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Abstract. In order to extract the moving object in infrared video sequence, this
paper presents a scheme based on sparse and low-rank decomposition. By
transforming each frame of the infrared video sequence to a column and com-
bine all columns into a new matrix, the problem of extracting moving objects in
infrared video sequences is converted to a sparse and low-rank matrix decom-
position problem. The resulted nuclear norm and L; norm related minimization
problem can also be efficiently solved by some recently developed numerical
methods. The effectiveness of our proposed scheme is illustrated on different
infrared video sequences. The experiments show that, compared to ALM
algorithm, our algorithm has distinct advantages in extracting moving object
from infrared videos.
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1 Introduction

With the prevalence of infrared cameras and infrared sensors, the infrared video plays
an increasing important role on human life and production. For example, the infrared
videos about the wild animal activity which were obtained from infrared video sur-
veillance equipments have brought great convenience for the wild animal researchers.
When the target and background brightness have not a distinct difference in the infrared
video sequences or people’s some need, it is very necessary to separate the moving
object from the backgrounds. How to effectively extract the moving target in an
infrared video is a problem worthy of studying.

This paper aims at developing an effective scheme to extract the moving objects in
infrared video sequences. Motivated by the regularization models proposed in [1, 2] for
other applications, we take a similar regularization approach for moving objects
extraction from background.
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2 Detailed Algorithm

In this section, we present the algorithm in details. First, each frame of the infrared
video sequences is reformed to a column, then combining all columns to a new matrix
D € R™". Because the video content is composed of the background and moving
objects, the matrix D can be represented as the sum of background and moving objects.
If we represent the background component as A € R™*" and represent moving object
component as E € R™*", then the matrix D can be expressed as

D=A+E. (1)

In video sequences, the adjacent frames have most of the same background
information, especially in the video with high frame rate. Thus, matrix A has many
same columns and it is a low-rank matrix. Because the size of the moving objects in
each frame is far less than the size of frame, the number of nonzero is far less than the
element number in matrix E. Thus, matrix E is a sparse matrix. Based on these
observations, if we can accurately decompose the matrix D into the sum of a low-rank
matrix and a sparse matrix, the moving objects can be extracted from background.

2.1 Notation

Before presenting the details of decomposing D into a low-rank matrix A and a sparse
matrix E, we first define some notations for the simplicity of discussions. The L; norm
and the Frobenius norm of a matrix X € R™*" are defined by:

n na np ny
1X0,= 305 gl and 1 x[lp= OO0 i)Y, (2)
1
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respectively. Where x; ; is the (i, j)-th element of X. Assuming that r is the rank of X, the
singular value decomposition of X is then defined by

x=0Y V', > =diag({oi} ;<) 3)

Where U and V are n; x r and n, X r matrices with orthonormal columns
respectively. The nuclear norm of X is defined as the sum of singular values, i.e.

X[,= D lail. 4)
i=1
The shrinkage operator S; : R — R is defined by
S:(x) = sgn(x)max(|x| — 7, 0). (5)

Where 7> 0. When S; is extended to matrices by applying it element-wise.
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The singular shrinkage operator D, (x) is defined [3] by
D. = US,(Z)V'. (6)

It is noted that S;(X) and D, (x) are the solutions of the following two minimization
problems respectively

. 1 ), 1 )
min || Y[+ [|Y = X[l mint|[ Y]l +5 Y — XI|p- (7)

2.2 Sparse and Low-Rank Decomposing

In order to exactly extract the sparse matrix E and low-rank matrix A, we can solve the
following minimization problem to estimate A and E:

min_ rank(A) + 2||E|| st.D=A+E. (8)
A ECRM 0

Where 1 is a suitable regularization parameter. rank(-) denotes the rank for a
matrix. [|-[| ~denotes the pseudo-norm that counts the number of non-zeros.

The minimization problem (8) is a non-convex problem. In general, it is very hard
to solve. Referring to the approaches in [4, 5], we try to solve the follow minimization
to estimate A and E.

i A A|E||; st. D=A+E.
Lmin AL+l s D= A+ )
Where |||, is the element-wise sum of absolute values for a matrix.

