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Abstract. Graph based methods have played an important role in
machine learning due to their ability to encode the similarity relation-
ships among data. A commonly used criterion in graph based feature
selection methods is to select the features which best preserve the data
similarity or a manifold structure derived from the entire feature set.
However, these methods separate the processes of learning the feature
similarity graph and feature ranking. In practice, the ideal feature simi-
larity graph is difficult to define in advance. Because one needs to assign
appropriate values for parameters such as the neighborhood size or the
heat kernel parameter involved in graph construction, the process is con-
ducted independently of subsequent feature selection. As a result the
performance of feature selection is largely determined by the effective-
ness of graph construction. In this paper, on the other hand, we attempt
to learn a graph strucure closely linked with the feature selection process.
The idea is to unify graph construction and data transformation, result-
ing in a new framework which results in an optimal graph rather than
a predefined one. Moreover, the /2 1-norm is imposed on the transfor-
mation matrix to achieve row sparsity when selecting relevant features.
We derive an efficient algorithm to optimize the proposed unified prob-
lem. Extensive experimental results on real-world benchmark data sets
show that our method consistently outperforms the alternative feature
selection methods.
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1 Introduction

Recently, graph-based methods, such as spectral embedding [2], spectral clus-
tering [1], and semi-supervised learning [3] [4], have played an important role
in machine learning due to their ability to encode the similarity relationships
among data. Various applications of graph-based methods can be found in clus-
tering [1] [5], data mining [6], manifold learning [7] [8], subspace learning [9] and
speech recognition [10]. A preliminary step for all these graph-based methods
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is to establish a suitable graph over the training data. Data samples are repre-
sented as vertices of the graph and the edges represent the pairwise similarity
relationships between them.

In feature selection, a particularly attractive feature of graph representations
is that they provide a universal and flexible framework that reflects the underly-
ing manifold structure and the relationships between feature vectors. A frequently
used criterion in graph-based feature selection methods is to select the features
which best preserve the data similarity or a manifold structure derived from the
entire feature set. The best known methods are the Laplacian score (LapScore)
[9], spectral feature selection (SPEC) [11], multicluster feature selection (MCFS)
[12] and minimum redundancy spectral feature selection (MRSF) [13]. However,
a common problem in the aforementioned methods is that the graph construct-
ing process is independent of the subsequent feature selection task. For example,
MCFS [12] uses a graph to characterize the manifold structure and performs local-
ity preserving projection (LPP) in the first-step. In the second step, MCFS per-
forms spectral regression using a single eigenvector at a time to estimate element
sparsity. Finally, a new score rule is designed to rank the goodness of the features
using element sparsity. MRSF [13], on theother hand, uses the 5 1-norm regular-
izer to replace the ¢;-norm regularizer in MCF'S which leads to row sparsity. The
row sparsity used in MRSF is better fitted for feature selection than the element
sparsity used in MCFS. LapScore [9] uses a k-nearest neighbor graph to model the
local geometric structure of the data and then selects the features that are most
consistent with the graph structure. The SPEC [11] algorithm is an extension of
LapScore aimed at making it more robust to noise.

Compared with traditional unsupervised feature selection approaches, the
above methods have been in many cases been demonstrated to perform better.
Nevertheless, their performance can also be further improved since they each
separate the problems of estimating or learning a similarity graph and feature
selection. Once the graph is determined so as to characterize the data sample sim-
ilarity and underlying manifold structure, it remains fixed in the subsequent fea-
ture ranking or regression steps. As a result, the feature selection performance is
largely determined by the effectiveness of graph construction. Instead, a recently
proposed unsupervised feature selection algorithm called joint embedded learn-
ing and sparse regression (JELSR)[14] attempts to learn a graph embedding
and a corresponding sparse transformation matrix simultaneously in one single
objective function, which result in an automatically-updated graph embedding.
Compared with the alternative method MCF'S [12], which is to first compute the
low dimensional embedding and then, regress each sample to its low dimensional
embedding by adding ¢;-norm regularization, JELSR has been demonstrated to
have superior performance by unifying two objective of MCFS. This is because
the objective of sparse transformation matrix regression has also affected the
derivation of low dimensional embedding. However, the optimal graph embed-
ding in JELSR depends heavily on the transformed data, without making the
best use of the original data information and the data similarity is also not
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learned by the algorithm. This easily leads to the instability performance, espe-
cially when encountering a “bad” transformation matrix.

