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Abstract. Liver segmentation in computed tomography (CT) images
is a fundamental step for various computer-assisted clinical applications.
However, automatic liver segmentation from CT images is still a chal-
lenging task. In this paper, we propose a novel non-parametric sparse
representation-based deformation model (SRDM) for atlas-based liver
segmentation framework using nonrigid registration based on free-form
deformations (FFDs) model. Specifically, during atlas-based segmenta-
tion procedure, our proposed SRDM provides a regularization for the
resulting deformation that maps the atlas to the space of the target
image, constraining it to be a sparse linear combination of existing train-
ing deformations in a deformation repository. We evaluated our pro-
posed method based on a set of 30 contrast-enhanced abdominal CT
images, resulting in superior performance when compared to state-of-
the-art atlas-based segmentation methods.

Keywords: Liver segmentation · Atlas-based segmentation · Statistical
deformation model · Sparse representation

1 Introduction

Segmentation of the liver tissue in computed tomography (CT) images is a fun-
damental step for various clinical applications, such as computer-assisted liver
cancer diagnosis and surgical planning. However, automatic liver segmentation
from CT images is still a challenging task, because of large shape variability,
adjacent organs with similar intensity values, and the presence of tumors.

In the literature, a variety of methods have been proposed for liver segmen-
tation [3,4]. Of these, one promising method is the atlas-based segmentation [7],
where the prior knowledge about the liver tissue existence probability is incor-
porated. An atlas is typically consists of two parts: atlas intensity image and
its corresponding atlas label image. After the atlas intensity image is warped to
the space of the target image, the atlas label image is propagated to the target
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image using the resulting transformation and defined as the final segmentation
result. Therefore, the main source of error for atlas-based segmentation comes
from the employed registration method. To largely avoid these registration errors
caused by the large variability of soft tissue (e.g., liver), statistical deformation
models (SDMs) [8] is proposed to regularize the resulting transformation that
maps the atlas to the space of the target image, constraining it to be within
principal subspace of plausible transformation learned from the training images.
However, SDMs are parametric models assuming normal distribution of data
and only account for small dense Gaussian noise.

In this paper, inspired by the recently proposed Sparse Shape Composition
(SSC) shape prior modeling method [13], we propose a novel non-parametric
sparse representation-based deformation model (SRDM) for atlas-based liver
segmentation framework using nonrigid registration based on free-form deforma-
tions (FFDs) model [9]. Specifically, during atlas-based segmentation procedure,
our proposed SRDM provides a regularization for the resulting deformation that
maps the atlas to the space of the target image, constraining it to be a sparse
linear combination of existing training deformations in a deformation repository.
Because the sparse gross errors are explicitly modeled in our method, it is robust
against both small dense Gaussian noise and sparse gross registration errors. We
applied our proposed method to segment the liver tissue based on a set of 30
contrast-enhanced abdominal CT images.

2 Background

In this section, we briefly describe the main idea of nonrigid registration using
free-form deformations (FFDs) and statistical deformation models (SDMs), we
refer the readers to [8,9] for more details.

2.1 Nonrigid Registration Using Free-Form Deformations

Free-form deformations (FFDs) model based on B-splines [9] is a popular spline-
based transformation model for nonrigid image registration. The main idea of
FFDs is to deform a rectangular grid placed on the reference image by manip-
ulating an underlying B-spline control points. The optimal transformation T is
found by minimizing the following cost function:

C = Csimilarity(Itarget,T(Isource)) + λCsmooth(T), (1)

which consists of two competing terms: image similarity (e.g., normalized mutual
information (NMI) [10]) and transformation smoothness. The minimization
problem can be iteratively solved by using gradient descent technique.

2.2 Statistical Deformation Models

Unlike the concept of statistical shape models (SSMs), in statistical deformation
models (SDMs) [8], principal component analysis (PCA) is applied to the control
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points which form compact parameterization of the B-spline based FFDs rather
than to the anatomical landmarks. Assume that we have a reference image Ir
and a set of k training data {Ii | i = 1, 2, ..., k}. We can derive a set of k
corresponding B-spline based FFDs {FFDi | i = 1, 2, ..., k}, which map the liver
structure of the reference image Ir to that of all other training data Ii, and each
FFDi is represented by a control point vector Ci = (x1, y1, z1, ..., xnp

, ynp
, znp

)T

with np underlying mesh of 3-D control points that parameterize the FFDs. We
define the corresponding covariance matrix as: S = 1

k−1

∑k
i=1(Ci−C̄)(Ci−C̄)T ,

where C̄ is the mean control point vector (i.e., average deformation field) of all
subjects: C̄ = 1

k

∑k
i=1 Ci. Then the statistical deformation model (SDM) can be

built by an eigen-decomposition on the covariance matrix S:

S = UDUT , (2)

where columns of matrix of U form the principal modes of variation φm (eigen-
vectors), and diagonal entries of D are their respective variances λm (eigenval-
ues). Any valid deformation field of liver structure thus can be approximated by
a linear combination of the first c modes of variation:

C = C̄ +
c∑

m=1

bmφm, (3)

where c = min{t | ∑t
i=1 λt/

∑k−1
i=1 λt > 0.98}, and bm is the deformation para-

meter constrained to the interval bm ∈ [−3
√

λm, 3
√

λm

]
.

