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Abstract. A new method is presented for computing the Minkowski
sum outer-face of two polygons of any shape. Stemming from the con-
tributing vertex concept, the concept of generalized contributing vertex
is proposed. Based on the new concept, an efficient algorithm is devel-
oped, which starts from the construction of the superset of the Minkowski
sum edges. The superset is composed of three types of edges: translated-
corner edges, translated edges and corner edges. Then the Minkowski sum
outer-face is extracted from the arrangement of the superset edges. The
algorithm is implemented using C++ and the Computational Geometry
Algorithms Library (CGAL). The experiments including very compli-
cated polygons are conducted, suggesting that the proposed algorithm is
more efficient than other existing algorithms in most cases.

Keywords: Computational geometry · Minkowski sum outer-face ·
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1 Introduction

The Minkowski sum of two objects A and B in an Euclidian space was defined
by the German mathematician Hermann Minkowski (1864–1909) as the position
vector addition of each point a in A and each point b in B

A⊕B = {a + b|a∈A, b∈B} (1)
where a + b denotes the sum of position vector a and position vector b, corre-
sponding to points in A and B respectively. The Minkowski sum can also be
written as another form

A⊕B =
⋃

a∈A
{a + b|b∈B} =

⋃
a∈A

{a + b0 + (b − b0)|b∈B} (2)

where b0 is the position vector of any selected point of B.
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Since no transformation between coordinate systems is involved, in this study
we do not differentiate between points and the position vectors of these points.
For example, suppose point b∈B, by saying “vector b” we means the vector
starting at the origin O of the coordinate system in use and ending at point b. In
this way, Eq. 2 suggests that the Minkowski sum can be achieved by the following
operations: (1) translate A by vector b0, denoting by A′; and (2) sweep all points
of A′ with B by letting point b0 traverse all points of A′, the trace of sweeping
is just A⊕B. Since the polygons A and B are represented by their boundaries,
it is sufficient to consider only the boundary points. Figure 1 illustrates the two
operations.

Fig. 1. The Minkowski sum of two polygons A and B is obtained by two operations.
Firstly, translating A by vector b0, A′ is obtained; secondly, sweeping A′ by letting
point b0 traverse all points of A′, A⊕B is given by the trace of B.

The Minkowski sum is applied in many domains such as computer-aided
design and manufacturing, image processing, motion planning in robotics. Shi
[16] recently proposed a concept, the entrance block E(A,B), to judge whether
two blocks, represented by sets A and B, contact, which greatly simplifies the
contact detection. The entrance block E(A,B) is defined as

E(A,B) =
⋃

a∈A,b∈B
{b − a + a0} (3)

with a0 an arbitrary point in A. By comparing Eqs. 1 and 3, we can immediately
see that the entrance block E(A,B) is actually the Minkowski sum B⊕Ā, where
Ā is obtained through translating the centrally symmetric counterpart of A by
vector a0. So the Minkowski sum can be used to calculate the entrance block
E(A,B).

In most applications, the outer-face of the Minkowski sum rather than the
interior is of interest. Therefore, we will propose an algorithm to compute the
Minkowski sum outer-face.

This paper is organized as follows. Section 2 reviews the related literature.
Section 3 introduces the original contributing vertices-based Minkowski sum
algorithm. In Sect. 4, we expound in detail the algorithm based on the concept of
generalized contributing vertices to calculate the Minkowski sum outer-face. In
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Sect. 5, we present an implementation and make comparisons with the existing
algorithms. Section 6 concludes the paper.

2 Related Works

There is one category of methods [2,8] for computing the Minkowski sum of two
non-convex polygons based on convex decomposition: decomposing each non-
convex polygon into convex sub-polygons, computing the Minkowski sum of each
pair of sub-polygons, then performing the union of the pairwise Minkowski sums.
These methods are time consuming because of the large size of the decomposition
and union. Now, some other categories of methods are briefly reviewed below.

Ghost [9] presented a slope diagram algorithm to compute the Minkowski
sum of polygons and polyhedrons. The polygons are represented in their slope
diagram forms. The sum polygon can be obtained by merging the two slope dia-
grams. However, no implementations of the algorithm for non-convex polygons
has been published.