To address this problem, in this paper, we propose a novel unsupervised fea-
ture selection approach via graph optimization (referred to as UFSGO), which
incorporates graph construction into the data transformation, and thus obtains
a simultaneous learning framework for graph construction and transformation
matrix optimization. More concretely, by adding the /5 ;-norm regularization to
the transformation matrix, our new model simultaneously learns the data simi-
larity matrix and sparse transformation matrix to achieve optimal feature selec-
tion results. Moreover, in order to fully utilise information in the original data,
a square Frobenius divergence term between a predefined graph and its updated
realization is added to the objective function. As a result, we formulate an ele-
gant graph update formula which naturally fuses the original and transformed data
information. We also provide an effective method to solve the proposed problem.
Compared with traditional unsupervised feature selection approaches, our method
integrates the merits of graph learning and sparse regression. Experimental result
are provided to demonstrate the utility of the method.

2 A Brief Review of Graph-Based Unsupervised Feature
Selection Methods

In this section, we review some well-known algorithms for learning-based unsu-
pervised feature selection, all of which are closely related to our proposed method.

1) MCFS and MRSF: MCFS and MRSF are learning based feature selection
methods that first compute an embedding and then use regression coefficients
to rank each feature. In the first step, both methods compute a low dimensional
embedding represented by the co-ordinate matrix Y. One simple way in deriving
low dimensional embedding is to use Laplacian Eigenmap (LE) [8], a well known
dimensionality reduction method. Denote Y = [y1,y2, . . ., yn] and §; as transpose
of the i-th row of Y. The idea common to both MCF'S and MRSF is to regress all z;
to ;. Their differences are used to determine sparseness constraints. MCF'S uses
{1-norm regularization and can be regarded as solving the following problems in
sequence:

in tr(YLYT
9 YY)
argmin [WTX — Y3 + oWl (1)

Similarly, MRSF first computes the embedding by Eigen decomposition of graph
Laplacian and then regress with ¢5 ;-norm regularization. In other words, MRSF
can be regarded as solving the following two problems in sequence:

arg YISI(lTI"n: , tr(YLYT)

argmin [WX — Y3 + a[W||2, (2)
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MCEFS and MRSF employ different sparseness constraints, i.e., £; and #5;, in
constructing a transformation matrix which is used for selecting features. Nev-
ertheless, the low dimensional embedding, i.e., Y, is determined in the first step
and remains fixed in the subsequent ranking or regression step. In other words,
we do not consider the later requirements of feature selection in deriving the
embedding Y. If it cannot only characterizes the manifold structure, but also
indicates the requirements of regression, these methods would perform better.

2) JELSR [14]: Instead of simply using the graph Laplacian to characterize
high dimensional data structure and then regression, JELSR (joint embedding
learning and sparse regression) unifies embedding/learning and sparse regression
in constructing a new framework for feature selection:

arg min tr(YLYT) + ﬁ(||WTX — Y||§ + a||W|
W,YYT=]

2,1) (3)

where « and (3 are balance parameters. The objective function in Eq.(3) is convex
with respect to W and Y. W and Y can be updated in an alternative way. As
we can see from Eq.(29) in [14], the objective of sparse regression, i.e. the value of
‘W, has also affected the low dimensional embedding, i.e., Y. Alternative meth-
ods, such as MCFS and MRSF, minimize tr(YLY7) merely. Although JELSR
performs better in many cases, the optimal graph embedding in JELSR depends
heavily on the transformed data, without making the best use of the original
data information and the data similarity S is also not learned by the algorithm.
This easily leads to the instability performance, especially when encountering a
“bad” transformation matrix.

