
Interactive Browsing System of 3D Lunar Model with
Texture and Labels on Mobile Device

Yankui Sun(✉), Kan Zhang, and Ye Feng

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
syk@mail.tsinghua.edu.cn

Abstract. This paper devotes to developing an interactive visualization system
of 3D lunar model with texture and labels on mobile device. Using OpenGL ES
2.0 and Osg for android, we implement 3D lunar mesh model construction, lunar
texture and mapping, GPU shader illumination programming, multi-level terrain
labels and interactive browsing. In particular, a technique of terrain labels for
mobile device is presented by developing a vertex shader and fragment shader
which is dedicated to render texture, where the vertex shader is mainly used to
determine the vertex’s position attribute of the texture while the fragment shader
is responsible for the color, font and transparency of the text, etc. The developed
browsing system can be rendered on mobile device in real-time.

Keywords: Mobile device · Lunar model · Lunar texture · Terrain labels ·
OpenGL ES 2.0 · Osg for android · Chang’E-1

1 Introduction

China launched her own unmanned, lunar-orbiting spacecraft, CE-1 (Chang’E-1) in
October 2007. CE-1 got 1.37 TB original research data which contain about 8.6 million
LAM elevation values and 1,073 tracks of 2C-level CCD image data. In interactive
visualization of lunar model, a series of research works have been done based on PC
and/or internet [1–4]. In [1, 2], Sun et al. used the LAM data to construct an interactive
lunar model using bicubic subdivision-surface wavelet and transmitted it through
network using a client-server mode. In [3], Dong et al. constructed a lunar surface model,
using the LAM data, the CCD data and hundreds of labels, and visualized it on personal
computer with the converging problem in the polar regions being solved. Sun et al.
further proposed and implemented an internet-based interactive visualization method of
3D lunar model with texture and labels [4]. In this paper, we devoted to developing the
interactive browsing system of 3D lunar model with texture and labels on mobile device.
It should be pointed out that, with the fast development of computing ability of mobile
devices, rendering complex scene efficiently on portable device becomes an important
research topic. Many researches in this aspect have been done based on client/service
architecture [5, 6], where part of rendering work is done on the mobile devices. Recently,
the research on doing rendering work completely on mobile devices has been done. [7]
presented a technique which can manage the level-of-detail of 3D meshes in portable

© Springer International Publishing Switzerland 2015
Y.-J. Zhang (Ed.): ICIG 2015, Part II, LNCS 9218, pp. 446–452, 2015.
DOI: 10.1007/978-3-319-21963-9_41

devices. Here we will develop techniques to run 3D lunar model interactively on mobile
device using OpenGL ES 2.0 and OSG for android. This is not straightforward to do,
and there are some technical difficulties to overcome, including: (1) The implementation
of the terrain label could not be done directly on mobile device because OpenGL ES 2.0
has different rendering pipeline from OpenGL; (2) The texture size loaded into the
memory once time is limited,where the maximum texture size is 4096 × 4096 for
OpenGL ES 2.0; (3) GPU programming of programmable pipeline shader for mobile
device is more difficult. The above difficulties will be overcome here. The main contri‐
butions of this paper include: (1) Proposing a transparent literal texture mapping tech‐
nique to implement multi-level terrain labels for 3D lunar model on mobile device. (2)
Developing a real-time browsing system of 3D lunar model with texture and labels on
mobile device by realizing 3D lunar mesh model construction, texture mapping, illu‐
mination calculation, human-machine interaction.

The rest of this paper is organized as follows. The Sect. 2 gives the systematic flow
chart, and introduces the key implementation techniques. Section 3 describes the system
development and implementation. Conclusions are made in Sect. 4.

2 Algorithm Description

Our systematic flow chart is shown in Fig. 1. It consists of some models including lunar
mesh modeling, texture mapping, illumination calculation, terrain labels and human-
machine interactive.