3 Methods

In this section, we describe our proposed non-parametric sparse representation-
based deformation model (SRDM) for atlas-based liver segmentation framework.
Figure 1 shows the proposed segmentation framework, including training and
testing phases.

In training phase, the liver atlas and our proposed SRDM which is employed
as the deformation prior model are learned (Sect. 3.1). In testing phase, the atlas-
based method is used to segment the liver tissue in the target image, where the
learned deformation prior model (i.e., SRDM) is employed to regularize the
deformation that maps the atlas to the space of the target image (Sect. 3.2).

3.1 Sparse Representation-Based Deformation Model

Before we can actually learn our proposed SRDM from training images, we need
to construct the liver atlas first.

Construction of Liver Atlas. For the construction of liver atlas, we employ
an iterative procedure to avoid bias towards particular anatomy of the selected
reference image.
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Let {Ii | i = 1, ...,K} be the K = 20 preprocessed training images with
corresponding label image {Li | i = 1, ...,K}. One image with a mean liver
shape is selected from the training data (I1 in our study) as the initial template
image. All other images are affinely mapped and resampled to this image. To
avoid bias towards the chosen template image, we used the Minimal Deformation
Target (MDT) strategy [11] to derive the initial average template. We define the
mean deformation of I1 when nonrigidly mapped to all other training images
as: T̄1 = 1

K−1

∑
j �=1 T1j . Then the MDT template for image I1 is defined as:

MDT1 = T̄1(I1).
Ideally, MDT1 can be directly employed as the final liver atlas. However,

because the registration algorithm is topology preserving, MDT1 is still biased
towards the shape of the selected initial template image I1 [11]. Therefore, we
define MDT1 as the initial average template, and all other training images are
nonrigidly mapped and resampled to this image in an iterative fashion with a
maximum iteration of 3. The FFD model based on B-splines is employed to
perform all the nonrigid registration in this step.

Using this procedure, we obtain a set of K aligned training images {I
′
i | i =

1, ...,K} with corresponding label image {L
′
i | i = 1, ...,K}. The liver atlas (Ī , L̄)

can thus be defined as the average of the aligned data:

Ī ← 1
K

K∑

i=1

I
′
i , L̄ ← 1

K

K∑

i=1

L
′
i. (4)

Sparse Representation-Based Deformation Model. Once the liver atlas
(Ī , L̄) is derived, we can build our proposed non-parametric sparse
representation-based deformation model (SRDM).

Fig. 1. The main workflow of our proposed liver segmentation framework, which con-
sists of training and testing phases.
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We first derive the training deformation data by nonrigidly registering the
liver atlas to all the training images {Ii | i = 1, ...,K}, which are preprocessed
by affinely registering and resampling to I1. The FFD model based on B-splines
is also employed to perform the nonrigid registration. Through this procedure,
we derive a set of K training deformations, which are represented by the control
point vectors of the B-splines that parameterize the FFDs: {Ci | i = 1, 2, ...,K}.

Sparse Shape Composition (SSC) [13] is a sparse representation-based shape
prior modeling method that implicitly incorporates the shape priors on-the-fly to
overcome the main issues of traditional shape prior modeling method. Inspired
by this method, we propose a novel non-parametric sparse representation-based
deformation model (SRDM) to deal with registration errors caused by the large
variability of liver tissue. Based on two sparsity properties of the input deforma-
tion ( i.e., the input deformation can be approximately represented by a sparse
linear combination of existing training deformations in a deformation reposi-
tory; the input deformation may include sparse gross errors), we can cast the
deformation modeling as the following sparse optimization problem:

(x̂, ê) = arg min
x,e

‖c − Dx − e‖22 + λ1‖x‖1 + λ2‖e‖1, (5)

where c ∈ R
3N (N is the number of B-spline control points) is an input deforma-

tion to be refined, D = [C1,C2, ...,CK ] ∈ R
3N×K is the deformation repository

(i.e., the dictionary) that includes K training deformations Ci, x ∈ R
K denotes

the coefficients of linear combination, e ∈ R
3N represents the sparse gross errors,

‖v‖1 =
∑

i |vi| is the �1-norm of v that induces sparsity, ‖v‖2 is the Euclidean
norm of v, λ1 and λ2 are positive parameters that control the sparsity of x and
e respectively. Then the input deformation c is refined as ĉ = Dx̂.