3) LPP [18]: LPP (locality preserving projection) constructs a graph by
incorporating neighborhood information derived from the data. Using the graph
Laplacian, a transformation is computed to map the data into a subspace by
optimally maintaining the local neighborhood information. LPP optimizes a lin-
ear transformation W according to

. T T . |12
arg min Z Wz, — Wa;||%s;; (4)

ij=1

The basic idea underlying LPP is to find a transformation matrix W, which
transforms the high-dimensional data X into a low-dimensional matrix XW,
so as to maximally preserve the local connectivity structure of X with XW.
Minimizing (4) ensures that, if #; and z; are close, and as a result WZz; and
Wij are close too.

As described above, LPP seeks a low-dimensional representation with the
purpose of preserving the local geometry in the original data. However, such
“locality geometry” is completely determined by the artificially constructed
neighborhood graph. As a result, its performance may drop seriously if given
a “bad” graph. Therefore, it is better to optimize graph and learn the transfor-
mation simultaneously in a unified objective function.
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3 Unsupervised Feature Selection by Graph Optimization

As reported by many researchers [14-17], graph construction plays a crucial role
in the success of graph-based learning methods. Typically, to construct a graph,
we define neighborhood based on the k nearest neighbors(kNN) method to deter-
mine the connectivity of the graph. In general, the size of the neighborhood needs
to be specified in advance and fixed throughout the entire learning process. In
real-world applications, it is hard to estimate the neighborhood size and differ-
ent data points have a different optimal neighborhood size. As a result, some
undesirable edges and weights are unavoidable. In our study, we incorporate
graph construction into the LPP objective function, and thus obtains a simulta-
neous learning framework for graph construction and transformation optimiza-
tion. Moreover, in order to perform feature selection, it is desirable to have some
rows of the transformation matrix set to be all zeros. This leads us to use the
{5, 1-norm on the transformation matrix W, and this leads to row-sparsity of W.
The learning problem can be formulated as the following optimization problem:

min > (UIW 2 = WTaj|[355) + al|S — S5 + | Wl|2.1
=

st Vi,si1=1,0<s <1, WISW =1 (5)

Let the transformation matrix be W € R¢*™ with m < d and the total scatter
matrix be S; = XTHX, where H = I — %llT is the centering matrix. We
constrain the subspace with W7 S;W = I such that the data in the subspace
are statistically uncorrelated. The predefined graph is S° graph, |-[|% is the
squared Frobenius divergence, and « and p are trade-off parameters.

The first term of the objective function in (5) is similar to LPP in (4), which
is designed for preserving local structure, such that if z; and z; are “close” then
the transformed data WTz; and Wij are also close. The second term of the
objective function uses the squared Frobenius divergence to measure the fitting
error of the learned graph similarity S to the predefined graph similarity S°. It
constrains S to be close to S® in order to make use of original data information.

4 Optimization Algorithm for Problem (5)

To obtain the global minimal solution of (5), we use an iterative and interleaved
optimization process, which is summarized in Algorithm 1. At each iteration step,
the sparse matrix W is updated by (9). After obtaining W, we then update U
using Eq.(6). Finally, we update s;; by solving the problem given in (11) and
obtain the optimal solution using Eq.(12).

Note that ||[W||2,1 is convex. Nevertheless, its derivative does not exist when
w; = 0 for i = 1,2,...,d. Therefore, we use the definition tr(WT UW) =
[Wl2,1/2 in [14] when @; is not equal to 0. The matrix U € R4*? is diago-
nal with ¢-th diagonal element is where

_ 1
2

(6)
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We can then rewrite the proposed method in Eq.(5) as the following problem:

min tr(WIXTLgXW) + oS — 8°||% + utr(WI'UW)

s )

st Vi,si1=1,0<s <1, WISW =171 (7)

where Lg is the Laplacian matrix and Lg = D — S. D € R"*™ is a diagonal

matrix with the i-th diagonal element as D;; = Z?:l Sij-

We first fix S and solve for W and U , then the problem (7) becomes
Vn&'}r[} tr(WIXTLgXW) + utr(WIUW)
st. WISW =1 (8)
which can be rewritten as the following problem
min tr (WH(XTLsX + pU)W)
st. WISW =1 9)

When U is fixed, the optimal solution to the problem in (9) is the spectral decom-
position of S{l(XTLSX + pU), i.e., the optimal solution W is formed by the &k
eigenvectors of S, YXTLgX + pU) corresponding to the k smallest eigenvalues
(we assume the null space of the data X is removed, i.e., S; is invertible). After
that, we fix W and update U by employing the formulation in (6) directly.