Ramkumar [15] presented a method to compute the Minkowski sum outer-
face of two simple polygons using convolution, which was introduced by Guibas
et al. [10,11]. The method detects self-intersections for each cycle of the convo-
lution, and snips off the loops thus created. The outer-face is obtained by con-
necting the cycles using paths inside the convolution. The convolution method
is also used for computing the Minkowski sum of 2D curved objects [12], the
Minkowski sum of ruled surfaces [13], and the Minkowski sum of boundary sur-
faces of 3D-objects [14].

Wein [18] described an efficient and robust method to compute the Minkowski
sum using convolution too. The method keeps the faces with non-zero winding
numbers from the arrangement of the convolution segments. The method is
superior to the decomposition methods in most cases.

Behar and Lien [6] proposed a fast and robust method to compute the 2D
Minkowski sum using reduced convolution. The arrangement computation time
reduces since the number of convolution segments decreases, which takes a large
portion of the total time. Several filters were proposed to extract the Minkowski
sum boundaries. The method is faster than the convolution method.

Barki et al. [3–5] proposed the contributing vertices-based Minkowski sum
algorithm. The algorithm will be reviewed in the next section since the new
algorithm is improved from it.

3 Original Contributing Vertices-Based Minkowski Sum
Algorithm

Barki et al. [3] proposed the contributing vertices-based Minkowski sum algo-
rithm for convex polyhedrons (polygons). They showed that the Minkowski sum
polygon S of two convex polygons A and B is a convex polygon composed of two
types of edges: the edges parallel to the edges of A, named the “ranslated edges”
of S; and the edges parallel to the edges of B, named the “corner edges” of S.
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The two categories of edges are obtained from the edges of A and B by com-
puting their contributing vertices. Here is the definition of a contributing vertex.

The contributing vertex vk,B of an edge ei,A∈A with an outer normal ni,A

is a vertex of B that is farthest, in the sense of algebraic values, away from the
line ei,A, suggesting

vk,B = argmax[〈vl,B , ni,A〉|vl,B∈B] (4)

where 〈·, ·〉 denotes the scalar product. An example is illustrated in Fig. 2.

Fig. 2. The concept of contributing vertex

Interchanging A and B in Eq. 4, the contributing vertex vk,A of an edge
ei,B∈B with an outer normal ni,B can be obtained See Fig. 2.

There is at least one contributing vertex for each edge of A or B. For some
edges, there are two contributing vertices if they are equally farthest away from
the line coinciding with these edges. In this case, the edge of A having two con-
tributing vertices has the same orientation as the edge of B with the two vertices
as the endpoints. Hereafter, by saying that edge eA∈A has the same orientation
as edge eB∈B, we mean that eA and eB have the same unit outward normal.

The process of contributing vertices-based Minkowski sum algorithm consists
of the two main steps as follows.

– Determination of translated edges. For each edge ei,A of A, find out its con-
tributing vertices vk,B, deduce the translated edge corresponding to each vk,B .
If there are two contributing vertices that are two endpoints of some edge ej,B ,
the translated edge is the Minkowski sum of ei,A and ej,B . The edge ej,B will be
ignored in the determination of corner edges because it has contributed once.
If there is only one contributing vertex vk,B , the translated edge is obtained
through translating edge ei,A by vector vk,B.

– Determination of corner edges. For each edge ei,B of B that has no the same
orientation as any edge of A, find out its contributing vertex vk,A, and deduce
the corner edge which is obtained through translating edge ei,B by vector vk,A.
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An illustration of translated edges and corner edges is given in Fig. 3.

Fig. 3. (a) Two polygons A and B. (b) The translated edges. (c) The corner edges.

Select an arbitrary edge from the translated edges and corner edges as a seed
edge, traverse other edges by neighborhood, then the Minkowski sum polygon
is obtained.

Barki et al. adapted the contributing vertices-based Minkowski sum algorithm
for a nonconvex-convex pair of polyhedra in [4]. Its implementation includes two
main steps: (1) form the superset of the Minkowski sum edges through the use of
the contributing vertex concept, and; (2) extract the Minkowski sum of the two
polyhedra from the superset. However, it doesnt apply to the case of two non-
convex polygons.

4 Generalized Contributing Vertices-Based Minkowski
Sum Outer-Face Algorithm

In this section, we generalize the concept of contributing vertex to the concept
of generalized contributing vertex. Then we use the new concept to develop an
algorithm for computing the Minkowski sum outer-face of two polygons of any
shape. The algorithm also has two main steps: first, construct the Minkowski sum
superset edges; second, extract the Minkowski sum outer-face from the superset.

