric
operators have been defined in the literature, right rotation and left rotation,
which we will indicate as rotationR(·) and rotationL(·), respectively.

Let p be a node of the binary tree and q the left child of p, denoted l(p). The
rotationR(p) operator changes the structure of the tree as follows:

– q becomes the new parent of p,
– p is the new right child of q,
– the old right child of q, denoted r(q), becomes the new left child of p.

The latter can be seen as a clockwise rotation of the root p using the node
q as pivot. The left rotation rotationL(·) is entirely dual and can be seen as a
counter-clockwise rotation. These two operators are at the base of the definition
of efficient data structure such as AVL, red-black, and splay trees.

Recall that working with a hierarchy of segmentations we can efficiently rep-
resent such a hierarchy as a proper binary tree T (i.e. a binary tree in which
internal nodes have always two children) having the leaf nodes in one-to-one
correspondence with the regions of the segmentation at finest resolution. Each
internal node of T represents a merging operation between two regions (i.e. the
regions represented by the left and right child) and consequently it represents
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the new created region. Moreover, this structure also guarantees that, given two
nodes with the same parent, the corresponding regions are adjacent in the seg-
mentation extracted at such a level. In terms of the nodes of a tree, we will say
that two nodes n1 and n2 are adjacent (n1 � n2) if there exists one region in the
n1 subtree that is adjacent to at least one region in n2 subtree.

Given the above, the rotation operators defined for general binary trees
could potentially bring about two inconsistent representations when applied
to a segmentation hierarchy. The two cases are shown in Figure 1b. Applying
rotationL(p), pivoting on node 3, two internal nodes are created (nodes 3 and p)
having only one child. The second problem is generated applying rotationR(p)
pivoting on node q. The rotation applied is valid from the point of view of
the node’s connections. However, it results in an inconsistent representation of
the segmentation. In particular, the merging between nodes 1 and 3 cannot be
applied to the segmentation (see Regions 1 and 3 in Figure 1a).

(a) (b)

Fig. 1. (a) Binary tree and related segmentations extracted at different resolution
levels. (b) Binary tree rotations resulting in invalid hierarchies and proper binary tree
obtained after applying HRR(p).

Thus, we have adapted the rotation operators in order to guarantee two
invariants. (1) A rotation maps a proper binary tree into a proper binary tree
with a different structure and, (2) for each internal node p, the left and right
children are adjacents (l(p) � r(p)).

Let q be the left child of an internal node p. The Hierarchical segmentation
Right Rotation of p (denoted as HRR(p)), is a valid rotation if q is an internal
node. Let u = l(q), v = r(q) and s = r(p). As a consequence of HRR(p), q
becomes the parent of p. If v is adjacent to the region represented by s, then
v becomes the left child of p. Otherwise u and v are swapped (along with the
related subtrees) and u becomes the new left child of p. Note that at least one of
the two regions represented by u and v is adjacent to the region represented by
s since they have a common ancestor. When both u and v are adjacent to s the
best node to be moved can be chosen based on application-dependent criteria.
In Figure 1b we show the result of HRR(p) performed on the tree depicted in
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Figure 1a. The Hierarchical segmentation Left Rotation operator, indicated in
the following as HLR(·) is performed in a dual fashion.

In contrast to the classical rotation operators, HRR and HLR rotations main-
tain invariant (1) as a consequence of the fact that node q, chosen as pivot, is,
by definition, an internal node with non-empty subtrees.

Considering other modification operators for proper binary trees, the dele-
tion and insertion of a single node is forbidden since it would make the binary
tree not proper. The swap of two subtrees is a modification operator that could
be considered in addition to rotations. Since the ordering between the left and
right children of a node is irrelevant for the hierarchy, the swap of two nodes
sharing the same parent, used in the rotation operators, is not a true update
operator (i.e. it does not change the space of segmentations represented). Swap-
ping two subtrees (not sharing the same parent) may cause inconsistencies in
the hierarchical structure in general.

