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Abstract. A novel dimensionality reduction method named spectral angle and
geodesic distance-based locality preserving projection (SAGD-LPP) was pro-
posed in this paper. Considering the physical characters of hyperspectral
imagery, the proposed method primarily select neighbor pixels in the image
based on spectral angle distance. Then, using the geodesic distance matrix
construct a weighted matrix between pixels. Finally, based on this weighted
matrix, the idea of locality preserving projection algorithm is applied to reduce
the dimensions of hyperspectral image data. The use of spectral angle to mea-
sure the distance between pixels can effectively overcome the spectral amplitude
error caused by the uncertainty. At the same time, the use of geodesic distance to
construct weight matrix can better reflect the internal structure of the data
manifold than the use of Euclidean distance. Therefore, the proposed methods
can reserve effectively the original characters of dataset with less loss in the
useful information and less distortion on the data structure. Experimental results
on real hyperspectral data demonstrate that the proposed methods have higher
detection accuracy than the other methods when applied to the target detection
of hyperspectral imagery after dimensionality reduction.
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1 Introduction

Hyperspectral sensors measure the radiance of the materials within each pixel area at a
very large number of contiguous spectral bands and provide image data containing both
spatial and spectral information. The resulting “image cube” is a stack of images in
which each pixel has an associated spectral signature or fingerprint that uniquely
characterizes the underlying objects. And due to its “one map” and high spectral
resolution, hyperspectral remote sensing has opened up new opportunities for ana-
lyzing a variety of land cover materials [1].

Although this spectral feature provides sufficient discriminative information of the
objects, hyperspectral target detection is always a great challenge due to its high
dimensionality. Meanwhile, due to the nonlinear changes of solar radiation and non-
linear propagation of electromagnetic waves in the atmosphere, hyperspectral data
has a typical non-linear characteristic. This further increases the difficulty of the
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hyperspectral data processing. So how to effectively learn and discover nonlinear
structure of hyperspectral data and reasonably reduce the dimensionality of data has
important implications for hyperspectral image processing and application [2].

Manifold learning is a kind of common nonlinear dimensionality reduction algo-
rithm. Among them, the typical manifold learning algorithms are isometric feature
mapping (ISOMAP) [3], locally linear embedding (LLE) [4], Laplacian eigenmaps
(LE) [5], etc. Manifold learning pursuits the goal to embed data that originally lies in a
high dimensional space into a lower dimensional space, while preserving characteristic
properties. Generally, it is difficult to know the geometry of the data manifold. ISO-
MAP is a technique that attempts to preserve pairwise geodesic distances between data
points to keep the geometry of the data. In LLE, the local properties of the data
manifold are constructed by writing the high-dimensional data points as a linear
combination of their nearest neighbors. In the low-dimensional representation of the
data, LLE attempts to retain the reconstruction weights in the linear combinations as
good as possible. Similar to LLE, LE find a low-dimensional data representation by
preserving local properties of the manifold. In LE, the local properties are based on the
pairwise distances between near neighbors. The dimensionality reduction data obtained
from the above manifold learning methods are all able to maintain a good global or
local geometry of the original data.

While, an important requirement for dimensionality reduction techniques is the
ability to embed new high-dimensional data points into an existing low-dimensional
data representation, that is so-called out-of-sample extension. For the above non-
linear dimensionality reduction techniques, they yield mappings that are defined only
on the training data points and it remains unclear how to naturally evaluate the maps
on novel testing points. Therefore, some approximate out-of-sample extensions have
been proposed that is based on computing a linear transformation from a set of
landmark points to the complete dataset, in which neighborhood preserving
embedding (NPE) algorithm is a linear approximation to the LLE [6], and locality
preserving projection (LPP) algorithm is a linear approximation to the LE [7]. At
present, these dimensionality reduction techniques are most conducted in the field of
hyperspectral image classification but few in the field of target detection. So in this
paper, we propose a new linear dimensionality reduction algorithm, called spectral
angle and geodesic distance-based locality preserving projection (SAGD-LPP), so as
to achieve the purpose of dimensionality reduction and improving target detection
performance.

2 LPP Algorithm

LPP is designed for preserving local structure of high-dimensional data. It is likely that
a nearest neighbor search in the low dimensional space will yield similar results to that
in the high dimensional space. As a linear approximation of the LE, LPP suppose there
exist a linear transformation between the high dimensional data point x; and low
dimensional data point y;, i.e. y; = aTx;, where a is a transformation vector. Then the
algorithmic procedure of LPP is formally stated below:
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1. Select neighbor pixels and construct the adjacency graph G: in graph G every data
point x; is connected to its k nearest neighbors.

2. Construct the weight matrix: the weight of the edge in the graph G is computed
using the Gaussian kernel function. If nodes i and j are connected, put

WU :ein’.ixjHUz (1)

and, w; = 0 if there is no such edge.