Lets define some notations here. For two polygons A and B in consideration,
A has ea edges and B has eb edges; vi,A denotes the starting point of edge ei,A,
and vi+1,A the end point; similarly, vj,B denotes the starting point of edge ej,B ,
vj+1,B denotes the end point.

4.1 Definition of Generalized Contributing Vertices
and Translated-Corner Edge

In order to compute the Minkowski sum outer-face of two polygons of any shape,
we generalize the contributing vertex concept to the generalized contributing
vertex concept for the two polygons in consideration below.
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Definition 1. The generalized contributing vertex vk,B of edge ei,A with
an outer normal ni,A is a vertex of B whose distance away from the line ei,A is
not less than either of its two adjacent vertices and its angle is non-reflex. The
generalized contributing vertex vk,B of edge ei,A satisfies:

⎧
⎪⎨

⎪⎩

〈vk,B , ni,A〉 ≥ 〈vk−1,B, ni,A〉
〈vk,B, ni,A〉 ≥ 〈vk+1,B, ni,A〉
〈vk+1,B − vk,B , nk−1,B〉 ≤ 0

(5)

where vk−1,B denotes the previous vertex of vk,B and vk+1,B the next vertex
of vk,B; nk−1,B denotes the outer normal of edge ek−1,B starting at vk−1,B and
ends at vk,B .

When B is convex, generalized contributing vertices degenerate to contribut-
ing vertices. The generalized contributing vertices of the edges of B can be found
out in a similar manner by interchanging A and B in Eq. 5. An illustration of
the generalized contributing vertex concept is shown in Fig. 4.

Fig. 4. The concept of generalized contributing vertex

When edge ei,A and edge ej,B have the same orientation, and at least one
endpoint of each edge is the generalized contributing convex of the other, the
translated edge and corner edge are collinear, have same orientation and will be
joined or overlap, and should be merged into one edge, which will be called
“translated-corner edge” subsequently. Three cases exist that are stated
below to reduce the number of edges in the superset and decrease the complexity
of the extraction of the Minkowski sum outer-face from the superset.

Case 1. If ei,A and ej,B have the same orientation, vi,A is the generalized con-
tributing vertex of ej,B , and vj+1,B is the generalized contributing vertex of
ei,A, then there is one translated-corner edge that starts at vi,A⊕vj,B and ends
at vi+1,A⊕vj+1,B .

Proof. Because vj+1,B is the generalized contributing vertex of ei,A, there is
the translated edge, ei,A⊕vj+1,B . It starts at point vi,A⊕vj+1,B , ends at point
vi+1,A⊕vj+1,B , and has the same orientation as ei,A.
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Because vi,A is the generalized contributing vertex of ej,B , there is the corner
edge, vi,A⊕ej,B . It starts at point vi,A⊕vj,B , ends at point vi,A⊕vj+1,B , and has
the same orientation as ej,B .

The starting point of the translated edge ei,A⊕vj+1,B and the end point of
the corner edge vi,A⊕ej,B are both vi,A⊕vj+1,B . The translated edge ei,A⊕vj+1,B

and the corner edge vi,A⊕ej,B are linked at vi,A⊕vj+1,B , and accordingly merged
into one translated-corner edge that starts at point vi,A⊕vj,B , ends at point
vi+1,A⊕vj+1,B , and has the same orientation as ei,A or ej,B . A case is illustrated
in Fig. 5.

Fig. 5. An illustration of translated-corner edge case 1

Case 2. If ei,A and ej,B have the same orientation, vi,A is the generalized con-
tributing vertex of ej,B but vi+1,A is not, and vj,B is the generalized contributing
vertex of ei,A but vj+1,B is not, then there is the translated-corner edge that
starts at vi,A⊕vj,B , and ends at one of point vi+1,A⊕vj,B and point vi,A⊕vj+1,B

that is farther away from the starting point vi,A⊕vj,B .

Proof. Because vj,B is the generalized contributing vertex of ei,A but vj+1,B is
not, there is the translated edge, ei,A⊕vj,B . It starts at point vi,A⊕vj,B , ends at
point vi+1,A⊕vj,B , and has the same orientation as ei,A.