Fig. 1. Flow chart of our system

2.1 Lunar Mesh Modeling

A semi-regular lunar mesh with 50 thousand quadrilaterals was constructed by
denoising, Catmull-Clark subdivision and resampling from the 8,610,511 data points
obtained by CE-1, as was done in [3]. Its low resolution lunar 3D model with 24576
triangles and 12290 vertices is also obtained so that they can be browsed in multi-reso‐
lution. To render them on mobile device, the quadrangles of the lunar models are divided

Interactive Browsing System of 3D Lunar Model 447

into triangles, and vertex array mapping method provided by OpenGL ES 2.0 is used to
render the triangle mesh of the lunar models. More specifically, all the vertex information
and the rendering information of the lunar triangle mesh are transmitted to GPU at once,
and they are accessed and rendered sequentially according to vertex array.

2.2 Texture Division and Mapping

In [8], a lunar map with size of 18024 × 9012 has been effectively completed from CE-1
CCD image data. The texture size is about 120 M, which is impossible to load it into
the memory of a mobile device once time since the texture size loaded into the memory
once time is limited, where the maximum texture size is 4096 × 4096 for OpenGL ES
2.0. To solve this problem, a texture division method is proposed to load large size
texture. First, the original lunar texture is divided into four parts: South Polar texture
and North Polar texture with size of 5740 × 5740; Eastern and Western Hemisphere
textures with size of 9100 × 3640. Then, these textures are all divided into two patches
further so that the total texture size 122 M can be loaded into the memory in small patch
sizes.

For the lunar mesh models mentioned above, each vertex’s texture coordinate is
calculated by using the texture mapping method used in [3], and they are stored in vertex
array by allocating storage space for them. Texture rendering is realized in OpenGL ES
2.0 as follows. The function InputStream is used to decode a texture bitmap, and the
texture is bound to a serial number by the function glBindTexture in OpenGL ES 2.0.
Then, specifying the filling mode as texture filling when texture rendering is done in
shader.

2.3 Illumination Calculation

Lighting is very important for enhancing the rendering quality of a lunar model. In [3], two
point light sources were positioned in front and back of the lunar model. Lighting calcula‐
tion is not complex in programming on PC because OpenGL support specifying materials
and reflection characteristics of the object, location and intensity of the light source directly
in the application, so illumination calculation can be done automatically. Yet the things
become very different for OpenGL ES 2.0 because it renders pixel one by one. In this case,
each vertex’s rendering mode is specified by setting light source, normal, material attrib‐
utes, and then illumination for each vertex is computed by illumination model. In partic‐
ular, a normal parameter is computed and stored in a vertex array, and then it is transferred
to GPU to be used in illumination calculation by shader code.

2.4 Terrain Labels

Terrain labels can be implemented on PC using the text information output function
DrawListText() and Chinese byte stream reading function fread() in OpenGL. Unfortu‐
nately, these two functions are cut down in OpenGL ES 2.0, so there are some difficulties
to realize terrain labels on 3D lunar models in mobile terminals. This paper designs and
implements a technique to tag terrain information on the lunar model by using OpenGL

448 Y. Sun et al.

ES 2.0, called transparent literal texture mapping technique. Here a set of specific vertex
shader and fragment shader are developed to render texture, which are different from
the vertex shader and fragment shader for rendering the lunar mesh. In the new design,
the vertex shader is mainly used to determine the vertex position attribute of a texture
while the fragment shader to realize the color, font and transparent attributes of a text.
Then, terrain text information is added into a texture bitmap, and it is output by using
texture mapping embedded with the text. The following steps show how to realize text
information labeling in 3D space by texture mapping using OpenGL ES 2.0.

Step 1: Merging Terrain Text Information into a Texture Bitmap. For each
geographical name, a new bitmap and a new canvas are created. Then, the
canvas is set to be transparent, and the attributes of the landmark such as font,
color and size, are set. After all the settings are completed, we begin to draw
the landmarks.