The minimization model (9) above has been proposed in [1, 2] to extract
low-dimensional structure from a data matrix. It could be viewed as a replacement of
the Principal Component Analysis (PCA) method. The minimization approaches is
termed as Principal Component Pursuit (PCP) for solving the problem of background
subtraction in video surveillance. In their approach, the observed video matrix (array of
image frames) is decomposed into the low-rank matrix structure (static background)
and the sparse matrix structure (moving objects).

In our approach, we convert the minimization question (9) to an augmented
Lagrange multiplier form:

1 2
i A AE —||D—A—E|%. 10
Jmin AL +AE] I3 (10)

Here, the value of 1 is set the same as [1] suggested:

i:l/\/max(m,n). (11)
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Where m, n are the number of rows and columns of the matrix D.

In recent years, there are some good methods on how to efficiently solve L; norm
related minimization problem. One of them is the accelerated proximal gradient
(APG) method, which shows a very good performance on solving L; norm and nuclear
norm related minimization problems (e.g. [6-9]). Another promising approach is the
ADMM (alternating directions method of multipliers) which also can efficiently solve
such problems (e.g. [10-12]). In our approach, we used the APG method to solve the
minimization problem (10).

The general APG method aims at solving the following minimization problem:

min  g(X) +£(X) (12)

Where g is a non-smooth function, fis a smooth function. Algorithm 1 describes the
specific scheme of APG.

Algorithm 1. APG method
1. do

f, -1

2. Y =X+ X=X s

k
1.
3. G =Y A=V
L.f
Lf

4. X, =arg ming()+ X -G, :
2
s nfead

k+1 T 5

tk
6. until converged

Based on the APG method, the minimization problem (10) can be converted to (12)
by setting

X =(AE)
g(X) = MIIAH*HMIEIIzl. (13)
f(X) :%HD_A_EHF

When applying Algorithm 1 to solve the (10), the minimization problem in Step 4
of Algorithm 1 becomes (noticing Ly = 2 in our case)

min Al +2u Elly |4 = GE{[-+ 1 = GE] ;- (14)
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Since A and E are separable in the above minimization, their solutions can be
obtained separately by applying singular value shrinkage operator on G{ and soft
shrinkage operator on G¥, i.e. Agyy = Dﬂ/z(Gf), Evi = SM/Q(GE).

The detailed algorithm for solving the minimization problem (10) is described in
Algorithm 2.

Algorithm 2. APG method for solving the minimization problem (10)

1. Initialization: E, =4,=0"".Y' =Y/ =—,k=0

O,

Hy = %al , (o, isthe largest singular value of D );

Set €>0 ,K>1,p>1,pu, >1;
2. do

t,,—1 t,,—1

3. YkA =4, + (4 = 4) Y/(E:Ek"'

k k

(E,—E,.) ;

1 1
4 Gl=Y DY D), G =X (Y D)

5. (U.ZV)=svd(G), A, =US, V", E_, =S8,,G;) ;

1+./1+4t2
6. t_ = k

= fh, =min(pup, ), k=k+1

—"D_Ak” — B "F <g¢ or k>K.

After the low-rank matrix A and the sparse matrix E are obtained by Algorithm 2,
the low-rank matrix A and the sparse matrix E will be reformed to the format of the
original infrared video sequences.

3 Experimental Results and Analysis

In this section, we evaluate the performance of the proposed method on three infrared
video sequences “irwl”, “irw2” and “plane”. In order to facilitate the evaluation, our
algorithm is compared with the inexact augmented Lagrange multipliers (ALM) algo-
rithm [11] for its high efficiency in solving minimization problems. For a fair com-
parison, in each algorithm, the error tolerance ¢ is set to 1.0 x 1077 and the maximal
iterations number K is set to 1000. 30 frames of each infrared video sequence were
input to two algorithms in experiments. The sizes of each frame of the infrared video
“irwl”, “irw2” and “plane” are 240 x 320, 240 x 320 and 200 x 256 respectively. All
the experiments are performed on a desktop computer (CPU 2.30 GHz, RAM 3.25 GB)
with the MATLAB R2012b software. Figures 1, 3 and 5 show the results of extracted
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(a) one original frame (b) extracted background from (a) (c) extracted object from (a)

