Model Checking Parameterized Asynchronous
Shared-Memory Systems

Antoine Durand-Gasselin!, Javier Esparzal,

Pierre Ganty?®™), and Rupak Majumdar?

! TU Munich, Munich, Germany
2 IMDEA Software Institute, Madrid, Spain
pierre.ganty@imdea.org
3 MPI-SWS, Kaiserslautern, Germany

Abstract. We characterize the complexity of liveness verification for
parameterized systems consisting of a leader process and arbitrarily
many anonymous and identical contributor processes. Processes commu-
nicate through a shared, bounded-value register. While each operation
on the register is atomic, there is no synchronization primitive to execute
a sequence of operations atomically.

We analyze the case in which processes are modeled by finite-state
machines or pushdown machines and the property is given by a Biichi
automaton over the alphabet of read and write actions of the leader. We
show that the problem is decidable, and has a surprisingly low complex-
ity: it is NP-complete when all processes are finite-state machines, and is
PSPACE-hard and in NEXPTIME when they are pushdown machines.
This complexity is lower than for the non-parameterized case: liveness
verification of finitely many finite-state machines is PSPACE-complete,
and undecidable for two pushdown machines.

For finite-state machines, our proofs characterize infinite behaviors
using existential abstraction and semilinear constraints. For pushdown
machines, we show how contributor computations of high stack height
can be simulated by computations of many contributors, each with low
stack height. Together, our results characterize the complexity of veri-
fication for parameterized systems under the assumptions of anonymity
and asynchrony.

1 Introduction

We study the verification problem for parameterized asynchronous shared-
memory systems [9,12]. These systems consist of a leader process and arbi-
trarily many identical contributors, processes with no identity, running at
arbitrary relative speeds. The shared-memory consists of a read/write regis-
ter that all processes can access to perform either a read operation or a write
operation. The register is bounded: the set of values that can be stored is finite.
Read/write operations execute atomically but sequences of operations do not:
no process can conduct an atomic sequence of reads and writes while exclud-
ing all other processes. In a previous paper [9], we have studied the complexity

© Springer International Publishing Switzerland 2015
D. Kroening and C.S. P&siareanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 67-84, 2015.
DOI: 10.1007/978-3-319-21690-4_5

68 A. Durand-Gasselin et al.

of safety verification, which asks to check if a safety property holds no matter
how many contributors are present. In a nutshell, we showed that the problem
is coNP-complete when both leader and contributors are finite-state automata
and PSPACE-complete when they are pushdown automata.

In this paper we complete the study of this model by addressing the verifica-
tion of liveness properties specified as w-regular languages (which in particular
encompasses LTL model-checking). Given a property like “every request is even-
tually granted” and a system with a fixed number of processes, one is often
able to guess an upper bound on the maximal number of steps until the request
is granted, and replace the property by the safety property “every request is
granted after at most K steps.” In parameterized systems this bound can depend
on the (unbounded) number of processes, and so reducing liveness to safety, or
to finitary reasoning, is not obvious. Indeed, for many parameterized models,
liveness verification is undecidable even if safety is decidable [8,13].

Our results show that there is no large complexity gap between liveness and
safety verification: liveness verification (existence of an infinite computation vio-
lating a property) is NP-complete in the finite-state case, and PSPACE-hard and
in NEXPTIME in the pushdown case. In contrast, remember that liveness check-
ing is already PSPACE-complete for a finite number of finite-state machines, and
undecidable for a fized number of pushdown systems. Thus, not only is liveness
verification decidable in the parameterized setting but the complexity of the
parameterized problem is lower than in the non-parameterized case, where all
processes are part of the input. We interpret this as follows: in asynchronous
shared-memory systems, the existence of arbitrarily many processes leads to a
“noisy” environment, in which contributors may hinder progress by replying to
past messages from the leader, long after the computation has moved forward
to a new phase. It is known that imperfect communication can reduce the power
of computation and the complexity of verification problems: the best known
example are lossy channel systems, for which many verification problems are
decidable, while they are undecidable for perfect channels (see e.g. [1,3]). Our
results reveal another instance of the same phenomenon.

Technically, our proof methods are very different from those used for safety
verification. Our previous results [9] relied on a fundamental Simulation Lemma,
inspired by Hague’s work [12], stating that the finite behaviors of an arbitrary
number of contributors can be simulated by a finite number of simulators, one
for each possible value of the register. Unfortunately, the Simulation Lemma
does not extend to infinite behaviors, and so we have to develop new ideas. In
the case in which both leader and contributors are finite-state machines, the
NP-completeness result is obtained by means of a combination of an abstraction
that overapproximates the set of possible infinite behaviors, and a semilinear
constraint that allows us to regain precision. The case in which both leader and
contributors are pushdown machines is very involved. In a nutshell, we show
that pushdown runs in which a parameter called the effective stack height grows
too much can be “distributed” into a number of runs with smaller effective
stack height. We then prove that the behaviors of a pushdown machine with

Model Checking Parameterized Asynchronous Shared-Memory Systems 69

a bounded effective stack height can be simulated by an exponentially larger
finite-state machine.

