Skip to main content

Robust UIO Design for an Actuator Fault Identification

  • Conference paper
  • First Online:
Advanced and Intelligent Computations in Diagnosis and Control

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 386))

  • 719 Accesses

Abstract

In this paper an actuator robust fault identification scheme is developed, which is based on an observer within \(\mathcal {H}_{\infty }\) framework for a class of non-linear systems. The proposed approach is designed in such a way that a prescribed disturbance attenuation level is achieved with respect to the actuator fault estimation error while guaranteeing the convergence of the observer. The effectiveness of the proposed approach is verified with the laboratory multi-tank system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Oliveira, M., Bernussou, J., Geromel, J.: A new discrete-time robust stability condition. Syst. Control Lett. 37(4), 261–265 (1999)

    Article  MATH  Google Scholar 

  2. Ducard, G.: Fault-tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  3. Frank, P.M., Marcu, T.: Diagnosis strategies and systems: principles, fuzzy and neural approaches. In: Teodorescu, H.N., Mlynek, D., Kandel, A., Zimmermann, H.J. (eds.) Intelligent Systems and Interfaces. Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  4. Gillijns, S., De Moor, B.: Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica 43, 111–116 (2007)

    Article  MATH  Google Scholar 

  5. INTECO: Multitank System—User’s Manual. http://www.inteco.com.pl (2013)

  6. Iserman, R.: Fault Diagnosis Applications: Model Based Condition Monitoring, Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems. Springer, Berlin (2011)

    Book  Google Scholar 

  7. Korbicz, J., Witczak, M., Puig, V.: Lmi-based strategies for designing observers and unknown input observers for non-linear, discrete-time systems. Bull. Polish Acad. Sci.-Tech. Sci. 55(1), 31–42 (2007)

    MATH  Google Scholar 

  8. Li, H., Fu, M.: A linear matrix inequality approach to robust \(h_{\infty }\) filtering. IEEE Trans. Signal Proc. 45(9), 2338–2350 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mahmoud, M., Jiang, J., Zhang, Y.: Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis. Springer, Berlin (2003)

    Google Scholar 

  10. Mrugalska, B., Akielaszek-Witczak, A., Aubrun, C.: Towards product robust quality control with sequential d-optimum inputs design. Chem. Eng. Trans. 43, 2137–2142 (2015)

    Google Scholar 

  11. Mrugalska, B., Akielaszek-Witczak, A., Stetter, R.: Robust quality control of products with experimental design. In: Popescu, D. (ed.) International Conference on Production Research - Regional Conference Africa, Europe and the Middle East and 3rd International Conference on Quality and Innovation in Engineering and Management, pp. 343–348. Technical University of Cluj-Napoca, Cluj-Napoca, Romania (2014)

    Google Scholar 

  12. Mrugalski, M.: Advanced Neural Network-based Computational Schemes for Robust Fault Diagnosis. Springer International Publishing, Heidelberg, Germany (2014)

    Book  MATH  Google Scholar 

  13. Rotondo, D., Nejjari, P., Puig, V.: Robust quasi-lpv model reference FTC of a quadrotor UAV subject to actuator faults. Int. J. Appl. Math. Comput. Sci. 25(1), 7–22 (2015)

    Google Scholar 

  14. Witczak, M.: Fault Diagnosis and Fault-tolerant Control Strategies for Non-linear Systems: Analytical and Soft Computing Approaches. Springer International Publishing, Heidelberg, Germany (2014)

    Book  Google Scholar 

  15. Witczak, M., Mrugalski, M., Korbicz, J.: Towards robust neural-network-based sensor and actuator fault diagnosis: application to a tunnel furnace. Neural Proc. Lett. (2014)

    Google Scholar 

  16. Witczak, M., Pretki, P.: Design of an extended unknown input observer with stochastic robustness techniques and evolutionary algorithms. Int. J. Control 80(5), 749–762 (2007)

    Article  MathSciNet  Google Scholar 

  17. Witczak, M., Witczak, P.: Efficient predictive fault-tolerant control for non-linear systems. In: Korbicz, J., Kowal, M. (eds.) Intelligent Systems in Technical and Medical Diagnostics. Advances in Intelligent Systems and Computing, vol. 230, pp. 65–76. Lagow Lubuski, Poland (2014)

    Chapter  Google Scholar 

  18. Witczak, P., Luzar, M., Witczak, M., Korbicz, J.: A robust fault-tolerant model predictive control for linear parameter-varying systems. In: 19th International Conference on Methods and Models in Automation and Robotics. pp. 462–467. Miedzyzdroje, Poland (2014)

    Google Scholar 

  19. Zemouche, A., Boutayeb, M.: Observer design for \(\text{ Lipschitz }\) non-linear systems: the discrete time case. IEEE Trans. Circ. Syst. II: Exp. Briefs 53(8), 777–781 (2006)

    Google Scholar 

  20. Zemouche, A., Boutayeb, M., Iulia Bara, G.: Observer for a class of \(\text{ Lipschitz }\) systems with extension to \(h_{\infty }\) performance analysis. Syst. Control Lett. 57(1), 18–27 (2008)

    Google Scholar 

Download references

Acknowledgments

The work was supported by the National Science Center of Poland under grant: 2014–2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Witczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Witczak, P., Mrugalski, M. (2016). Robust UIO Design for an Actuator Fault Identification. In: Kowalczuk, Z. (eds) Advanced and Intelligent Computations in Diagnosis and Control. Advances in Intelligent Systems and Computing, vol 386. Springer, Cham. https://doi.org/10.1007/978-3-319-23180-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23180-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23179-2

  • Online ISBN: 978-3-319-23180-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics