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Abstract. A human action recognition method is reported in which
pose representation is based on the contour points of the human silhou-
ette and actions are learned by a strict 3d pyramidal neural network
(3DPyraNet) model which is based on convolutional neural networks
and the image pyramids concept. 3DPyraNet extracts features from
both spatial and temporal dimensions by keeping biological structure,
thereby it is capable to capture the motion information encoded in mul-
tiple adjacent frames. One outlined advantage of 3DPyraNet is that it
maintains spatial topology of the input image and presents a simple con-
nection scheme with lower computational and memory costs compared to
other neural networks. Encouraging results are reported for recognizing
human actions in real-world environments.

1 Introduction

Despite advances in image recognition, action recognition is still challenging as
it contains insufficient information for proper classification of an action. Some of
the well-known models [1–9] achieved 90+% accuracy on different datasets under
their respective targeted scenarios. In real-world scenarios, in most of the cases,
human and their surrounding changes dramatically, resulting in angle change,
occlusions and interactions and performance of such approaches drop when the
dataset or scenario changes.

Recent neural network based methods have been developed by going deeper
for learning more discriminative and different features [10]: the functions that can
be represented by a k-depth architecture might require an exponential number of
computational elements to be represented by a (k − 1)-depth architecture. This
is mainly why in the last years algorithms based on deep learning approaches
achieved resounding success in the community of computer vision and in the
field of action recognition [11–15].

Specifically, 3D convolutional neural networks have been used to learn spatio-
temporal features directly from the raw images [16,17]. They increase kernels
and maps as the number of layer increases. An important aspect of convolu-
tional deep models is the weight learning and sharing concept that reduces large
number of parameters compared to conventional fully connected neural network
models. Learning parameters in the convolutional models are in a kernel shape
which are not specific to any neuron; rather, they are slided and shared over the
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whole image and network. It reduces the number of parameters, but increases
the chance to put burden on those parameters while considering huge amounts
of data from videos. Considering that the number of computational elements
strongly depends on the number of training examples available for tuning the
network, an insufficiently deep architecture might bring to poor generalization
capabilities. So, the main limitation lies in the fact that entire images need to
be used for training the network, so determining a very high computational cost
which makes often unfeasible the usage of such approaches in real applications.

Our work is inspired by the idea that early models strictly pyramidal and
following strict biological structure [18–20] may turn to be a possible solution.
In this paper, we will be focusing on two aspects: one proposing a new model
that learns features from input till output without any handcrafted features,
and secondly proposing and re-utilizing such a weighting scheme that can work
better and learn discriminative features for recognizing human actions in videos.
In coming section we will discuss a strict pyramidal neural network known as
PyraNet that we will utilize for designing our strict pyramidal architecture for
action recognition.

The contribution of this paper is twofold. First, introducing 3D strictly pyra-
midal neural network (3DPyraNet) model that will not violate biological neural
network structure and which will use a new weighting scheme that extracts dis-
criminative spatial and temporal information. Second, the model is tailored for
action recognition, demonstrating, although hard constraints are imposed on the
model, it is still able to properly recognize actions.

The paper is further organized as follows. Section 2 will give slight moti-
vational background of why we proposed such a model. Further details about
existing techniques that are modified, combined and enhanced in our proposed
model are given in sub-sections. Section 3 will show and discuss results achieved
from proposed models. Section 4 will conclude the paper.

2 3DPyraNet

We adopted a strict 3D pyramidal architecture based on decision making pyrami-
dal structure of a brain through feature maps. T Furthermore, to capture actions
as a whole in videos, we adopted a similar weighting scheme as used in PyraNet
that will be discussed in section 2.2. These parameters will be learned from input
till output using a modified structure of traditional backpropagation algorithm.
To take advantage of temporal information in videos, we adopted 3D struc-
ture by taking inspiration from 3D Convolutional Neural Network (3DCNN)
model [14]. The aim is to show that a strict pyramidal structure can enhance
performance compared to unrestricted models even with simple structure, fewer
feature maps and hidden layers. In coming sub-section we will first explain exist-
ing Pyranet model and than the weighting scheme before going to our proposed
3D architecture.
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2.1 PyraNet

The PyraNet model [19] was inspired by the pyramidal neural network model
reported in [18] with 2D and 1D layers. The diversity from the original model
presented in [18] was that the coefficients of a receptive field were adaptive and
it performed feature extraction and reduction in lower 2D layers. These were
followed by a 1D layer at the top for classification of an image.