Related Work. Parameterized verification has been studied extensively, both
theoretically and practically. While very simple variants of the problem are
already undecidable [6], many non-trivial parameterized models retain decid-
ability. There is no clear “rule of thumb” that allows one to predict what model
checking problems are decidable, nor their complexities, other than “liveness
is generally harder than safety.” For example, coverability for Petri nets—in
which finite-state, identityless processes communicate via rendezvous or global
shared state— is EXPSPACE-complete, higher than the PSPACE-completeness
of the non-parameterized version, and verification of liveness properties can
be equivalent to Petri net reachability, for which we only know non-primitive
recursive upper bounds, or even undecidable. Safety verification for extensions
to Petri nets with reset or transfer, or broadcast protocols, where arbitrarily
many finite-state processes communicate through broadcast messages, are non-
primitive recursive; liveness verification is undecidable in all cases [2,8,13]. Thus,
our results, which show simultaneously lower complexity than non-parameterized
problems, as well as similar complexity for liveness and safety, are quite
unexpected.

German and Sistla [10] and Aminof et al. [4] have studied a parameterized

model with rendezvous as communication primitive, where processes are finite-
state machines. Model checking the fully symmetrical case—only contributors,
no leaders—runs in polynomial time (other topologies have also been considered
[4]), while the asymmetric case with a leader is EXPSPACE-complete. In this
paper we study the same problems, but for a shared memory communication
primitive.
Population protocols [5] are another well-studied model of identityless asynchro-
nous finite-state systems communicating via rendezvous. The semantics of pop-
ulation protocols is given over fair runs, in which every potential interaction that
is infinitely often enabled is infinitely often taken. With this semantics, popu-
lation protocols compute exactly the semilinear predicates [5]. In this paper we
do not study what our model can compute (in particular, we are agnostic with
respect to which fairness assumptions are reasonable), but what we can compute
or decide about the model.

2 Formal Model: Non-atomic Networks

In this paper, we identify systems with languages. System actions are modeled as
symbols in an alphabet, executions are modeled as infinite words, and the system
itself is modeled as the language of its executions. Composition operations that
combine systems into larger ones are modeled as operations on languages.

2.1 Systems as Languages

An alphabet X' is a finite, non-empty set of symbols. A word over X is a finite
sequence over X' including the empty sequence denoted e, and a language is a

70 A. Durand-Gasselin et al.

set of words. An w-word over X is an infinite sequence of symbols of X, and an
w-language is a set of w-words. We use X* (resp. X“) to denote the language of
all words (resp. w-words) over X. When there is no ambiguity, we use “words”
to refer to words or w-words. We do similarly for languages. Let w be a sequence
over some alphabet, define dom(w) = {1,...,n} if w = ajas...a, is a word; else
(w is an w-word) dom(w) denote the set N\ {0}. Elements of dom(w) are called
positions. The length of a sequence w is defined to be sup dom(w) and is denoted
|w|. We denote by (w); the symbol of w at position ¢ if ¢ € dom(w), € otherwise.
Moreover, let (w); ; with ¢, € N and ¢ < j denote (w);(w)it1...(w);. Also
(w);..00 denotes (w);(w);41 ... For words u,v € (X% U X*), we say u is a prefiz
of v if either u = v or u € X* and there is a w € (¥ U X*) such that v = uw.

Combining Systems: Shuffle. Intuitively, the shuffle of systems L; and Lo is the
system interleaving the executions of L; with those of L. Given two w-languages
Ly C X% and Ly C X¥, their shuffle, denoted by Ly () Lo, is the w-language over
(X1 U Xy) defined as follows. Given two w-words x € XY,y € XY, we say that
z € (X1UX5)¥ is an interleaving of x and y if there exist (possibly empty) words
T1,X2, ..., Tiy ... € X7 and y1,¥2,-.-,Yi,-.. € X5 such that each z1x2---z; is a
prefix of z, and each yyys - - - y; is a prefix of y, and z = x1y1 22y - - - Ty, - - - € X
is an w-word. Then Ly (Ly = U,¢y, yer,® 0 y, where z) y denotes the set
of all interleavings of x and y. For example, if L; = ab® and Lo = ab¥, we get
Ly () Ly = (a + ab*a)b®. Shuffle is associative and commutative, and so we can
write Ly § --- § L, or (7, L;.

