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Abstract. In this paper, a discriminative neighborhood preserving dic-
tionary learning method is proposed. The geometrical structure of the
feature space is used to preserve the similarity information of the fea-
tures, and the features’ class information is employed to enhance the
discriminative power of the learned dictionary. The Laplacian matrix
which expresses the similarity information and the class information of
the features is constructed and used in the objective function. Experi-
mental results on four public datasets demonstrate the effectiveness of
the proposed method.
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1 Introduction

Sparse representation has been widely studied due to its promising performance
[1-4]. Tt can be used in image classification [5-10], face recognition [11-14], image
retrieval [15], and image restoration [16]. The basic idea is to represent an input
signal as a sparse linear combination of the atoms in the dictionary. Since the
dictionary quality is a critical factor for the performance of the sparse presenta-
tion, lots of approaches focus on learning a good dictionary. Aharon et al. [17]
presented the K-SVD algorithm, which iteratively updated the sparse codes of
samples based on the current dictionary, and optimized the dictionary atoms to
better fit the data. The discriminative information resided in the training sam-
ples might be ignored in this method. To solve this problem, some approaches
[18-24] aim to learn more discriminative dictionaries. Mairal et al. [22] added
a discriminative reconstruction constraint in the dictionary learning model to
gain discrimination ability. Pham et al. [23] proposed a joint learning and dic-
tionary construction method with consideration of the linear classifier perfor-
mance. Yang et al. [24] employed the Fisher discrimination criterion to learn a
structured dictionary.

However, in these methods, features are used separately while learning the
dictionary, which results that the similarity information between the features is
lost. Similar features in the same class thus may be encoded as dissimilar codes,
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while features in different classes may be encoded as similar codes with the
learned dictionary. In order to alleviate this problem, we propose a discriminative
neighborhood preserving dictionary learning method that explicitly takes the
similarity and class information of features into account. Figure 1 shows the idea
of our method. The circle represents the feature x;’s neighborhood which is
composed of features close to the x;. Some of the neighbors are with the same
label as z;, and others are not. Our method encourages the distance between
the codes of x; and its neighbors in the same class as small as possible, at the
same time maintains the distance between the codes of z; and its neighbors in
different classes. The learned dictionary can ensure that similar features in the
same class could be encoded as similar codes and the features in different classes
could be encoded as dissimilar codes.
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Fig. 1. The basic idea of our method. The left is the neighborhood of feature z; which
contains the features close to x;. The different colors represent the neighbors of different
classes. The blue features in the neighborhood are the neighbors of x; with the same
label. The neighbors with the same label are expected to be encoded close to the code
of z;, while other neighbors are expected to be encoded distant. Therefore, our method
is more discriminative for classification.

Inspired by [25,26], we construct a Laplacian matrix which expresses the
relationship between the features. The dictionary learned with this Laplacian
matrix can well characterize the similarity of the similar features and preserve
the consistence in sparse codes of the similar features. Different from [25,26],
the class information is taken into account to further enhance the discriminative
power of the dictionary in our method. Through introducing the class informa-
tion, the Laplacian matrix is not only with the similarity information of the
features in the same class but also can distinguish features in different classes.
By adding the Laplacian term into the dictionary learning objective function,
our method is able to learn a more discriminative dictionary. The experimental
results demonstrate the encoding step is efficient with the learned discriminative
dictionary and the classification performance of our method is improved with
the dictionary.

The rest of this paper is organized as follows. In Sect. 2, we provide a brief
description of the sparse presentation problem and introduce our discriminative
neighborhood preserving dictionary learning method. In Sect. 3, the optimization
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scheme of our method is presented, including learning sparse codes and learning
the dictionary. The experimental results and discussions are displayed in Sect. 4.
Finally, we conclude the paper in Sect. 5.

2 Discriminative Neighborhood Preserving Dictionary
Learning Method

2.1 Sparse Representation Problem

We briefly review sparse representation. Given a data matrix X = [z1,--- ,z,] €
R¥™n_ dictionary matrix D = [dy,--- ,di] € R¥* where each d; represents a
basis vector in the dictionary, coefficient matrix V = [vy,--- ,v,] € R¥*", where
each column is a sparse representation for a data point. Each data point z; can be
represented as a sparse linear combination of those basis vectors in the dictionary.
The objective function of sparse presentation can be formulated as follows:

min Y flvillo  st.X =DV (1)
j=1

lvillo is the number of nonzero entries of v;, representing the sparseness of v;.
However, the minimization problem for this sparse representation with /y norm
is shown to be an NP-hard problem [27]. The most widely used approach is
to replace the Iy norm with its [; norm. With the loss function, the objective
function then becomes

%1)13\\)(*171/\@“2”%”1 stldi|? <e, i=1,...,k (2)

i=1

The first term in Eq. (2) represents the reconstruction error, A is the parameter
used to balance the sparsity and the reconstruction error.

2.2 Formulation of Discriminative Neighborhood Preserving
Dictionary Learning

In most current methods, the features are used separately while learning the dic-
tionary. The similarity information among the features is lost which lead to the
similar features can be encoded as totally different codes. In order to alleviate
this problem, we propose a discriminative neighborhood preserving dictionary
learning method. The dictionary learned by our method can well represent the
intrinsic geometrical structure of the features to better characterize the rela-
tionship between the features and get more discriminative power through the
features’ class information.

Given the training features set X = {x1,22,...,2,} and the label of the
training features. For each feature x;, we choose [-nearest neighbors of z; in the
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same class to form {z;1,z;2,...,z; } and choose m-nearest neighbors of z; in dif-
ferent classes to form {x;,,xi,,...,;, }. All of these neighbors make up a local
neighborhood of x; which can be represented as X; = {1, 2, ..., 20, Tiy, T4y,
cos @i b Vi = o, vz, 0,0, Vg - -, 05, IS the codes of X; about the
dictionary. As shown in Fig. 1, the purpose of our method is to learn a discrim-
inative dictionary which make the distance between v; and its neighbors in the
same class as small as possible and the distance between v; and its neighbors in
different classes as large as possible

n l m
min Y (3 lloi = vl = 8 lloi = v, |I?) 3)
p=1

i=1 j=1

0 is the metric factor. We define W as the similarity matrix corresponding to
the features, whose entry W;; measures the similarity between x; and x;. If x; is
among the
l-nearest neighbors in the same class of x; or z; is among the [-nearest neigh-
bors in the same class of x;, W;; = 1. If z; is among the m-nearest neighbors in
different classes of x; or x; is among the m-nearest neighbors in different classes
of z;, W;; = —0, otherwise, W;; = 0. Through the similarity matrix, the Eq. (3)
can be represented as

n l m n l
miny (Y floi = vill* = 8 lloi = v, [7) = min YY" o — v PWy (4)
p=1

i=1 j=1 i=1 j=1

We define the degree of x; as d; = Z?:l Wij, and D = diag(dy,...,dn). The
Eq. (4) can be converted as [28]

1
1 . .
3 mlnz Z |vi — v |°Wi; = min Tr(VLVT) (5)
i=1 j=1
where L = D — W is the Laplacian matrix. By adding this Laplacian term into
the sparse presentation, we get the objective function of our method:

min IX = DV[E+ XY lvills + oTr(VIVT)  sitlldi> <e, i=1,....k

i=1
(6)

Due to the Laplacian term, both the similarity among the features and the class
information are considered during the process of dictionary learning and the
similarity of codes among the similar features can be maximally preserved.