This model is also similar to CNN if we remove pooling layers from a CNN
[15,21]. Specifically: 1) the model is connected directly to pixels in the input
image (no preprocessing holds); 2) neurons are connected only to local regions
(locally connected network); and 3) layers form a reduced representation of the
preceding layers (deep is the rule of thumb).

However there were two main differences. Firstly it does not perform con-
volution rather weighted sum (WS) operation or correlation over the receptive
field. Secondly, weights are not in the form of a kernel that slides over the whole
image; rather each output neuron has a local unique kernel specifically assigned
to it. These kernels are based on input neurons in a receptive field and their
corresponding weights in a weight matrix. This results in a unique locally con-
nected kernel for each output neuron. This will be further discussed in next
section. Further, in PyraNet the dimensions were reduced by the stride of the
kernel at each layer.

2.2 Weighting Scheme

An important part in popular convolutional deep models is their weight-sharing
concept that gives an edge over other neural network models. This property
reduces large amount of learning parameters; however, it increases burden on
those fewer parameters. We adopted the same weighting scheme as used in
PyraNet. In PyraNet each neuron has its own unique weight. These are learned
using backpropagation technique and stochastic mini-batch gradient descent
approach. This unique weight scheme results in weight matrix that has same
size as input image or feature map at a lower layer. At the time of computation,
each output neuron gets a unique kernel based on calculated receptive field.

This approach is modified for 3D structure by using more weight matrices at
a time to incorporate the temporal information from the given input frames. In
order to capture further different type of features, several sets of weight matrices
WS are used. We randomly initialize these weights at each layer taking care of
suggested techniques stated in literature for corresponding activation functions
used at those layers. Initially, feature maps produced by WS kernels were sparse
as compared to convolutional kernel. But later by training the model, they become
similar to smooth blurred images of the input sequences. This 3D weight matrix
approach for weight-sharing is different than traditional one. The weight sharing
is very minimal in this approach, i.e. in worst case 1/n where n is the size of the
receptive field kernel. Each neuron has its weight parameter that is locally shared
whenever that neuron is used in a receptive field of an output neuron.
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2.3 Proposed Architecture

The basic 3DPyraNet model has three hidden layers in combination with pool-
ing layer as shown in Figure 1. Unlike deep models for videos [14], no specific or
sophisticated pre-processing is done and we adopt a silhoutte-based approach.
In general, the temporal part gives correlation between the objects or actions in
consecutive frames of a video. Therefore, the first hidden layer is a 3D weighted
sum WS or correlation layer (L1WS) shown in Figure 1. It results in maps con-
taining spatial as well as temporal information extracted from the given sequence
of input frames at input layer. This WS layer is a pure correlation operation
among the given neurons and weights in a receptive field of a frame and weight
matrix as shown in equation 3.

ylu,v,z = fl(
∑

i∈Ru,v,z

∑

j∈Ru,v,z

∑

m∈Ru,v,z

(W l
i,j,m ◦ xl−1

i,j,m) + blu,v,z) (1)

where fl represents the activation function used at layer l, (u, v) the neuron
location at z output map generated by the set of input maps m from layer l− 1.
To compute the receptive field of neuron (u, v) i.e. Rl,m

(u,v,z), we use equation 2.
As in our case, the input map x at layer l − 1 and the weight matrix W for
layer l have the same size, (i, j) represents the same corresponding location in
matrix x and W . Equation 2 determines the local receptive field for neurons and
their respective weight parameters. Concerning biases, differently from CNNs,
we do not use one bias for each output feature map, but one bias for each output
neuron in the output feature map.