Because vi,A is the generalized contributing vertex of ej,B but vi+1,A is not,
there is the corner edge, vi,A⊕ej,B . It starts at point vi,A⊕vj,B , ends at point
vi,A⊕vj+1,B , and has the same orientation as ej,B .

As a result, the translated edge ei,A⊕vj,B and the corner edge vi,A⊕ej,B over-
lap since they start at the same point vi,A⊕vj,B and have the same orientation.
The translated-corner edge should be the longer one, and accordingly ends at
one of point vi+1,A⊕vj,B and point vi,A⊕vj+1,B that is farther away from the
starting point vi,A⊕vj,B . Figure 6 illustrates such a case.

Case 3. If ei,A and ej,B have the same orientation, and vi,A is not the gener-
alized contributing vertex of ej,B but vi+1,A is; and vj,B is not the generalized
contributing vertex of ei,A but vj+1,B is, then there is the translated-corner edge
that ends at vi+1,A⊕vj+1,B , and starts at one of vi,A⊕vj+1,B and vi+1,A⊕vj,B
that is farther from the end point vi+1,A⊕vj+1,B .
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Fig. 6. An illustration of translated-corner edge case 2

Proof. Because vj,B is not the generalized contributing vertex of ei,A but vj+1,B

is, we have the translated edge ei,A⊕vj+1,B . It starts at point vi,A⊕vj+1,B and
ends at point vi+1,A⊕vj+1,B , with the same orientation as ei,A.

Because vi,A is not the generalized contributing vertex of ej,B but vi+1,A is,
we have the corner edge, vi+1,A⊕ej,B . It starts at point vi+1,A⊕vj,B and ends
at point vi+1,A⊕vj+1,B , with the same orientation as ej,B .

As a result, the translated edge ei,A⊕vj+1,B and the corner edge vi+1,A⊕ej,B
overlap since they end at the same point vi+1,A⊕vj+1,B and have the same
orientation. The translated-corner edge should be the longer one, and accordingly
starts at one of point vi,A⊕vj+1,B and point vi+1,A⊕vj,B that is farther away
from the ending point vi+1,A⊕vj+1,B . Figure 7 illustrates such a case.

Fig. 7. An illustration of translated-corner edge case 3

4.2 Construction of the Minkowski Sum Edge Superset

The construction of the Minkowski sum edge superset starts with determining
the translated-corner edges, translated edges and corner edges by finding out the
generalized contributing vertices associated with all edges of A and B respec-
tively. Four steps are involved in this operation.
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1. Determination of generalized contributing vertices: For each edge ei,A, find
out its generalized contributing vertices. For each edge ei,B , find out its gen-
eralized contributing vertices.

2. Determination of translated-corner edges: For each edge ei,A, find out the
edges ej,B having the same orientation. If such a pair of ei,A and ej,B falls into
one of the three cases in the above, we can determine the translated-corner
edge. The generalized vertices belonging to ej,B of ei,A and the generalized
vertices belonging to ei,A of ej,B will not be considered in the rest, since they
have been considered here.

3. Determination of translated edges: For each edge ei,A, for each of the rest
generalized contributing vertices vk,B which have not been considered, we
have a translated edge, ei,A⊕vk,B, which is obtained through translating it
by vector vk,B , and accordingly has the same orientation as ei,A. Here, vk,B
is a generalized contributing vertex.

4. Determination of corner edges: For each edge ei,B , for each of the rest gen-
eralized contributing vertices vk,A which have not been considered, we have
a corner edge, ei,B⊕vk,A, which is obtained through translating it by vec-
tor vk,A, and accordingly has the same orientation as ei,B . Here, vk,A is a
generalized contributing vertex.

Fig. 8. (a) Two polygons A and B. (b) The Minkowski sum edges superset. The dashed
lines are the translated-corner edges. The bold lines are the translated edges. The thin
lines are the corner edges. (c) The Minkowski sum outer-face.

4.3 Extraction of the Minkowski Sum Outer-Face
from the Superset Edges

There are two ways to extract the Minkowski sum outer-face from the superset:
(1) compute the intersections of the superset edges and break the edges down
at the intersections, from a seed edge containing the lexicographically smallest
(or greatest) point among the superset vertices, traverse other outer-face edges
by neighborhood, when there are multiple compatible edges adjacent to the end
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point of the previous edge, we pick the one that makes a largest inner angle at
the point, and (2) compute the arrangement [7,17] of the superset edges, the
Minkowski sum outer-face is the resulted face with no boundary.