Combining Systems: Asynchronous product. The asynchronous product of Ly C
2’ and Lo C X% also interleaves the executions but, this time, the actions in the
common alphabet must now be executed jointly. The w-language of the resulting
system, called the asynchronous product of Ly and Lo, is denoted by Ly || Lo,
and defined as follows. Let Projy,(w) be the word obtained by erasing from w
all occurrences of symbols not in Y. Ly || Ls is the w-language over the alphabet
X = ¥ UXy such that w € Ly || Ly iff Projy, (w) and Projy, (w) are prefixes of
words in Ly and Lo, respectively. We abuse notation and write w; || Lo instead
of {wy} || Le when Ly = {w;}. For example, let X} = {a,c} and Xy = {b, c}.
For L1 = (ac)® and Ly = (bc)* we get Ly || Ly = ((ab + ba)c)¥. Observe that
the language L; || L2 depends on Ly, Lo and also on X; and X5. For example, if
X1 ={a} and Xy = {b}, then {a*} || {0*} = (a + b)¥, but if Xy = {a,b} = Xs,
then {a*} || {v*} = 0. So we should more properly write L; ||, s, Lo. However,
since the alphabets Xy and X5 will be clear from the context, we will omit them.
Like shuffle, asynchronous product is also associative and commutative, and so
we write Ly || -+ || Lp. Notice finally that shuffle and asynchronous product
coincide if X'y N Xy = (), but usually differ otherwise. For instance, if L; = ab®
and Lo = ab¥, we get Ly || La = ab®.

We describe systems as combinations of shuffles and asynchronous products,
for instance we write Ly || (L2 § L3). In these expressions we assume that ()
binds tighter than ||, and so Ly {§ Lo || L3 is the language (Ly § L) || L3, and
not L1 Q (L2 H L3)

Model Checking Parameterized Asynchronous Shared-Memory Systems 71

2.2 Non-atomic Networks

A non-atomic network is an infinite family of systems parameterized by a number
k. The kth element of the family has k£ + 1 components communicating through
a global store by means of read and write actions. The store is modeled as an
atomic register whose set of possible values is finite. One of the k+1 components
is the leader, while the other k are the contributors. All contributors have exactly
the same possible behaviors (they are copies of the same w-language), while
the leader may behave differently. The network is called non-atomic because
components cannot atomically execute sequences of actions, only one single read
or write.

Formally, we fix a finite set G of global values. A read-write alphabet is any
set of the form A x G, where A is a set of read and write (actions). We denote
a symbol (a,g) € A x G by a(g) and define G(aq,...,a,) = {a;(g) | 1 <i <
n, g€ g}

We fix two languages D C X% and C C XY, called the leader and the con-
tributor, with alphabets X'p = G(rq, wq) and X¢ = G(r¢, w.), respectively, where
rq, 7. are called reads and we, wq are called writes. We write w, (respectively,
) to stand for either w, or wy (respectively, r. or r4). We further assume that
Proj ... (g).w, (g3 (P UC) # 0 holds for every g € G, else the value g is never used
and can be removed from G.

Additionally, we fix an w-language S, called the store, over Yp U Y. It
models the sequences of read and write operations supported by an atomic
register: a write w,(g) writes g to the register, while a read r,(g) succeeds
when the register’s current value is ¢. Initially the store is only willing to

execute a write. Formally S is defined as (deg(w(g) (r+(g9))*))” +

(Syeq (w0 (2(9))")" Tyeq (wal9) (r4(9))) and any finite prefix

thereof. Observe that S is completely determined by X'p and Y¢. Figure 1 depicts
a store with {1,2,3} as possible values as the language of a transition system.

ra(l),
—_—> rqa(2) —>

ra(3)

*

rwy(1) re(3)

~—=0

wi (1)

rwy(2) ro(1)

wx(2)
wi (1)
wi(3)

(fr(-(D

wx(3)

b

re(3)

~——0

re(2)

rwe(3)

Fig. 1. Transition systems describing languages D, S, and C. We write rw.(g) = r«(g)U
wi(g) = {re(9),7a(9)} U {we(g), wa(g)}. The transition system for S is in state i €
{1,2,3} when the current value of the store is i.

72 A. Durand-Gasselin et al.

Definition 1. Let D C Y5 and C C X¢ be a leader and a contributor, and let
k > 1. The k-instance of the (D, C)-network is the w-language N*) = (D || S ||
(0x C) where (,C stands for (¥, C. The (D,C)-network N is the w-language
N = Upe, N*®). We omit the prefix (D,C) when it is clear from the context.
It follows easily from the properties of shuffle and asynchronous product that
N=D|S| 0,.C), where (_C is an abbreviation of (J;—, (,C.

Next we introduce a notion of compatibility between a word of the leader and
a multiset of words of the contributor (a multiset because several contributors
may execute the same sequence of actions). Intuitively, compatibility means that
all the words can be interleaved into a legal infinite sequence of reads and writes
supported by an atomic register—that is, an infinite sequence belonging to S.
Formally:

Definition 2. Let u € X%, and let M = {v1,...,vx} be a multiset of words over
X (possibly containing multiple copies of a word). We say that u is compatible
with M iff the w-language (u || S || §¥_, v;) is non-empty. When u and M are
compatible, there exists a word s € S such that (u || s || 0%, v;) # 0. We call s
a witness of compatibility.

Ezample 1. Consider the network with G = {1, 2,3} where the leader, store, and
contributor languages are given by the infinite paths of the transition systems
from Fig.1. The only w-word of D is (rq(1)rq(2)r4(3))* and the w-language of
C is (we(1)re(3)re(l) + we(2)re(1)re(2) + we(3)re(2)re(3))“. For instance, D =
(ra(1)rq(2)rqa(3)) is compatible with the multiset M of 6 w-words obtained by
taking two copies of (w(1)r(3)r(1))%, (w(2)r(1)r(2))¥ and (w(3)r(2)r(3))*. The
reader may be interested in finding another multiset compatible with D and
containing only 4 w-words.

Stuttering Property. Intuitively, the stuttering property states that if we take an
w-word of a network A/ and “stutter” reads and writes of the contributors, going
e.g. from wa(1)re(Dwe(2)rqa(2)... to wa(1)re(1)re()we(2)we(2)we(2)rq(2) .. .,
the result is again an w-word of the network.

Let s € S be a witness of compatibility of u € X% and M = {v1,...,vs}. Pick
a set I of positions (viz. I C dom(s)) such that (s); € X for each i € I, and pick

a number ¢; > 0 for every i € I. Let s’ be the result of simultaneously replacing

each (s); by ()%™ in s. We have that s € S. Now let v, = (s)fl1 . (s)f;2 S

where 41 = min(I), i = min(I \ {i1}), ... It is easy to see that (u || ' || vs §
0k_, v;) # 0, and so u is compatible with M & {v,}, the multiset consisting of
M and v, and s’ is a witness of compatibility.

An easy consequence of the stuttering property is the copycat lemma [9].

Lemma 1. (Copycat Lemma). Letu € X% and let M be a multiset of words
of X¢. If u is compatible with M, then u is also compatible with M & {v} for
every v € M.

Model Checking Parameterized Asynchronous Shared-Memory Systems 73

2.3 The Model-Checking Problem for Linear-Time Properties

We consider the model checking problem for linear-time properties, that asks,
given a network N and an w-regular language L, decide whether A || L is non-
empty. We assume L is given as a Biichi automaton A over X'p. Intuitively,
A is a tester that observes the actions of the leader; we call this the leader model
checking problem.

We study the complexity of leader model checking for networks in which
the read-write w-languages D and C of leader and contributor are generated by
an abstract machine, like a finite-state machine (FSM) or a pushdown machine
(PDM). (We give formal definitions later.) More precisely, given two classes of
machines D, C, we study the model checking problem MC(D, C) defined as follows:

Given: machines D € D and C € C, and a Biichi automaton A
Decide: Is Ny = (L(A) || L(D) || S || §,L(C)) non-empty?

In the next sections we prove that MC(FSM,FSM) and MC(PDM,FSM) are NP-
complete, while MC(PDM,PDM) is in NEXPTIME and PSPACE-hard.

Example 2. Consider the instance of the model checking problem where D and
C are as in Fig.1, and A is a Biichi automaton recognizing all words over X'p
containing infinitely many occurrences of r4(1). Since D is compatible with a

multiset of words of the contributors, A4 is non-empty. In particular, NXL) # 0.

Since X4 = X'p, we can replace A and D by a machine A x D with a Biichi
acceptance condition. The construction of A x D given A and D is standard. In
what follows, we assume that D comes with a Biichi acceptance condition and
forget about A.

There are two natural variants of the model checking problem, where X4 =
X, i.e., the alphabet of A contains the actions of all contributors, or Xy =
Yp U Y. In both these variants, the automaton A can be used to simulate
atomic networks. Indeed, if the language of A consists of all sequences of the form
(wa()reOQwe()rq())*, and we design the contributors so that they alternate reads
and writes, then the accepting executions are those in which the contributors
read a value from the store and write a new value in an atomic step. So the
complexity of the model-checking problem coincides with the complexity for
atomic networks (undecidable for PDMs and EXPSPACE-complete for FSMs),
and we do not study it further.