The Eq. (6) is not convex for D and V simultaneously, but it is convex for D
when V is fixed and it is also convex for V when D is fixed. Motivated by the
work in [29], we propose the following two-stage strategy to solve the Eq. (6):
learning the codes V while fixing the dictionary D, and learning dictionary D
while fixing the codes V.
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3 Optimization

3.1 Learning Codes V
When fixing the dictionary D, Eq. (6) becomes the following optimization problem:

n
mvinHX_DvH%HZHviHI +aTr(VLVT) (7)

i=1

Equation (7) is an Ll-regularized least squares problem. This problem can be
solved by several approaches [30,31]. Instead of optimizing the whole codes
matrix V, we optimize each v; one by one until the whole V converges following
[26,32]. The vector form of Eq. (7) can be written as

min Y [z — Dog|* + 2D flvilli + @ Y Lijvf vy (8)
=1 =1

ij=1

When updating v;, the other codes v;(j # ¢) are fixed. We rewrite the optimiza-
tion with respect to v; as follow:

k
min f(v;)|lz; — Dvil|* + A [0l | + aLiv] by (9)

j=1

where h; = 2a(3_,4; Lijvj), v is the j-th coefficient of v;. We use the feature-

(3

sign search algorithm in [29] to solve this problem. Define h(v;) = ||x; — Dv;||? +
aLiv]l vi+vl hy, then f(v;) = h(v;)+A 25:1 |v§]) |. If we know the signs (positive,

zero, or negative) of the vfj ) at the optimal value, we can use either UEJ ) (if
Ugj) > 0), —vz(j) (if UZ(]) < 0), or 0 (if vgj) = 0) to replace each of the terms
|v£j ) |. Considering only nonzero coefficients, the Eq. (9) is reduced to a standard,
unconstrained quadratic optimization problem, which can be solved analytically
and efficiently. When we update each v; in the algorithm, maintaining an active
set of potentially nonzero coefficients and their corresponding signs (all other
coefficients must be zero). Our purpose is to search for the optimal active set and
coefficient signs which minimize the objective function. The algorithm proceeds
in a series of feature-sign steps: on each step, it is given the active set and the
signs of current target, then it computes the analytical solution about the Eq. (9)
and updates the solution, the active set and the signs using an efficient discrete
line search between the current solution and the analytical solution. The detailed
steps of the algorithm are stated in Algorithm 1.

3.2 Learning Dictionary D

In this section, we present a method for learning the dictionary D while fixing
the coefficients matrix V. Equation (6) reduces to the following problem:

min X —DV|3  st|di|?<eci=1,...k (12)
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Algorithm 1. Feature-sign Search Algorithm for Solving Eq. (9)

Input: the training data set X, the dictionary D, the Laplacian matrix L, the
parameters a, A, the initial codes V.
Output: the optimal codes matrix V.
For 1<n <ndo
Step 1. Initialization
If not exist(V)
— —
v; = 0,0 = 0, active set is empty.
else
0; € {—1,0,1} denotes sign (v, add j(v") # 0) to the active set.
Step 2. Activate
We define V,Ej )h(vi) as the subgradient value of the h(v;). From zero coefficients
of v;, select j = av"gmaa:j|V§j)h(vi)|7 active vij) only if it locally improves the
equation (9), namely:
if VEj)h(vi) > ), then set §; = —1, active set = {j} J active set.
if V@ h(v;) < —A, then set 6; = 1, active set = {;j} ] active set.
Step 3. Feature-sign
Let D be a submatrix of D that contains only the columns corresponding to the
active set. Let 03, h;, @ be the subvectors of v;, h;, 0 corresponding to the active

set. Compute the analytical solution to the resulting unconstrained QP:
min g(3) = ||&i — DG||* + aLu® 0 + 6" hi + 20" 6 (10)

Let (0g(0;)/00;) = 0 ,we can get the optimal value of v; under the current
active set:

5" = (DTD + aLul) (D 2 — (A + hi)/2) (11)
Perform a discrete line search on the closed line segment from 0; to ©;"*, check
the objective value at ;" and all points where any coefficient changes value,
update ¥; (and the corresponding entries in v;) to the point with the lowest
objective value, remove zero coefficients from the active set and update
0 = sign(v;).
Step 4. Check the optimality conditions
Condition (a): Optimality condition for nonzero coefficients:
VI h(v;) 4 Asign(vl??) = 0,v0) # 0. If condition (a) is not satisfied, go to
Step 3(without any new activation); Else check condition(b).
Condition (b): Optimality condition for zero coefficients:
V§j>h(vi) < /\,vaj> = 0. If condition (b) is not satisfied, go to Step 3; otherwise
return v; as the solution, and update the V with current v;.
End for

Equation (12) is a least squares problem with quadratic constraints. It can be
efficiently solved by a Lagrange dual method [29].