Before distinguishing between valid and non-valid swaps we introduce some
basic definitions. Given the lowest common ancestor of two nodes n1 and n2 and
its subtree T , we say that n1 uniquely depends on n2 (n1 � n2) if n2 is the only
node adjacent to n1. As a consequence, we can say that:

– if n1 � n2 then either they share the same parent, or the parent of n1 is the
root of T ,

– if n1 � n2, then the depth of n1 is lower or equal to the depth of n2.

The second property in particular implies that there does not exist a sequence
of rotations (HRR or HLR) for moving n2 above n1. In Figure 2a, for example,
node 5 uniquely depends on node 2 (5�2) since 2 is the only node adjacent to 5.

(a) (b) (c) (d)

Fig. 2. (a) Binary tree representing the space of segmentations depicted in (b). (c)
Inconsistent hierarchy resulting from the non-valid swap of nodes 2 and 3. (d) Hierarchy
resulting from the valid swap of nodes 1 and 4

In the following, we define the conditions necessary to identify a valid swap.
Let p be the common ancestor of two nodes n1 and n2. Let s1 and s2 be the
siblings of n1 and n2 respectively. Let T1 and T2 be the left and right subtrees
of p, rooted at r1 and r2 respectively.

A swap between n1 and n2 is a valid swap if n1 � s2 and n2 � s1. Moreover,
let U be the set of nodes n ∈ T1 such that n � n1. The swap is valid if either:
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i - U is empty, or
ii - for each n ∈ U , n � n2. (Conditions for T2 and n2 are dual.)

In Figure 2a for example, the swap between 1 and 4 is valid because 1�2, 3�4,
and none of the nodes in the subtree of r2 uniquely depend on 4 (condition i),
while the node in the subtree of r1 that uniquely depends on 1 (i.e. 3) is also
adjacent to 4 (condition ii). In Figure 2d, the resulting hierarchy is shown.

Recalling the properties of � and �, we observe that if either condition i or
condition ii are not satisfied, there does not exist a sequence of rotations for
moving one node in place of the other. This leads us to conjecture that a valid
swap can always be represented as a sequence of HRR and HLR rotations. In
this case the rotation operators here defined would form a minimal complete set
of modification operators for a segmentation hierarchy.

4 Implementation and Preliminary Results

We have studied the rotation operators HRR and HLR in the context of hierar-
chies built from the segmentation of triangular meshes. In our naive implemen-
tation we are encoding both the binary tree structure and the mesh. Given a
triangle mesh Σ, we are indexing vertices and triangles in two separate arrays.
For each vertex, we store its coordinates while, for each triangle, we store the
indexes to its three vertices and the indexes to its three adjacent triangles. Let
|Σ0| the total number of vertices and |Σ2| the total number of triangles the whole
mesh representation takes 3|Σ0| + 6|Σ2|.

Considering the proper binary tree implementation, each node encodes a
pointer to its right and left children and an application-dependent value (gen-
erally a float). Differently from a binary search tree, the time complexity for
finding a node in the hierarchical segmentation is linear in the number of nodes
in the hierarchy. Thus, for each node, we are also encoding a pointer to its parent
in order to improve the navigation efficiency. If N is the number of nodes in the
binary tree, we are encoding 3N pointers and N float values in total.

Leaf nodes encode additional information. The set of top simplices (triangles)
belonging to the corresponding region and an adjacency list pointing to the
adjacent regions in the segmentation at finest resolution. If A is the set of pairs
of adjacent regions we encode 2|A| pointers and |Σ2| indexes in total.

We have conducted our experiments on four benchmark meshes. All the
results have been obtained on a MacBook Pro with 2.8Ghz Quad-core Intel
Core i7 processor and 16GB of RAM. For all cases, the storage cost required by
the hierarchy is at least two orders of magnitude smaller than the storage cost
required by the triangle mesh. The Female dataset is composed of 4K vertices
and 9K triangles and its over segmentation is formed by 100 regions. Hierar-
chies are built on this dataset in about 0.26s. The Vase daset is composed by
14K vertices, 29K triangles and 200 regions, as is the case for the Armadillo
dataset, which is composed of 25K vertices and 50K triangles. Hierarchies on
these datasets are built in 1.7 and 2.8 seconds respectively. The Neptune dataset
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is formed by 250K vertices, 500K triangles and 300 regions. The entire encoding
for the mesh and the hierarchy requires approximately 18MB and building the
hierarchy takes 42.1 seconds.