3 MC(FSM,FSM) is NP-Complete

We fix some notations. A finite-state machine (FSM) (Q,d, qo) over X' consists
of a finite set of states @ containing an initial state gy and a transition relation
0 CQXxXYXxQ. Awordv e X¥is accepted by an FSM if there exists a sequence
q1q2 - - - of states such that (g, (v)it1,¢i+1) € 6 for all i > 0. We denote by

qo AL q LCER the run accepting v. A Biichi automaton (Q,d,qo, F) is

74 A. Durand-Gasselin et al.

an FSM (Q, 6, qo) together with a set FF C @Q of accepting states. An w-word

v € X% is accepted by a Biichi automaton if there is a run gq LCEN Q LCEN

such that ¢; € F' for infinitely many positions j. The w-language of a FSM or
Biichi automaton A, denoted by L(A), is the set of w-words accepted by A.

In the rest of the section we show that MC(FSM,FSM) is NP-complete.
Section 3.1 defines the infinite transition system associated to a (FSM,FSM)-
network. Section 3.2 introduces an associated finite abstract transition system.
Section 3.3 states and proves a lemma (Lemma 3) characterizing the cycles of the
abstract transition system that, loosely speaking, can be concretized into infinite
executions of the concrete transition system. Membership in NP is then proved
using the lemma. NP-hardness follows from NP-hardness of reachability [9].

3.1 (FSM,FSM)-Networks: Populations and Transition System

We fix a Biichi automaton D = (Qp,dp,qop, F) over Xp and an FSM C =
(Qc,dc, qoc) over Xe. A configuration is a tuple (¢p,g,p), where gp € Qp,
g € GU{#}, and p: Q¢ — N assigns to each state of C' a natural number.
Intuitively, qp is the current state of D; g is a value or the special value #,
modelling that the store has not been initialized yet, and no process read before
some process writes; finally, p(q) is the number of contributors currently at state
q € Qc. We call p a population of Q¢, and write |p| = quQc p(q) for the size of
p. Linear combinations of populations are defined componentwise: for every state
q € Qc, we have (k1p1 + kap2)(q) :== ki1p1(q)+k‘2p2(). Further, given ¢ € Qc¢,
we denote by g the population g(¢’) =1 if ¢ = ¢’ and q(¢’) = 0 otherwise, i.e.,
the population with one contributor in state ¢ and no contributors elsewhere.
A configuration is accepting if the state of D is accepting, that is whenever gp €
F'. Given a set of populations P, we define (¢p, g, P) := {(¢p,9,p) | p € P}.

The labelled transition system T'S = (X, T, Xo) associated to N4 is defined
as follows:

— X is the set of all configurations, and Xy C X is the set of initial configura-
tiOIlS, given by (quv#vpo)a where PO = {quC | k> 1}7
- T =TpUT¢c, where

e T is the set of triples ((gp,9,p), t, (¢p,9",D)) such that ¢ is a transition
of D, viz. t € ¢p, and one of the following conditions holds: (i) ¢ =
(a0, walg'),qp); or (i)t = (qD,m(g) qD) g9=49.

e T¢ is the set of triples ((qD,g,p) (¢p, 9, p')) such that ¢t € d¢, and
one of the following conditions holds (iii) t = (gc,wel(d'),q90), P > gc.
and p' = p — gc + gg; or (iv) t = (qc,7e(9):9¢), P > gc, g = ¢', and
p'=p—4qc+aqc.

Observe that |p| = [p’|, because the total number of contributors of a pop-
ulation remains constant. Given configurations ¢ and ¢’, we write ebel if
(¢ t,c) eT.

We introduce a notation important for Lemma 3 below. We define A(t) := p’ —p.
Observe that A(t) = 0 in cases (i) and (ii) above, and A(t) = —g¢ + g¢’ in
cases (iii) and (iv). So A(t) depends only on the transition ¢, but not on p.

Model Checking Parameterized Asynchronous Shared-Memory Systems 75

3.2 The Abstract Transition System

We introduce an abstraction function o that assigns to a set P of populations the
set of states of Q¢ populated by P. We also introduce a concretization function
v that assigns to a set @@ C Q¢ the set of all populations p that only populate
states of (). Formally:

a(P) ={q € Qc|plg) 21 for some p € P}
Q) ={p | p(q) =0 for every ¢ € Qc \ Q} .

It is easy to see that « and ~ satisfy y(a(P)) 2 P and «o(y(Q)) = @, and
so a and v form a Galois connection (actually, a Galois insertion). An abstract

configuration is a tuple (¢p, g, @), where gp € Qp, g € GU {#}, and Q C Qc¢.
We extend « and ~ to (abstract) configurations in the obvious way. An abstract
configuration is accepting when the state of D is accepting, that is whenever
qp € F.