Fig. 1. Extracting result of background and object from “irwl” by Algorithm 2

objects and background in three infrared videos by the Algorithm 2. Figures 2, 4 and 6
show the results of extracted objects and background by the ALM algorithm. The
performance of two algorithms in terms of the runtime, iteration number and the rank
of the extracted low-rank matrix A are listed in Table 1.

From above figures, it can be seen that, no matter big or small, quick or slow, the
moving objects can be completely extracted by the Algorithm 2. In Fig. 2, one foot of
the man had not been extracted to the moving object opponent by ALM algorithm.
From Figs. 3 and 4, we can find that, for the small object plane, the extracted plane has
clear edge by Algorithm 2 than that by ALM algorithm. From Figs. 5 and 6, it can be
seen that, for the slow moving man, partial contour of the man was not extracted to the
object opponent by ALM algorithm. As can be seen from Table 1, compared to ALM
algorithm, Algorithm 2 has the following distinct advantages: the rank of the recovered

(a) extracted background from Fig.1 (a) (b) extracted object from Fig.1 (a)

Fig. 2. Extracting result of background and object from “irwl” by ALM algorithm

(a) one original frame (b) extracted background from (a) (c) extracted object from (a)

Fig. 3. Extracting result of background and object from “plane” by Algorithm 2
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(a) extracted background from Fig.3 (a) (b) extracted object from Fig.3 (a)

Fig. 4. Extracting result of background and object from “plane” by ALM algorithm

(a) one original frame (b) extracted background from (a) (c) extracted object from (a)

Fig. 5. Extracting result of background and object from “irw2” by Algorithm 2

(a) extracted backgroundfrom Fig.5 (a)  (b) extracted objectfrom Fig.5 (a)

Fig. 6. Extracting result of background and object from “irw2” by ALM algorithm

Table 1. Comparison of the results of extracting objects in different infrared video sequence by
two algorithms.

Infrared video | Algorithm | Rank (A*) | Iteration number | Time (s)
“irwl” Algorithm 2 | 10 20 12.7310
ALM 15 34 21.6427
“irw2” Algorithm 2| 9 19 12.3445
ALM 15 33 21.4404
“plane” Algorithm 2| 9 28 13.0447
ALM 12 36 16.7718
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(a) one original frame (b) extracted background from (a) (c) extracted object from (a)

Fig. 7. Extracting result of background and object from optical video “highway” by Algorithm 2

(a) extracted background from Fig.7 (a) (b) extracted object from Fig.7 (a)

Fig. 8. Extracting result of background and object from optical video “highway” by ALM
algorithm

background more lower, running time more less and fewer iteration number to reach
convergence. These advantages for rapid analysis and process large amounts of infrared
video data is important.

In order to verify the validity of the proposed algorithm for optical videos, Figs. 7
and 8 show the results of extracted object and background in an optical video “high-
way” by Algorithm 2 and ALM algorithm respectively.

From Figs. 7 and 8, it can be seen that, the two algorithms are still able to extract
the moving objects in an optical video. The extracted backgrounds by two algorithms
have no obvious difference from the visual point of view, but there are more car tracks
which belong to the background in Fig. 8(b) than that in Fig. 7(c).

4 Conclusions

In this paper, we presented a scheme to extract the moving objects from infrared video
sequence. We convert the problem of extracting the moving object from videos to a
sparse and low-rank matrix decomposition problem. The resulting L; norm related
minimization problem can also be efficiently solved by many recently developed
numerical methods. The effectiveness of our proposed algorithm is also validated to
other types of video (e.g., optical videos). The experiments show that, compared to
ALM algorithm, our algorithm has distinct advantages in extracting moving object
from infrared videos and optical videos.
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