4.1 Hierarchy Update Based on an Input Function

For our first application, we have considered the possibility of modifying a pre-
built hierarchy based on a function given as input. Specifically, we are aiming at
constructing a hierarchy that adaptively combines different functions together.
The first function involved computes the volume of the axis-aligned bounding
box of the region resulting from the merging operation. Regions whose composi-
tion results in a small bounding box are merged before regions creating a larger
bounding box. The second function evaluates the concavity along the border
of two regions using the distance function described in [20]. Regions having an
almost flat behavior along their boundary are the first to be merged.

In all of our experiments our starting segmentation is produced with the
superfacets algorithm presented in [20]. The hierarchy is then the result of the
simplification sequence created based on the function computing the bounding
box volume. Based on this sequence of merging operations, nodes are created
starting from the leaves and ending with a single node (the root) representing
the single region obtained at the end.

Segmentations are extracted from the latter hierarchy using a threshold value
indicating the desired resolution. Let t be the threshold value. The resulting
segmentation is the one obtained navigating from the root and considering only
those nodes having associated value greater than or equal to t. In our experiments
we have always chosen a value of t resulting in a limited number of nodes (and
thus a low number of regions) in order to help the visual comparison between
the methods.

Once the first hierarchy is obtained, a new hierarchy is computed based
on the simplification sequence created by the concavity function. The resulting
hierarchy is then balanced using the bounding box function. New values for each
node are computed based on the latter function. Nodes are then considered in a
post-order sequence. Given a node q and its parent p, a rotation is applied on p
pivoting on q if the value of p after the rotation will be lower with respect to the
value of q before the rotation. After the rotation, a depth-first visit is recursively
performed on the subtree of q in order to search for new rotations that could
be triggered by the latter. Note that the only values changed during a rotation
are the value of p and q. The aim of the rotations in this case is to minimize the
increase of the function values navigating toward the root, thus simulating the
hierarchical structure that would result using the bounding box function from
the beginning.

At this point we have performed extractions on both hierarchies compar-
ing the segmentations obtained. In Figures 3a-3b we show the segmentation
for the Armadillo dataset, extracted from the original hierarchy, splitting
the root only. The segmentation at the finest resolution is composed of 300
regions. The leg is last to be merged with the body since its expansion is in
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the opposite direction. In Figure 3c we show the segmentation obtained from
the second hierarchy. Since the two legs are connected by a flat area (under the
body) the influence of the concavity function makes those two parts become a
single component in the first level of the hierarchy, thus improving the semantic
of the result.

(a) (b) (c)

Fig. 3. (a-b) Segmentations for the Armadillo dataset obtained from the hierarchy
based on the bounding box function and (c) the segmentation obtained combining two
functions. Rotations are applied in 1.03 seconds

In Figure 4 we show three other examples were the semantic segmentation
obtained from the first hierarchy (on the left) is improved by composing the two
functions. In Figure 4a, the handles of the Vase dataset are better separated
from the body. In Figure 4b, instead, the head of the Female dataset is distin-
guished from the body while legs and calves are treated as single objects. For the
Neptune dataset shown in Figure 4c, the head of the trident is correctly treated
as a single object in the early levels. However this is still a delicate operation.
The legs in 4c or the torso of 4b, for example, are less well segmented using our
framework.

The study of more complex state-of-the-art functions will be at the center of
future developments.