Given TS = (X, T, Xy), we define its abstraction aTS = (aX,aT,aXy) as
follows:

— aX = Qp x (GU{#}) x 29¢ is the set of all abstract configurations.
— aXo = (qop, #,a(Po)) = (gop, #, {qoc}) is the initial configuration.
- ((gp,9,Q), t, (¢p,q,Q")) € aT iff there is p € ¥(Q) and p’ such that
t t
(¢p,9.p) — (dp,g",p') and Q" = o({p’ | Ip € +(Q): (ap.9,p) —
(ap. 9" P)})-
Observe that the number of abstract configurations is bounded by K = |Qp]| -
|G| +1-2lQ¢l. Let us point out that our abstract transition system resembles but

is different from that of Pnueli et al. [14]. We write a —4 d’ if (a,t,a’) € oT.
The abstraction satisfies the following properties:

(A) For each w-path ¢ Boe By of TS , there exists an w-path ag t—1>a
ta

a1 —q ag -+ in TS such that ¢; € y(a;) for all ¢ > 0.
(B) If (40,9, Q) a (4,9, Q'), then Q € Q.
To prove this claim, consider two cases:
e ¢t € 6p. Then (¢p,9,p) 5N (¢p, 4, p) for every population p (because
only the leader moves). So (¢p, g, Q) 4, (dp, 4, Q).
e t € éc. Consider the populationp =23 o g € ¥(Q). Then (¢p, g, p) LN
(ap,9',p'), where p" = p — qc + q¢’. But then p’ > 37 g, and so

a({p'}) 2 Q, which implies (¢p, g, Q) —a (¢p, ¢, Q") for some Q' 2 Q.

So in every w-path ag B ar B age - of aTS, where a; = (qpi, gi, Qi), there
is an index 7 at which the Q; stabilize, that is, Q; = Q; 1, holds for every k > 0.

However, the converse of (A) does not hold: given a path ag t—1>a ai t—2>a as - - -

of aTS, there may be no path co - ¢; 2 co--- in TS such that ¢; € ~(a;)
for every ¢ > 0. Consider a contributor machine C' with two states qg,q; and

76 A. Durand-Gasselin et al.

one single transition ¢ = (go,wc(1),q1). Then aTS contains the infinite path
(omitting the state of the leader, which plays no role):

#,{a0}) “a (1 {a0. a1}) “a (1 {g0,01}) o (1, {g0,@1}) -

However, the transitions of T'S are of the form (1, kogo+k1491) 4 (1, (ko—1)go+
(k14+1)q1), and so TS has no infinite paths.

3.3 Realizable Cycles of the Abstract Transition System

We show that the existence of an infinite accepting path in T'S reduces to the
existence of a certain lasso path in «T'S. A lasso path consists of a stem and
a cycle. Lemma 2 shows how every abstract finite path (like the stem) has a
counterpart in 7'S. Lemma 3 characterizes precisely those cycles in aT'S which
have an infinite path counterpart in TS.

Lemma 2. Let (qp,g,Q) be an abstract configuration of TS reachable from

(qop, #,a(Po)) (= aXy). For every p € v(Q), there exists p such that (¢p, g,)
is reachable from (qop,#, Po) and p > p.

Lemma 2 does not hold for atomic networks. Indeed, consider a contributor with

transitions g we(l) q re(l)iwe(2) g2 re(@:we(3) qs, where r.(4) : w.(j) denotes

that the read and the write happen in one single atomic step. Then we have
(omitting the state of the leader, which does not play any role here):

we (1) re(1):iwe(2)

(#:{20}) —a (1,{90,91})

re(2):we(3)
—_—

o (2,{00,q1,42}) (3,{q0,---,4q3}) -

Let p be the population putting one contributor in each of g, . .., g3. This pop-
ulation belongs to v({qo,...,q3}) but no configuration (3,p) with p > p is
reachable from any population that only puts contributors in gg, no matter how
many. Indeed, after the first contributor moves to gz, no further contributor can
follow, and so we cannot have contributors simultaneously in both g2 and ¢s. On
the contrary, in non-atomic networks the Copycat Lemma states that what the
move by one contributor can always be replicated by arbitrarily many.

We proceed to characterized the cycles of the abstract transition system that

. . t t tn—1
can be “concretized”. A cycle of aTS is a path ag —>q 41 —>q A2+ ——¢4 Gp

’ ’

t
such that a, = ag. A cycle is realizable if there is an infinite path ¢y — ¢; —

cz--- of TS such that cx € Y(a(k mod n)) and ., = k41 mod n) for every
k>0.
Lemma 3. A cycle ag t—1>a a1 t—2>a Qg+ t—”>a an of aTS is realizable iff

Z:‘L:1 A(ti) =0
Theorem 1. MC(FSM,FSM) is NP-complete.

Proof. NP-hardness follows from the NP-hardness of reachability [9]. We show
membership in NP with the following high-level nondeterministic algorithm
whose correctness relies on Lemmas 2 and 3:

Model Checking Parameterized Asynchronous Shared-Memory Systems 7

1. Guess a sequence @1, ..., Qy of subsets of Q¢ such that @; C Q;41 for all 4,
0 < ¢ < £. Note that ¢ < |Q¢].

2. Compute the set Q@ = Qp x (G U {#}) x {{qoc},Q1,-..,Qe} of abstract
configurations and the set 7 of abstract transitions between configurations
of Q.