An example of a non-convex polygon A and a non-convex polygon B is
depicted in Fig. 8(a). The entire superset of the Minkowski sum edges is depicted
in Fig. 8(b). The Minkowski sum outer-face is depicted in Fig. 8(c).

5 Implementation and Comparison

In this section, we describe the implementation of the generalized contribut-
ing vertex-based Minkowski sum outer-face (GCVMSOF) algorithm. Then, we
compare the performance of this algorithm with other methods in the literature.

5.1 Implementation

The proposed algorithm has been implemented using C++ and the Com-
putational Geometry Algorithms Library (CGAL) [1]. The extraction of the
Minkowski sum outer-face from the superset is the arrangement method, which is
done by the 2D arrangement package of CGAL, the outer-face is the unbounded
face. We select nine models, the first five from [18]: chain, stars, comb, fork and
knife; and the last four from [6]: g1g2, monkey, hand, bird. All data sets are
shown in Table 1.

Table 1. Input sets

Input sets A B

Vertices Concave vertices Vertices Concave vertices

Chain 58 26 16 8

Starts 40 14 40 14

Comb 53 24 22 0

Fork 34 19 31 18

Knife 64 40 12 5

g1g2 30 13 34 19

Monkey 1204 577 24 11

Hand 57 15 84 16

Bird 275 133 57 15

All experiments were performed on a personal computer with 4 GB RAM
and 3.40 GHZ Intel Core i7 CPU. Figure 9 illustrates the input polygons and
their Minkowski sum outer-faces.
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Fig. 9. Samples of input polygons (top) and their Minkowski sum outer-faces (bottom):
(a) chain; (b) stars; (c) comb; (d) fork; (e) knife; (f) g1g2; (g) monkey; (h) hand; (i) bird.

5.2 Comparison

According to [18], the convolution-based Minkowski sum (CMS) algorithm is
superior to the decomposition method in most cases. According to [6], the
reduced convolution-based Minkowski sum algorithm is superior to the CMS
algorithm. So the comparisons in the computation time are made between the
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proposed algorithm (GCVMSOF) and the reduced convolution-based Minkowski
sum outer-face algorithm (RCMSOF). The RCMSOF algorithm is adapted from
the 2D Minkowski sum package of CGAL, which implements the convolution
operation. It constructs the reduced convolution superset first; then extracts the
Minkowski sum outer-face from the superset arrangement. The running times
and superset edges numbers are shown in Table 2.

Table 2. Comparisons of the proposed GCVMSOF and RCMSOF

Input sets Algorithms Superset size Running time (ms)

Superset
construction

Outer-face
extraction

Total time

Chain GCVMSOF 170 48 85 133

RCMAOF 63 74 68 142

Starts GCVMSOF 371 85 310 395

RCMAOF 372 103 296 399

Comb GCVMSOF 80 19 46 65

RCMAOF 81 21 44 65

Fork GCVMSOF 331 58 1965 2023

RCMAOF 342 93 1881 1974

Knife GCVMSOF 211 47 884 931

RCMAOF 211 73 879 952

g1g2 GCVMSOF 389 89 875 964

RCMAOF 346 104 724 828

Monkey GCVMSOF 8189 1617 9371 10988

RCMAOF 8189 2978 8922 11900

Hand GCVMSOF 369 203 200 403

RCMAOF 369 203 179 382

Bird GCVMSOF 1019 661 702 1363

RCMAOF 1017 947 651 1598

In most examples, the proposed GCVMSOF is faster than RCMSOF. This is
due to the fact: though the outer-face extraction times are longer in GCVMSOF
than those in RCMSOF, the superset construction times are much shorter. These
experiments also suggest that the superset edges numbers of the two algorithms
are almost equal, and the outer-face extraction time usually takes a large portion
of the total time.

6 Conclusions

In this study, a new algorithm is developed to compute the Minkowski sum
outer-face of two polygons of any shape by generalizing the contributing ver-
tex concept. The new concept is straightforward and the algorithm is easy to
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implement. Three translated-corner edge cases associated with the new concept
are found and proved. The experiments show that the new algorithm is superior
to other methods for most input sets. The next work to develop the algorithm
for calculating the Minkowski sum outer-face of two polyhedra based on the
generalized contributing vertex concept.
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