When W and U are fixed, the proposed method given in Eq.(7) can be
rewritten as

min tr(WIXTLgXW) +al|S — 8Y|%
st Vi,sI1=1,0<s;<1 (10)
Since [|S — S%)|Z = tr((S — S°)7(S — 8?)), then Eq.(10) can be rewritten as
msin Z (W™ z; — Whaj|3s:5) + o] Z sfj -2 Z sijs?j + tr(s""sY)]

ij=1 ij=1 ij=1
st V;,sT1=1,0<s;<1 (11)

K2

Taking derivative with respect to s;; and setting it to zero, we have

0 T T 2 ~ = 0 0T .0
Jsi, [(|W x; — W~ z]555) —|—o¢[ Z s —2 Z SijSi; +ir(sts )] =0

= [WTz; — W3 4 2as;; — 2as);, =0

ij=1 ij=1

(12)

= sij = sy — 55 [WTay — Wz
From Eq.(12), it is clear that the similarity s;; is not only updated by the ini-
tial graph similarity s?j in the original input space, but also updated gradually
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in the different transformed progressive spaces by current W until the algo-
rithm converges. In fact, when a tends to +oo, s;; approaches s?j. That is, the
learned S reduces to the predefined S°. Intuitively, our algorithm will give bet-
ter discriminative power than typical unsupervised feature selection methods.
i.e. JELSR, since it simultaneously learns both the similarity matrix S and the
sparse transformation matrix W.

In summary, we solve the optimization problem in (5) in an iterative and
interleaved way. More concretely, we first fix S and U, thus employing (9) to
update W, whose columns are the m eigenvectors of S; (X" LgX 4 uU) cor-
responding to the m smallest eigenvalues. We then fix W and update U using
Eq.(6). Finally, we update s;; by solving the problem in (11) and obtain the
optimal solution as Eq.(12).

After the optimal W is obtained, we then sort all the original d features
according to the fo-norm values of the d rows of W in descending order, and
select the top features.

Algorithm 1. Unsupervised Feature Selection by Graph Optimization
(UFSGO)

Input: X € ®"* 4, parameter « and u, s°.
Output: the optimal sparse transformation matrix w e gd>xm™
1: while not converge do
2:  Update w by (9) whose columns are the & eigenvectors of s;71(XTLgX + uU)
corresponding to the & smallest eigenvalues;
3:  Update v by Eq.(6);
4:  We update s,;; by solving the problem (11) and obtain the optimal solution
as Eq.(12).
5: end while

5 Experiments and Comparisons

To demonstrate the effectiveness of the proposed approach, we conduct experi-
ments on five image data sets, i.e., three face image data set AR, YaleB and ORL,
one hand written digit data set MNIST and one shape image data set MPEG-7.
Table. 1 summarizes the extents and properties of the four image data-sets.

Table 1. Summary of four benchmark image data sets

Data-set |Sample|Features|Classes
AR 1680 | 2000 120
MPEG-7| 1400 | 6000 70
YaleB 2414 1024 38
MNIST | 2000 784 10
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Table 2. The best result of all unsupervised methods and their corresponding size of
selected feature subset (MEAN + STD).

Dataset AR MPEG-7 YaleB MNIST

SPEC  80.8% =+ 2.23 (180) 72.8% + 1.88(180) 76% + 1.88 (140) 80.9% + 1.91 (200)
JELSR 82.2% =+ 1.77 (170) 70% =+ 2.98 (190) 81.9% + 2.34 (180) 77% + 1.21 (140)
MCFS  78.7% =+ 2.89 (120) 73.2% + 1.03 (190) 77.4% + 3.66 (200) 76.4% + 2.56(170)
LapScore 76.9% + 3.32 (130) 72.3% =+ 2.51 (200) 78.7% + 4.33(200) 76.1% + 1.73(130)
UFSGO 89.9% + 2.38(130) 75.6% + 1.45(180) 86.7% + 1.67(140) 81.6% + 2.03(140)