3. Guess an accepting abstract configuration a € Q, that is, an a = (¢p, g, Q)
such that ¢p is accepting in D.

4. Check that a is reachable from the initial abstract configuration
(gops #, {q0c}) by means of abstract transitions of 7.

5. Check that the transition system with Q and 7 as states and transitions
contains a cycle ag t—1>a ai - Qp—1 t—>a an such that n > 1, ag = a,, = a
and Y1~ A(t;) = 0.

We show that the algorithm runs in polynomial time. First, because the sequence
guessed is no longer than |@Q¢|, the guess can be done in polynomial time. Next,
we give a polynomial algorithm for step (5):

~ Compute an FSA' A9 over the alphabet dp U 6 with Q as set of states, 7
as set of transitions, a as initial state, and {a} as set of final states.

— Use the polynomial construction of Seidl et al. [15] to compute an (existential)
Presburger formula 2 for the Parikh image of L(A®). The free variables of {2
are in one-to-one correspondence with the transitions of ép U d¢o. Denote by
x; the variable corresponding to transition t € dp U d¢.

— Compute the formula

QI =0 A /\qcch (Ztgt(t):qc Ty = Zsm(t):qc xt) A ZteJDU(;C Ty > 0

where tgt and src returns the target and source states of the transition passed
in argument. 2’ adds to 2 the realizability condition of Lemma 3.

— Check satisfiability of {2’. This step requires nondterministic polynomial time
because satisfiability of an existential Presburger formula is in NP [11]. O

4 MC(PDM,FSM) is NP-Complete

A pushdown system (PDM) P = (Q, T4, qo) over X consists of a finite set Q
of states including the initial state qg, a stack alphabet I' including the bottom
stack symbol L, and a set of rules § C Q x X x I' x Q@ x (I'\{L} U {pop}) which
either push or pop as explained below. A PDM-configuration qw consists of a
state ¢ € @ and a word w € I'* (denoting the stack content). For ¢,q" € @,
a€ X v,y €l ww €TI* wesay a PDM-configuration ¢'w (resp. ¢'v'yw) a-
follows gyw if (¢,a,v,q’, pop) € 6, (vesp. (¢,a,v,q,7') € §); we write qu — ¢'w’
(v)1 (v)2

if ¢'w’ a-follows quw, and call it a transition. A run ¢ —— ¢; —— ... on a
word v € X¥ is a sequence of PDM-configurations such that ¢y = ¢oL and

! A finite-state automaton (FSA) is an FSM which decides languages of finite words.
Therefore an FSA is an FSM with a set F' of accepting states.

78 A. Durand-Gasselin et al.

c (v)—“> ciy1 for all ¢ > 0. We write ¢ 25 ¢ if there is a Tun from ¢ to ¢’. The

language L(P) of P is the set of all words v € X* such that P has a run on v.

A Biichi PDM is a PDM with a set F' C @ of accepting states. A word is
accepted by a Biichi PDM if there is a run on the word for which some state
in F' occurs infinitely often along the PDM-configurations. The following lemma
characterizes accepting runs.

Lemma 4. [7] Let ¢ be a configuration. There is an accepting run starting from
c if there are states ¢ € Q, qf € F, a stack symbol v € I'" such that c 5 gyw for
some w € I'* and qy = qru = gyw' for some u,w' € I'*.

We now show MC(PDM, FSM) is decidable, generalizing the proof from Sect. 3.
Fix a Biichi PDM P = (Qp,Ip,0p,qp,F), and a FSM C = (Qc¢, ¢, qoc)-
A configuration is a tuple (¢p,w,g,p), where gp € Qp, w € I}, is the stack
content, ¢ € G U {#}, and p is a population. Intuitively, gpw is the PDM-
configuration of the leader. We extend the definitions from Sect. 3 like accepting
configuration in the obvious way.

We define a labeled transition system TS = (X, T, Xy), where X is the set
of configurations including the set Xog = (qop, L, #, Po) of initial configurations,
and the transition relation T'=Tp UT¢, where T¢ is as before and T'p is the set
of triples ((¢p,w,9,p).t, (¢, w’,g’,p)) such that ¢ is a transition (not a rule)

of D, and one of the following conditions holds: (i) t = (gpw walg)

(i) t = (gpw 7a9), ¢pw’) and g = ¢’. We define the abstraction a TS of T'S as
the obvious generalization of the abstraction in Sect. 3. An accepting path of the
(abstract) transition system is an infinite path with infinitely many accepting
(abstract) configurations. As for MC(FSM, FSM), not every accepting path of the
abstract admits a concretization, but we find a realizability condition in terms
of linear constraints. Here we use again the polynomial construction of Seidl et
al. [15] mentioned in the proof of Theorem 1, this time to compute an (existential)
Presburger formula for the Parikh image of a pushdown automaton.

qgpw'); or

Theorem 2. MC(PDM,FSM) is NP-complete.