Rl,m
u,v,z =

⎧
⎨

⎩

(i, j, z) | (u − 1) × gl + 1 ≤ i ≤ (u − 1) × gl + rl;
(v − 1) × gl + 1 ≤ j ≤ (v − 1) × gl + rl;

z ≤ m ≤ m + rl − gl

(2)

The reason behind using a correlation ◦ operation in equation 3 rather than
a convolution is that correlation extracts and collect similarity. Since action
recognition is defined as recognition of consecutive, almost similar activity or
pose of a human body over a continuous time span, correlation or weighted sum
operation is most suitable for recognizing similar actions in videos due to the
correlation existence in consecutive frames. The WS layer has two main tunable
parameters, i.e. receptive field size and stride for handling the performance. We
used three sets of 3D weight matrix in order to extract different types of features
from the actual input. The set of weights remains the same whereas their size
reduces throughout the network until 1D layer. In addition, maps decrease by
two in each set as we go deeper in the network. At each layer, after passing the
feature maps through activation function, the output maps are whitened in order
to allow fast convergence by regulating their saturation. To capture global as
well as local discriminative features among consecutive correlated feature maps,
L1WS is followed by a 3D temporal pooling layer (L2P ) which not only reduces
spatial resolution but also, due to 3D pooling associated with the temporal
domain, but also leads to more discriminative feature maps.
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Fig. 1. Proposed model of 3DPyraNet

ylu,v,z = fl(W l
u,v,z × max

(i,j,m)∈Ru,v,z

yl−1
i,j,m + blu,v,z) (3)

The third layer is again a correlation layer (L3WS), whose output is con-
verted to a 1D column feature vector that is used as a fully connected layer for
classification. The overall 3DWS and pooling layers extract discriminative fea-
tures by capturing the motion information encoded in multiple adjacent frames.
Weight update is done using conventional back-propagation algorithm, where
stochastic gradient descent approach is applied for weights update. We use a
small learning value and reduce it by a factor of 10% after 10 epochs. Cross
entropy error function is used to reduce the error. In the next section we will dis-
cuss our results achieved after experimenting on different state-of-the-art action
recognition datasets.

3 Results and Discussion

The 3DPyraNet has been evaluated on Weizmann and KTH datasets. Weiz-
mann is a good starting dataset for evaluating performance of a network. It is
smaller in comparison to others in terms of action sequences. However, it pro-
vides ten types of quite similar human actions, i.e. walking, running, jumping,
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galloping sideways, bending, one-hand wave, two-hands wave, jump in place,
jumping jack, and skip. Each action is done by nine actors in different scenarios
that make it a complex task for recognition having only few short videos for
each category which is not a good scenario rather challenging for DL models.
KTH is another popular big and complex dataset that contains six actions done
by 25 actors. It provides 2391 sequences in four different scenarios along with
camera movement that results in different resolutions. We used a sequence of 13
consecutive frames of size 64 × 48 to represent an action for both datasets.

We carried out two types of experiments 1) to check the efficiency of pro-
posed WS layers with simple activation functions and 2) later combining it with
pooling and using advance rectification functions. Therefore, first we evaluated
the effect of WS layer. We used a network with two WS layers and a fully
connected layer to classify amongst ten classes. The output of each WS layer
was passed through an activation function, i.e. sigmoid or tangent and then nor-
malized throughout the network learning. Initial learning was not smooth and
took around 450 epochs to converge. This provided an accuracy of 80% on the
training set and 70% on the testing set.

As in most deep models, pooling plays an important role by providing transla-
tion invariance as well as reducing the dimensions. In addition, for faster conver-
gence, avoidance of local minima, and improvement in performance; an extension
of rectified linear unit known as leaky rectified linear units (LReLu) [22] is uti-
lized. This LReLu in contrast to ReLu allows a small non-zero gradient when the
neuron activity is less than or equal to zero. This property overcomes the limita-
tion of ReLU and updates the weights even if stuck within zeros. Therefore in our
model, we adopt temporal (3D) pooling at (L2P ) and LReLu in combination to
WS layers. This resulted in higher accuracy, i.e. 87% and 80.5% respectively for
training and testing along with faster convergence i.e. within 200 epochs. More-
over, learning behaviour during training was quite smooth compared to the previ-
ous model. Furthermore, when we used voting scheme for classification of videos
based on classified action sequences, the result increased by two to three percent.