Since our proposed model (see Eq.5) can be interpreted as more generalized
version of LPP with additional graph similarity preservation and sparse feature
selection capabilities, we begin with evaluating the classification performance
based on the proposed method (UFSGO) on the above four publicly available
image datasets, compared with LPP. Then, we compare the classification results
from UFSGO with four representative unsupervised feature selection algorithms.
These methods are LapScore [9], SPEC [11], MCFS [12], JELSR [14]. A 10-fold
cross-validation strategy using the nu-Support Vector Machine (nu-SVM) [19] is
employed to evaluate the classification performance. The parameters in feature
selection algorithms as well as the nu-SVM classifier are tuned via cross-validation
on the training data. Specifically, the entire sample is randomly partitioned into 10
subsets and then we choose one subset for test and use the remaining 9 for train-
ing, and this procedure is repeated 10 times. The final accuracy is computed by
averaging of the accuracies from all experiments.

AR MPEG-7

—UFSGO
LeP

20 40 60 80 _ 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 2
Dimension Dimension

(a) AR dataset (b) MPEG-T7 dataset

MNIST

°

nu-Svms classification acouracy
'
2

20 40 60 80

120 140 160 180 200 20 40 60 80 120 140 160 180 2«

100
Dimension

(c) YaleB dataset (d) MNIST dataset

100
Dimension

Fig. 1. Accuracy rate vs. the variation of dimension on four benchmark image datasets
by LPP and UFSGO.
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Fig. 2. Accuracy rate vs. the number of selected features on four benchmark image
datasets by nu-SVM.

From Fig.1, we observe that UFSGO can consistently outperform LPP on
all the used datasets. This states that UFSGO is more discriminative than LPP,
and really benefits from graph updating and optimization process.

As seen from Fig.2, from the statistical view, we can see that our proposed
method (UFSGO) achieves significantly better results comparing to the baseline
algorithms in all cases. This is obviously because the proposed UFSGO simultane-
ously learns the graph and a sparse transformation matrix, to achieve the optimal
feature selection results, but each of the rival algorithms dichotomise the process of
constructing or learning the underlying data graph and subsequent feature rank-
ing. Although both MCF'S and JELSR lead to the element sparsity, the classifica-
tion performance of MCF'S is worse than JELSR (see Fig.2(a),(c) and (d)). This
occurs because JELSR simultaneously performs manifold learning and regression,
but MCFS sequentially performs them. This demonstrated that simultaneously
performing manifold learning and regression is better. Comparatively, LapScore
gives the worst performance. This is because it does not take feature redundancy
into account and is prone to selecting redundant features.

The best result for each method together with the corresponding size of the
selected feature subset are shown in Table. 2. In the table, the classification
accuracy is shown first and the optimal number of features selected is reported
in brackets. Table. 2 clearly show that the proposed method (UFSGO) outper-
formed all the competing methods in all experiments. For example, our method
improved the classification accuracy by 7.7% (AR), 2.4%(MPEG-7), 4.8%(YaleB),
0.7%(MNIST), respectively, compared to the best performances among the com-
peting methods. Based on these results, we argue that the proposed joint graph
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optimization and feature selection method help enhance the classification per-
formance. Although JELSR performs better in many cases, the optimal graph
embedding in JELSR depends heavily on the transformed data, without making
the best use of the original data information and the data similarity S is also not
learned by the algorithm. This easily leads to the instability performance, espe-
cially when encountering a “bad” transformation matrix. Comparatively, our pro-
posed method UFSGO simultaneously learns the data similarity matrix and sparse
transformation matrix to achieve optimal feature selection results, while the orig-
inal data information is also embedded into the graph optimization.

6 Conclusion

In this paper, we proposed a novel unsupervised feature selection algorithm. The
approach not only investigates a graph optimization method by learning the data
similarity matrix but also presents a simultaneously learning of the sparse matrix
for feature selection. As a result, the graph in UFSGO is adjustable instead of
predefined as in alternative graph based feature selection methods. Moreover, a
square Frobenius divergence term between a predefined graph and its updated
realization is added to the objective function which can fully utilize informa-
tion in the original data. Experimental results from unsupervised feature selec-
tion cases demonstrate the effectiveness and efficiency of the proposed UFSGO
framework.
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