Equation 5 is the sparse minimization problem of our proposed SRDM.
Because of the sparsity-inducing property of the �1-norm, the solution of this
optimization problem will be the sparsest, meaning that most entries in x̂ and
ê will be zero. We employ e and the �2-norm to explicitly model the sparse
gross errors and the small dense Gaussian noise, respectively. Therefore, SRDM
is robust against both large sparse registration errors and small dense Gaussian
noise.

Among numerous optimization algorithms proposed in the literature [1], we
employ the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [2] to solve
the sparse optimization problem in Eq. 5, due to its efficiency and robustness.
The global rate of convergence of FISTA is O(1/k2), where k is the iteration
counter [2]. For a more detailed description of the FISTA method, we refer the
reader to [2]. Also it has been shown that stable recovery of both x and e in
Eq. 5 can be guaranteed [12].

During atlas-based segmentation procedure, our proposed SRDM provides a
regularization for the resulting deformation c that maps the atlas to the space
of the target image, constraining the resulting deformation to be a sparse linear
combination of existing training deformations learned from the training data in
a deformation repository.
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3.2 Atlas-Based Liver Segmentation Framework

After the liver atlas and SRDM are learned, we employ atlas-based method to
segment the liver tissue, which is mainly based on nonrigid registration from the
atlas to the target image.

Given a target image Inew to be segmented, which is preprocessed by affinely
registering and resampling to I1, the atlas intensity image Ī is nonrigidly warped
to the space of preprocessed Inew using FFD model based on B-splines. Then
the found deformation c that maps the atlas intensity image to the space of
the target image is regularized by the learned SRDM deformation prior model
according to Eq. 5. Finally, the atlas label image L̄ is deformed by using the
regularized deformation ĉ = Dx̂ instead of the original deformation c, and we
derive the finally propagated atlas label image L̄

′
. The final liver segmentation

Lnew is then extracted by thresholding the propagated atlas label image L̄
′
using

Otsu’s method, followed by removing unconnected components and filling small
holes via the closing operator.

4 Results

To quantify the accuracy and performance of our proposed method, we have
tested it on a set of 30 contrast-enhanced abdominal CT images. 20 CT images
with corresponding ground truth, coming from the public database SLIVER07-
Train (http://www.sliver07.org), were used for training models. These 20 images
have varied in-plane resolution between 0.58 mm and 0.81 mm and slice thick-
ness between 0.7 mm and 5.0 mm. The remaining 10 CT images from our clinical
partner with corresponding expert segmentations were used for testing the accu-
racy of our proposed method. These 10 images have varied in-plane resolution
between 0.58 mm and 0.67 mm, and a slice thickness of 1.0 mm. Most of the
datasets in this study are pathological, including tumors, metastases and cysts.

We compared the segmentation results with the ground truth by using the
average symmetric surface distance (ASD) metric, which is defined as the average
distance between the surfaces of two segmentation results. The ASD is given in
millimeters, and smaller value means more accurate segmentation result. We
refer the readers to [4] for the detailed definition of the ASD metric.

Our method were implemented in C++ on Linux platform, and tested on
a PC with a 2.5 GHz Intel quad-core processor. The source code is available
at http://github.com/ivanshih/SRDM. We used the elastix package (http://
elastix.isi.uu.nl) [5] to perform both affine and FFD model-based nonrigid reg-
istration between atlas and all the input images by maximization of the nor-
malized mutual information (NMI) [10]. In the nonrigid registration procedure,
we employed three resolution levels and the spacing of the underlying B-spline
control points in the finest resolution level is set to 10 mm. We employed the
FISTA implemented in the open source optimization toolbox SPAMS (http://
spams-devel.gforge.inria.fr) [6] to solve the sparse optimization problems in Eq. 5.

In our implementation, the parameters used in the liver segmentation frame-
work were the same for all the test data. We set λ1 = 60 (sparsity parameter

http://www.sliver07.org
http://github.com/ivanshih/SRDM
http://elastix.isi.uu.nl
http://elastix.isi.uu.nl
http://spams-devel.gforge.inria.fr
http://spams-devel.gforge.inria.fr
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Table 1. The mean and standard deviation of the generalization ability of the two
different deformation prior modeling methods based on the SLIVER07-Train database.

SDM SRDM

Generality Measurement [mm] 2.31±0.45 2.19±0.44

for x in Eq. 5) and λ2 = 0.2 (sparsity parameter for e in Eq. 5). We also com-
pared our proposed SRDM model with the closely related statistical deformation
model (SDM) [8]. In our implementation of SDM, 98 % of the total deformation
variance in the datasets is captured by the used modes of variation.