3. Compute the low-dimensional representations Y: a reasonable criterion for choos-
ing a “good” map Y=[y,,¥;,.-- ¥, iS to minimize the following objective
function

2
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Because y; = a'x;, the objective function can be reduced to
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where X= [X|, X, ..., Xy, and D is a diagonal matrix, d; = ZWU' L =D — Wis the
Laplacian matrix of graph G. And a constraint is imposed asjfollows:
a’XDX"a =1 (4)
Finally, the minimization problem reduces to finding:

argmin a'XLX'a (3)
a"XDX"a=1

It is a generalized eigenvector problem:
XLX"a = AXDX"a (6)

Suppose the eigenvectors ag, ay, .. ., a; are the solutions of Eq. (6), and their cor-
responding eigenvalues Ay <A <...<Ay, Thus, the embedding is

T
y;,=a x;,,a=[ag,...,a, (7)
When the transformation vector a is computed out based on the training data, an

explicit expression of linear maps can be obtained, so the new testing data could be
embedded into the existing low-dimensional data representation.
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3 SAGD-LPP Algorithm

In hyperspectral image, due to the widespread of the uncertainty, the spectral radiant
intensity of the same class feature show large changes. At the same time, the spectral
radiation of the object in shaded areas is greatly different from that of the same object in
non-shaded areas. However, regardless of how changes in the amplitude of the spectral
curve, the spectral shape of the same class feature is substantially similar. According to
this physical characteristic of hyperspectral image, we can know that if we select the
neighbor pixels based on the Euclidean distance, there will be a large errors in con-
structing the adjacency graph G. And this may lead to the physical neighbor pixels in
the hyperspectral image extend away from each other in the low-dimensional data,
reducing the accuracy of target identification.

Therefore, in the first step of our proposed algorithm SAGD-LPP, we select the
neighbor pixels based on the spectral angle distance to construct the adjacency graph G.
Spectral angle distance can overcome errors caused by changes in the spectrum
amplitude, making the physical neighbor pixels similar with each other. The spectral
angular distance between two pixels can be expressed as:

p
Z XikXjk
d(x;,X;) = arccos =l - (8)

)4 % P 2
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where, P is the number of bands.

Moreover, compared to the Euclidean distance, geodesic distance can better reflect
the internal structure of the high dimensional manifold. Therefore, in the second step of
the algorithm, we use the geodesic distance to construct the weight matrix W. And it
can be expressed as:

iy = et (9)

where, dg(X;,X;) is the geodesic distance between pixel x; and X;.
Then, the objective function in the third step of proposed algorithm is translated to

arg min Zi-j Hyi - yjHQVViJ- (10)
ie.
argmin a'XLX"a (11)
aTXDX"a=1

where D is a diagonal matrix, dj; = > Wi L = D — W is the Laplacian matrix.
J
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4 Experimental Validation

In this section, we first use the proposed method to obtain a dimension reduction data
based on the real hyperspectral image data. Then, based on the obtained low-dimensional
data, two detection methods constrained energy minimization (CEM) [8] algorithm and
adaptive coherence estimator (ACE) [9] will be applied to target detection. Finally, the
detection results are used to validate the effectiveness of the proposed method. In this
experiment, the proposed method is compared with three classical dimensionality
reduction methods that are PCA, NPE, LPP. The ROC curve is adopted to quantitatively
measure the effect of target detection [10]. If the target is more similar to the background
and it is hard to be detected, the ROC curve will become straighter, and the area under
the curve (AUC) will be smaller. While, if the target is less similar to the background,
that is, the target is more easily detected, the curve will bend to the left, and the AUC will
be larger.

4.1 Experimental Data

The experimental data is obtained from AVIRIS hyperspectral image of the United
States Santiago North Island Naval airport. The original image size is 400 x 400 with a
total of 224 bands, and its spatial resolution is 3.5 m. Remove the invalid bands and left
189 effective bands. The image data used in this experiment are two interceptions from
the original image; the size of the two images respectively is 100 x 100. Figure 1 shows
a diagram of the experimental data. The image is an airport tarmac. The aircraft is the
goal of detection. Figure 1(a) is the gray image of sub image I on band 10. Figure 1(b)
is the gray image of sub image II on band 10.

(2) (b)

Fig. 1. Experimental image of AVIRIS data (a) Sub image I (b) Sub image II

4.2 Experimental Results

Because of the variation of spectral characteristics between different objects, it is
difficult to know the optimal dimensionality of the data. So we choose the optimal
detection result that can be achieved by each of the algorithm for the comparison.
Figure 2 show the detection results based on sub image I by using CEM detector.
Figure 2(a) shows the detection result based on the original image data and Fig. 2(b)—(e)
respectively show the detection result based on the new obtained low dimensionality
data by using the NPE, PCA, LPP and SAGD-LPP. Similarly, Fig. 3(a)-(e) show
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the corresponding results of sub image I obtained by ACE detector. Figure 4(a)—(b)
show the corresponding ROC comparison figure under the two detection methods.
Table 1 lists the corresponding AUC value of ROC curve and the optimal dimen-
sionality of each method.