4.2 Hierarchy Update Based on an Input Segmentation

For our second application we have considered the possibility of adapting a
hierarchy to an input segmentation. For our preliminary investigations we have
restricted our problem. The building blocks of the input segmentation are the
same as those of the original regions on which the hierarchy has been built. This
means that a leaf node in the hierarchy is always contained in only one region
of the input segmentation (for general purpose implementations, building the
hierarchy starting from the triangles guarantees that any segmentation defined
on the same dataset respects this condition). The second restriction is given by
the number of regions composing the segmentation given as input. We are using
input segmentations with only two regions. However any segmentation could be
treated with the same algorithm grouping the regions in two main sets and then
calling the algorithm recursively on their subsets.
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(a) (b) (c)

Fig. 4. Comparison of the results obtained with the two hierarchies for (a) the Vase, (b)
Female and Neptune datasets. Rotations take 0.9, 0.1 and 10.3 seconds, respectively

(a) (b)

Fig. 5. (a) Rotation HRR(p) reducing the number of undetermined nodes. (b) The
same operation is useless if regions corresponding to nodes 1 and 3 are not adjacent.
Leaf nodes are colored with red or blue depending on the region to which they belong.
Colored squares over internal nodes distinguish between determined nodes (having the
same color) and undetermined nodes (having both colors).

In this case the value associated with each leaf node corresponds to an index
(1 or 2), indicating the region in the input segmentation to which the node
belongs. The value associated with each internal node is then the set of labels
of its children (such a set can be {1}, {2} or {1, 2}). We will call determined a
node having only one label and undetermined the node having both labels.

Once the values have been computed, a post-order visit on the tree is
performed. The objective of the algorithm is to reduce the number of undeter-
mined nodes by means of rotations. The input binary segmentation is successfully
encoded in the hierarchy when the root is the only node undetermined.

A rotation is applied to a node p if the number of undetermined nodes
decrease after the rotation (see Figure 5a). Note that the nodes the state of
which can change are limited to p and l(p) for an HRR rotation and to p and
r(p) for an HLR rotation. When a rotation is performed the subtree of the new
root is visited in post-order sequence, but subtrees of determined nodes are never
visited twice.

There are degenerate configurations in which the latter criterion is not suffi-
cient. An example of this configuration is depicted in Figure 5b. The adjacency
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relation between the regions actually obstructs some rotations that would reduce
the number of undetermined nodes thus resulting in a “stuck” configuration. To
overcome this problem, when at the end of the visit either one of the children
of the root is still undetermined, we do the following on that respective subtree:
using a depth-first visit, the deepest undetermined node is identified and, with
a sequence of rotations, it is brought to the root of the subtree. Intuitively, we
can think about the distance of a node from the root as the scope of the node
with respect to the other regions. The nearer a node is to the root, the higher
the number of regions with which it can be merged through rotations. This
corresponds to augmenting the scope of the node, thus enabling new rotations.

(a) (b)

Fig. 6. From left to right, binary segmentation encoded in the hierarchy, input segmen-
tation and binary segmentation obtained by adapting the hierarchy for the Neptune
(a) and Vase (b) datasets.

After that, a new visit is triggered on the entire tree. Note that a subtree
of a determined node does not need to be visited. In Figure 6, we show some
of the results obtained mapping with different colors the regions of the input
segmentation and the one obtained after training the hierarchy.

5 Conclusions

In this paper we have addressed the problem of modifying the structure of a
hierarchical segmentation, allowing for an expansion of said hierarchy into a
space of related segmentations.

We have defined two update operators related to the well known rotation
operators devised for binary trees. We have applied these operators for modifying
a hierarchical segmentation based on an input function and on an input binary
segmentation.

Our future work will concentrate on testing our framework with different
kinds of functions, also combining the modifications triggered by a new objective
function with the modifications triggered by a new objective segmentation. We
would like to apply the framework also to scalar fields, typically represented as
triangle meshes with a scalar value defined on each vertex, where the combination
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of functions computed on the shape with functions computed based on the scalar
values could bring new insights in this area.

Even though here we have described our implementation based on triangle
meshes, our framework can be applied to any simplicial mesh, including, for
example, tetrahedral meshes discretizing 3D volumes.
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