4.1 Generalization Ability of the SRDM

We first evaluate the performance of our proposed SRDM based on the training
data using the generalization ability measure.

The generalization ability quantifies the capability of the model to represent
unknown deformations of the same object class. It can be measured by per-
forming a series of leave-one-out tests on the training set, where the difference
between the omitted training deformation Ci and the reconstructed deformation
C∗

i of Ci is measured. The final result is defined as the average over the complete
set of tests. To quantify the difference between two corresponding deformations,
we employed the root-mean-square deviation (RMSD) based metrics. The gen-
eralization ability can be defined as:

G =
1
K

K∑

i=1

√
‖C∗

i − Ci‖2
3N

, (6)

where N is the number of B-spline control points. And smaller value of the
generalization ability indicates better deformation modeling method.

We also compared our model with the SDM deformation prior model. Table 1
shows the quantitative comparisons of the generalization ability based on the
SLIVER07-Train database. Compared with SDM, our proposed SRDM achieves
a better generalization ability with a smaller variance.

4.2 Liver Segmentation from CT Images

To demonstrate the effectiveness of our proposed SRDM, we applied it to the
application of segmenting the liver tissue in CT Images. Specifically, SRDM was
used to regularize the resulting deformation c that mapped the atlas to the
space of the target image during the atlas-based segmentation procedure. We
also compared our model with two closely related methods: traditional unreg-
ularized FFD model and SDM regularized model. To make a fair comparison,
the same atlas-based liver segmentation framework is employed in all compared
methods. Only the deformation prior modeling method used to refine the result-
ing deformation c is different.
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Fig. 2. Visual comparisons of liver segmentation results between unregularized FFD
model and our proposed SRDM deformation prior method in two difficult cases: adja-
cent organ (i.e., the heart) has similar intensity values as the live tissue (first row);
and the livers contain large tumors (second row). Each figure shows one case. The red
contour shows the ground truth, the yellow and blue contours show the results of the
unregularized FFD model and our method, respectively.

Qualitative Results: Figures 2a and b compare the segmentation results
between unregularized FFD model and our method in difficult cases where
adjacent organ (i.e., the heart) has similar intensity values as the live tissue.
The unregularized FFD model based method over-segments the live tissue and
includes part of the heart with similar intensity values, while our method success-
fully excludes these regions. Figures 2c and d compare the segmentation results
between unregularized FFD model and our method in difficult cases where the
livers contain large tumors. The unregularized FFD model cannot restore regions
containing large tumors, while our method successfully preserves and recon-
structs these regions. The reason is that in our method, these segmentation
errors of the unregularized FFD model are explicitly modeled and reconstructed
as the sparse gross errors. Therefore, these experimental results demonstrate
that our method is robust in overcoming both over- and under-segmentation.
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Table 2. Quantitative comparisons of liver segmentation results between the unreg-
ularized FFD model and two different deformation prior modeling methods based on
the testing database. The measure is represented as mean and standard deviation of
the overall datasets.

FFD SDM SRDM

ASD [mm] 2.17±0.70 1.91±0.58 1.72±0.47

Quantitative Results: Table 2 shows the quantitative comparisons of liver
segmentation results between the unregularized FFD model and two different
deformation prior modeling methods based on the testing database. The mea-
sure is represented as mean and standard deviation of the overall datasets. Of
these compared methods, our method achieves the best accuracy and the small-
est variances according to the ASD metric, indicating the robustness of our
method against registration errors caused by the large variability of liver tis-
sue. In particular, the mean ASD of our method is 1.72 mm. The mean ASD of
the unregularized FFD model and SDM based method are 0.45 mm and nearly
0.2 mm higher than that of our method, respectively.

These experiments demonstrate that our proposed method is more accurate
and robust than the other two methods in segmenting the liver tissue, especially
for difficult cases where adjacent organs have similar intensity values as the live
tissue and the livers contain large tumors.

5 Conclusion

In this paper, we have presented a novel non-parametric sparse representation-
based deformation model (SRDM) for atlas-based liver segmentation framework.
To deal with registration errors caused by the large variability of liver tissue,
our proposed SRDM provides a regularization for the resulting deformation that
maps the atlas to the space of the target image. We evaluated our proposed
method for liver segmentation based on a set of 30 contrast-enhanced abdominal
CT images and achieved promising results, especially for difficult cases where
adjacent organs have similar intensity values as the live tissue and the livers
contain large tumors. Comparison with unregularized FFD model and SDM
shows the superior performance of our proposed method.

In the future, we plan to employ more training data to learn the atlas and
SRDM, which we believe will further improve the segmentation accuracy.
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