Step 2: Displaying the Text in Transparency on the Merged Bitmap. Get a vertex’s
color by Bitmap.getPixel and Bitmap.SetPixel functions. For each vertex, the
corresponding alpha channel is set 0 to assure the text can be seen. Transparent
attribute is the inherent attribute of the vertices. By setting the transparency,
we can set the background color to be transparent, and show the text informa‐
tion in the texture.

Step 3: Labelling Geographical Names in a Right Position. Obtain 3D position
coordinate of a texture and label geographical names in the right position of
the lunar model. Bind texture rendering and camera so that terrain labels can
be rotated and scaled together with viewpoint. In the meanwhile, backface
cutting technique is used to hide invisible landmark to speed up the rendering
speed.

Because of quantity of geographical names and small display screen of a mobile
device, we propose a multi-level terrain label technique. In our application, we classified
the geographical labels into different levels according to the distance, denoted distance
by D, between a viewpoint and the center of the lunar model. The smaller the distance,
the more labels displayed.

2.5 Human-Machine Interaction

Human-computer interaction is an important part for an interactive browsing system on
mobile device. For Android application, the class used to correspond to user’s gesture
definition is OnTouchEvent. We realized three kinds of gesture interaction functions in
our browsing system: rotation, zoom in and zoom out so that we can browse the lunar
model from all directions and various perspectives.

3 System Development and Experimental Results

With the aforementioned techniques, we developed a lunar interactive visualization
system with texture and labels under lighting environment by using OpenGL ES 2.0 and

Interactive Browsing System of 3D Lunar Model 449

OSG for android. One Plus mobile phone (5.5 inch screen, 1920 × 1080 resolution, four
core processor, 3 Gb of memory, 64G external memory), which runs Android 4.3 oper‐
ating system, is used as a mobile device to test the performance of our system.

OpenGL ES 2.0 uses programmable pipeline instead of fixed one in rendering, where
GPU running code needs be written and loaded into the video card to compile when the
program runs. In programming with OpenGL ES 2.0, how to render every pixel needs to
be specified by developers. Obviously the great degree of freedom in programming also
means more difficulties to meet. Compared with OpenGL ES 2.0, Osg for android is an
advanced 3D interactive graphics development engine, where some powerful functions are
provided so that the programming for developers is simplified greatly. In our application
development, Osg is mainly used to manage 3D viewpoint (camera) including setting up
and modifying the parameters of the camera such as location and direction. In human-
computer interaction module, camera class in Osg engine is applied to make the camera do
actions according to what we need, such as rotating around an orbit and so on, which
simplifies the programming greatly compared to using OpenGL ES 2.0 directly.

An integrated software development framework for mobile device is designed and
implemented, which is showed in Fig. 2. A cpp file programmed by VS2010 is loaded
into Osg for android and complied in local computer (PC). To make the local codes run
correctly in Java virtual machine, modify CMake List file by adding header files and
cpp files, and then run it in NDK command line to generate .so file (a dynamic link
library in Linux kernel) in target folder. Finally, compile the Java program by Java SDK
to generate APK file, a set up file which can be installed in the mobile terminal.

Fig. 2. An integrated software development framework in our system

Our experimental data is the same as that used in [3], including lunar mesh data,
texture and label information. Here two-resolution lunar mesh models are used, one is
the model with 24576 triangles when the viewpoint is far from the moon; the other is
the one with 98304 triangles when the viewpoint is near the moon. The original lunar
texture is divided into eight patches in all, as is described in Sect. 2.2. The number of

450 Y. Sun et al.

geographical names is 468 in total both in English and Chinese, including 367 craters,
1 plain, 3 cliffs, 15 ridges, 20 mountains, 1 ocean, 2 valleys, 22 lunar mares, 17 lunar
lacuses, 11 lunar sinuses, 3 lunar paluses and 6 capes. Three labelling levels are used,
which correspond to , and respectively for the thresholds
and . Let r denote the lunar radius, we chose the threshold and . Some
experimental results are given in Fig. 3, where D is the distance between a viewpoint
and the center of lunar model. By the way, our method can also label Chinese geograph‐
ical names in corresponding coordinates.