It can be found from Figs. 2 and 3, the detection results are unsatisfactory, when
apply the both detection method to the original data and the low dimensionality data
obtained by NPE. And based on the low dimensionality data obtained by PCA and
LPP, all of three planes are detected, but the background information is not suppressed
enough having a high false alarm rate. Based on the data obtained by SAGD-LPP
algorithm not only all of the three planes are detected, but also good background
suppression is get which having a low false alarm rate. It can be seen from Fig. 4 and
Table 1, the SAGD-LPP performs outperforms other three algorithms, followed by LPP
and PCA. The NPE performs poorly.

(@) (b) © ()
. .

Fig. 2. Detection result based on sub image I by using CEM detector (a) Original data (b) NPE
(c) PCA (d) LPP (e) SAGD-LPP

(‘). (b)

Fig. 3. Detection result based on sub image I by using ACE detector (a) Orignal data (b) NPE
(c) PCA (d) LPP (e) SAGD-LPP
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Fig. 4. ROC comparison figure obtained from sub image I (a) CEM detector (b) ACE detector
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Table 1. Target detection results obtained from sub image I via different dimensionality
reduction methods

Dimensionality reduction method | CEM detector ACE detector

AUC | Dimensionality | AUC | Dimensionality
Original image 0.7914 | 198 0.7600 | 198
NPE 0.7666 | 30 0.7366 | 32
PCA 0.8019| 4 0.8903| 2
LPP 09314 8 09100 8
SAGD-LPP 0.9361| 12 09275 12

Figures 5(a)—(e) and 6(a)—(e) respectively show the detection results of sub image II
by using CEM and ACE detector based on the original image data and the new
obtained low dimensionality data by NPE, PCA, LPP and SAGD-LPP. Figure 7(a)—(b)
show the corresponding ROC comparison figure of sub image II. Table 2 lists the AUC
value of ROC curve and the optimal dimensionality of each method corresponding to

Fig. 7.
(C).

(a) (b) (o), (d)
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Fig. 5. Detection result based on sub image II by using CEM detector (a) Orignal data (b) NPE
(c) PCA (d) LPP (e) SAGD-LPP
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Fig. 6. Detection result based on sub image II by using ACE detector (a) Orignal data (b) NPE
(c) PCA (d) LPP (e) SAGD-LPP

As can be seen from Figs. 5 and 6, based on the low dimensionality data obtained
by NPE, no target can be detected. And the detection performance based on the data
transformed by the PAC is worse than that of original data. Compared to the other
algorithms, more planes are detected based on the data transformed by LPP, and the
largest numbers of planes are detected based on the data transformed by SAGD-LPP.
On Sub image I, SAGD-LPP algorithm still leads to the best performance. From Fig. 7
and Table 2, one can observe that, SAGD-LPP show the better detection performance



Dimensionality Reduction for Hyperspectral Image 171

@ ®

o —
]
— 08
2 £ 06 ,{ /A/K
g g
g / g
§ 7 Original data [ % Original data ]
= —s—1pp e ¥ LPP
—©— SAGD-LPP || —9— SAGD-LPP ||
—+— NPE —+— NPE
—4—PCA e PCA
T T
0.2 0.4 0.6 0.8 1 0.4 0.6 0.8 1

False alarm ratio False alarm ratio

Fig. 7. ROC comparison figure obtained from sub image II (a) CEM detector (b) ACE detector

Table 2. Target detection results obtained from sub image II via different dimensionality
reduction methods

Dimensionality reduction method | CEM detector ACE detector

AUC | Dimensionality | AUC | Dimensionality
Original image 0.8115| 198 0.7638 | 198
NPE 0.6813 | 39 0.4973 | 39
PCA 0.7610| 30 0.7255| 33
LPP 09112 13 0.9062 | 11
SAGD-LPP 0.9502| 9 09151 10

than other algorithms in terms of AUC. And the AUC of SAGD-LPP increased by
approximately 3 % compared with the LPP, and increased by approximately 18 %
compared with other algorithm.

5 Conclusion

This paper presents a novel dimensionality reduction algorithm called spectral angle
and geodesic distance-based locality preserving projection (SAGD-LPP). The proposed
algorithm is based on the physical characteristics of hyperspectral data, so the structure
of low-dimensional manifold can be better identified and the redundant information of
hyperspectral data can be effectively removed during the dimensionality reduction. Real
hyperspectral data experimental results show that the proposed SAGD-LPP method
significantly outperformed the other methods dimensionality reduction applying to the
target detection area.
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