Let A = [A1,..., Ag], and A; is the Lagrange multiplier associated with the
i-th inequality constraint ||d;||?> — ¢ < 0, we obtain the Lagrange dual function:
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n k
min L(D, A) = Tr((X ~ DV)T(X — DV)) + Z Aj(Z; d? —c)  (13)

Jj=1
Define A = diag()), Eq. (13) can be written as

min (D, \) = Tr(XTX - XVT(WvT + A1 (XVTHT —cA) (14)

The optimal solution is obtained by letting the first-order derivative of Eq. (14)
equal to zero
D* = XvT(wvT 4 A)~? (15)

Substituting Egs. (15) into (14), the Lagrange dual function becomes:

min Tr(XVT(WVVT + A)7WXT) + Tr(A) (16)

We optimize the Lagrange dual Eq.(16) using the conjugate gradient. After
obtaining the optimal solution A*, the optimal dictionary D can be represented
by D* = XVT(VVT + A*)~L

4 Experiments

In this section, we evaluate our method on four public datasets for image
classification: Scene 15, UIUC-Sport, Caltech-101, and Caltech-256. For each
experiment, we describe the information of datasets and detailed settings. The
effectiveness of our method is validated by comparisons with popular methods.

4.1 Parameters Setting

In the experiment, we first extract SIF'T descriptors from 16 x 16 patches which
are densely sampled using a grid with a step size of 8 pixels to fairly compare
with others. Then we extract the spatial pyramid feature based on the extracted
SIFT features with three grids of size 1 x 1, 2 x 2 and 4 x 4. In each spatial
sub-region of the spatial pyramid, the codes are pooled together by max pooling
method to form a pooled feature. These pooled features from each sub-region are
concatenated and normalized by L2 normalization as the final spatial pyramid
features of the images. The dictionary in the experiment is learned by these
spatial pyramid features.

In our method, the weight of the Laplacian term «, the sparsity of the coding
A, and the constraints of the neighborhood in different classes 3 play more impor-
tant roles in dictionary learning. According to our observation, the performance
is good when S is fixed at 0.2 for Scene 15 and UIUC-Sport. For Caltech-101
and Caltech-256, 0.1 is much better for 8. For Scene 15, the value of « is 0.2 and
the value of X is 0.4. For UIUC-Sport, Caltech-101, and Caltech-256, the value
of a is 0.1 and the value of A is 0.3.
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4.2 Scene 15 Dataset

Scene 15 dataset contains 15 categories. Each category contains 200 to 400
images and the total image number is 4485. In order to compare with other work,
we use the same setting to choose the training images. We randomly choose 100
images per category and test on the rest. This process is repeated for ten times
to obtain reliable results.

Table 1 gives the performance comparison of our method and several other
methods on the Scene 15 dataset. We can see that our method can achieve
high performance on scene classification. It outperforms ScSPM by nearly 11 %
by considering the geometrical structure of the feature space based on sparse
representation and outperforms LScSPM by nearly 2% by adding the class
information. Both of them demonstrate the effectiveness of our method. Our
discriminative neighborhood preserving dictionary learning method can not only
make use of the geometrical structure of the feature space to preserve more sim-
ilarity information, but also make the final dictionary more discriminative by
considering the class information which can improve the image classification
performance.