D r= D

D r=

D r=

r

Fig. 3. Lunar model visualization with label geographical names at different levels

Our browsing system supports three kinds of gesture interactions including rotation,
zoom in and zoom out, which can make us browse the lunar model on mobile device in
all-round and multi-angle. The average frame rate of the system is 62 fps for the lunar
mesh with 24576 triangles and 33 fps for the model with 98304 triangles.

Interactive Browsing System of 3D Lunar Model 451

4 Conclusions

We developed an interactive visualization system of 3D lunar model with texture and
labels on mobile device successfully. The system achieves real-time rendering frame
rate. Specifically, we develop a vertex shader and fragment shader to render texture so
that a technique of terrain labels for mobile device is provided for OpenGL ES 2.0. It is
also provide a way to process a large size texture to overcome the limit of OpenGL ES
2.0 programming in texture loading size once time. In addition, a general software
development framework for mobile terminal is described and implemented to show how
to call C++ project by Java Virtual Machine based on OpenGL ES 2.0 and Osg for
android. Therefore, our work provides a typical application for mobile terminal
rendering. Everyone can download the lunar browsing system for mobile device from
http://www.115.com/?lang=en (username: 13581683182; password: 19850415).

Acknowledgments. This work was supported by the National High Technology Research and
Development Program of China (“863” Program) under Grant No. 2013AA013702.

References

1. Sun, Y.K., Mao, K.M., Zhang, T., et al.: A 3D multiresolution lunar surface model using
bicubic subdivision-surface wavelets, with interactive visualization tools. Comput. Geosci.
37(9), 1460–1467 (2011)

2. Sun, Y.K., Dong, Y.F., Mao, K.M., et al.: View-dependent progressive transmission and
rendering for lunar model based on bicubic subdivision-surface wavelet. Adv. Space Res.
53(12), 1848–1857 (2014)

3. Dong, Y.F., Sun, Y.K., Tang, Z.S.: Interactive visualization of 3D lunar model with texture
and labels, using Chang’E-1 data. Sci. China Phys. Mech. Astron. 56(10), 2002–2008 (2013)

4. Sun, Y.K., Dong, Y.F., Tang, Z.S.: Internet-based interactive visualization method of 3D lunar
model with texture. Multimedia Tools Appl. (2014). doi:10.1007/s11042-014-1863-z

5. Noguera, J.M., Segura, R.J., Ogáyar, C.J., Joan-Arinyo, R.: Navigating large terrains using
commodity mobile devices. Comput. Geosci. 37(9), 1218–1233 (2011)

6. Noguera, J.M., Segura, R.J., Ogáyar, C.J., Joan-Arinyo, R.: A scalable architecture for 3D map
navigation on mobile devices. Pers. Ubiquit. Comput. 17(7), 1487–1502 (2013)

7. Francisco, R., Oscar, R., Miguel, C.: Efficient visualization of 3D models on hardware-limited
portable devices. Multimedia Tools Appl. 73(2), 961–976 (2014)

8. Ye, M.J., Li, J., Liang, Y.Y., et al.: Automatic seamless stitching method for CCD images of
Chang’E-1 lunar mission. J. Earth Sci. 22(5), 610–618 (2011)

452 Y. Sun et al.

http://www.115.com/?lang=en
http://dx.doi.org/10.1007/s11042-014-1863-z

	Interactive Browsing System of 3D Lunar Model with Texture and Labels on Mobile Device
	Abstract
	1 Introduction
	2 Algorithm Description
	2.1 Lunar Mesh Modeling
	2.2 Texture Division and Mapping
	2.3 Illumination Calculation
	2.4 Terrain Labels
	2.5 Human-Machine Interaction

	3 System Development and Experimental Results
	4 Conclusions
	References