We compared 3DPyraNet with deeper models having five to eight hidden lay-
ers. To better evaluate our model we reported the mean accuracy on 5 splits of
training and testing datasets selected from same Weizmann database as adopted
for evaluation of several models. Indeed, to cross validate the results, we random-
ized the data in same proportion keeping in mind that equal number of sequences
should exist for the small number of sequences e.g. ’skip’ or ’running’. So doing, no
overtraining is observed. Obtained results, corresponding to 5 randomly selected
training/test configurations are reported on Table 1. We achieve 90.9% accu-
racy considering all ten classes in the dataset as provided in Table 1 (a). How-
ever, videos containing action ’skip’ were short, so letting an unbalanced dataset;
this is why other approaches reported in literature did not use this category in
their experiments. Our model was unable to learn and classify the ’skip’ cate-
gory according to our expectations, owing to lack of training data. Therefore, if we
neglect the skip category, accuracy increases to 92.46% as shown in Table 1 (b. )In
case of ’pjump’, the same problem of having fewer training sequences arose, that
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(a)

(b)

Fig. 2. Confusion matrices: (a) Weizmann without ’skip’ (b) KTH without ’running’.

resulted in poor performance. However, for the rest of the categories, 3DPyraNet
shows optimal results in both sequence and video classification shown on left of
Figure 2. Results on Weizmann are comparable with the state-of-the-art model
3DCNN , which is impressive considering fewer number of hidden layers and hav-
ing no sophisticated pre-processing for extracting hard coded features.

The second dataset adopted in our experiments is KTH. The same crite-
ria that took 9 out of 25 person’s videos for testing, as stated in literature,
was adopted. We randomly selected a total of 200 sequences from them of size
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Table 1. (a) Mean accuracy of five random data setups, (b) Proposed Vs. Others for
Weizmann and KTH datasets

(a)

SetUp Accuracy(%)

1 90.5

2 92

3 90

4 90.5

5 91.3

Mean 90.9

(b)

Model(classes) Weizmann (%) KTH(%) Layers

3DCNN 88.26[16] 90.2 [14] 6

3DPyraNet (all) 90.9 72 4

3DPyraNet (all-1) 92.46 74.23 4

ST-DBN - 85.2 4

GRBM - 90.0 -

Schuldt [6] - 71.7 -

Dollar [23] - 81.2 -

Alexandros [9](all) 90.32 - -

Alexandros [9](all-1) 92.77 - -

13 × 64 × 48. It should be noted that in our initial experiments we faced the
same problem for ’running’ class videos, i.e. having fewer frames than minimum
requirement of 13 due to fast movement of the person or camera zooming scenar-
ios. We achieved 72% accuracy over six classes. If we remove the ’running’ class
due to insufficient training data, the accuracy grows to 74.23% (see confusion
matrix on right of Figure 2). Table 1 (b) shows the comparison of our proposed
model with the state-of-the-art models reported in literature for Weizmann and
KTH datasets. In case of Weizmann we overcome reported best result of 88.26%
with an average of 91.07% from ten tests using the same dataset and number of
consecutive input frames [16]. On the other hand for KTH dataset, 3DPyraNet
did not show better result as provided by 3DCNN [14], but still it shows compa-
rable results to some other complex models. One of the most plausible reason is
that deep models need more data to have better understanding of their respective
problems. 3DCNN [14] used ROI’s sequences extracted and classified by another
CNN based methodology. Unlike aforementioned, we used only silhoutte based
recognition - extracted by the background subtraction model SOBS [24] in our
case - and than extracted the ROI containing human. This may contain half,
not centered or unaligned ROIs as input. This can greatly affect the learning
process and may have high impact in reducing the classification rate compared
with 3DCNN . Despite current performance, there is room for further study.
The future work can be done by using the full datasets of KTH, UT interaction
dataset, UCF, TRECVID etc. to evaluate the performance of proposed network
model with large number of training and testing data.

4 Conclusions

A strict pyramidal 3D neural network has been proposed that gets raw input
frames from videos as input and is able to learn features in fewer layers due to
its pyramid structure. It provided better results in case of Weizmann and com-
parable results with KTH datasets. We are verifying the generality of our model
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by testing it on recent larger and challenging datasets like UCF sports, Youtube
action, and UT-Interaction datasets. This will help in proving benefits of using
strictly pyramidal structure instead of non-pyramidal structure for learning a
powerful model, since the model is aimed to obtain good performance despite
the complexity and diversity of these datasets.
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