Table 1. Performance comparison on the Scene-15 dataset

Methods Accuracy (%)
KSPM [33] 81.40+0.5
KCSPM ([35] 76.70 4+ 0.40
ScSPM [6] 80.28 £ 0.93
HIK+OCSVM [34] | 84.00 + 0.46
LScSPM [25] 89.75 £ 0.50
LR-SctSPM [7] 90.03 £ 0.70
DSC [9] 84.21 4 0.44
DLMM [10] 83.67 £ 0.49
Our method 91.23 4+ 0.84

4.3 UIUC-Sport Dataset

UIUC-Sport dataset contains 8 categories for image-based event classification
and 1792 images in all. These 8 categories are badminton, bocce, croquet, polo,
rock climbing, rowing, sailing and snow boarding. The size of each category
ranges from 137 to 250. Following the standard setting for this dataset, we
randomly choose 70 images from each class for training and test on the rest
images. We repeat this process for ten times for fair comparison.

Table 2 gives the performance comparison of our method and several other
methods on the UIUC-Sport dataset. We can see that our method outperforms
ScSPM by nearly 5% and outperforms LScSPM by nearly 2 %. This demon-
strates the effectiveness of our proposed method.
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Table 2. Performance comparison on the UIUC-Sport dataset

Methods Accuracy (%)
ScSPM [6] 82.74 + 1.46
HIK+OCSVM [34] | 83.54 +£1.13
LR-Sc™SPM [7] 86.69 £ 1.66

LScSPM [25] 85.31 +0.51
DSC [9] 83.72+1.68
DLMM [10] 86.93 + 0.99
Our method 87.13 £1.02

4.4 Caltech-101 Dataset

The Caltech-101 dataset contains 9144 images in 101 classes with high intra-
class appearance shape variability. The number of images per category varies
from 31 to 800. We follow the common experimental setup and randomly choose
30 images per category for training and the rest for testing. This process is
repeated for ten times.

The average classification rates of our method and several other methods on
Caltech-101 dataset are reported in Table 3. From these results, we see that our
method performs better than most existing methods. As compared to the LLC,
our method makes a 2.4 % improvement. It demonstrates the effectiveness of our
proposed method.

Table 3. Performance comparison on the Caltech-101 dataset

Methods Accuracy (%)
KSPM [33] 64.40 = 0.80
KCSPM [35] | 64.14 £ 1.18
ScSPM [6] 73.20 + 0.54
LLC [36] 73.44
LR-Sc*SPM [7] | 75.68 + 0.89
DSC [9] 71.96 + 0.83
DLMM [10] | 74.87 % 0.67
Our method 75.86 £ 0.78

4.5 Caltech-256 Dataset

Caltech-256 dataset contains 256 categories and a background class in which
none of the image belongs to those 256 categories. The number of images is 29780
with much higher intra-class variability and higher object location variability as
compared to Caltech-101. Therefore Caltech-256 is a very challenging dataset so
far for object recognition and classification. The number of images per category
is no less than 80. We randomly choose 30 images per category for training and
repeat this process for ten times.
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Table 4. Performance comparison on the Caltech-256 dataset

Methods Accuracy (%)
KSPM [33] | 34.10
KCSPM [35] | 27.17 £ 0.46
ScSPM [6] | 34.02+ 0.35
LScSPM [25] | 35.74 £ 0.10
DLMM [10] | 36.22 = 0.33
Our method | 37.81 £0.21

The average classification rates of our method and several other methods on
Caltech-256 dataset are reported in Table4. We can see that our method can
achieve the state-of-the-art performances on this dataset.

5 Conclusion

In this paper, we propose a discriminative neighborhood preserving dictionary
learning method for image classification. We consider the geometrical structure
of the feature space in the process of dictionary learning to preserve the similarity
information of the features. By introducing the class information, the discrimi-
native power of the learned dictionary is enhanced. The learned dictionary can
ensure that the similar features in the same class are encoded as similar codes
and the features in different classes are encoded as dissimilar codes. Experimen-
tal results on four public datasets demonstrate the effectiveness of our method.
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