5 MC(PDM,PDM) is in NEXPTIME

We show how to reduce MC(PDM,PDM) to MC(PDM,FSM). We first introduce the
notion of effective stack height of a PDM-configuration in a run of a PDM, and
define, given a PDM C, an FSM) that simulates all the runs of C of effective
stack height k. Then we show that, for & € O(n?), where n is the size of C, the
language (L(D) || S || (o L(C)) is empty iff (L(D) || S || (oo L(Ck)) is empty.

5.1 A FSM for Runs of Bounded Effective Stack Height

Consider a run of a PDM that repeatedly pushes symbol on the stack. The stack
height of the configurations? is unbounded, but, intuitively, the PDM only uses

2 For readability, we write “configuration” for “PDM-configuration.”.

Model Checking Parameterized Asynchronous Shared-Memory Systems 79

the topmost stack symbol during the run. To account for this we define the
notion of effective stack height.

Definition 3. Let p = ¢ L, c % .-+ be an infinite run of a PDM on
w-word v, where ¢; = q;w;. The dark suffiz of ¢; in p, denoted by ds(w;), is the
longest suffix of w; that is also a proper suffix of w;, for every k > 0. The active
prefiz ap(w;) of w; is the prefix satisfying w; = ap(w;)-ds(w;). The effective stack
height of ¢; in p is |ap(w;)|. We say that p is effectively k-bounded (or simply
k-bounded for the sake of readability) if every configuration of p has an effective
stack height of at most k. Further, we say that p is bounded if it is k-bounded for
some k € N. Finally, an w-word of the PDM is k-bounded, respectively bounded,
if it is the word generated by some k-bounded, respectively bounded, run (other
runs for the same word may not be bounded).

Intuitively, the effective stack height measures the actual memory required
by the PDM to perform its run. For example, repeatedly pushing symbols on the
stack produces a run with effective stack height 1. Given a position in the run, the
elements of the stack that are never popped are those in the longest common
suffix of all subsequent stacks. The first element of that suffix may be read,
therefore only the longest proper suffix is effectively useless, so no configuration
along an infinite run has effective stack height 0.

Proposition 1. FEvery infinite run of a PDM contains infinitely many positions
at which the effective stack height is 1.

Proof. Let powo — p1wy — paws — - -+ be any infinite run. Notice that |w;| > 1
for every ¢ > 0, because otherwise the run would not be infinite. Let X be the set
of positions of the run defined as: i € X iff |w;| < |w,| for every j > i. Observe
that X is infinite, because the first configuration of minimal stack height, say
prwy belongs to it, and so does the first configuration of minimal stack height
of the suffix pgyiwr+1 — -+ -, etc. By construction, the configuration at every
position in X has effective stack height 1. ad

In a k-bounded run, whenever the stack height exceeds k, the k& + 1-th stack
symbol will never become the top symbol again, and so it becomes useless.
So, we can construct a finite-state machine Py recognizing the words of L(P)
accepted by k-bounded runs.

Definition 4. Given a PDM P = (Q,I,0,qo), the FSM P, = (Qk, dk, gok),
called the k-restriction of Ps, is defined as follows: (a) Qr = Q X Ule I

(a state of Py consists of a state of P and a stack content no longer than k);
(b) qor = (qo,L); (c) & contains a transition (g, (w)i.x) — (¢, (w')1. %) iff
qw % ¢'w' is a transition (not a rule) of P.

Theorem 3. Given a PDM P, w admits a k-bounded run in P iff w € L(Py).

80 A. Durand-Gasselin et al.

5.2 The Reduction Theorem

We fix a Biichi PDM D and a PDM C. By Theorem 3, in order to reduce
MC(PDM,PDM) to MC(PDM,FSM) it suffices to prove the following Reduction Theorem:

Theorem 4. (Reduction Theorem). Let N = 2|Qc¢|?|I'c| + 1, where Q¢
and I'c are the states and stack alphabet of C, respectively. Let Cn be the N-
restriction of C'. We have:

(LD) I S oo L(C)) # 0 iff (L(D) | S | 0o L(Cn)) # 0 - ()
There are PDMs D, C for which (1) holds only for N € 2(|Qc|*|Tc]).

Theorems 4 and 2 provide an upper bound for MC(PDM,PDM). PSPACE-
hardness of the reachability problem [9] gives a lower bound.

Theorem 5. MC(PDM,PDM) is in NEXPTIME and PSPACE-hard. If the contrib-
utor is a one counter machine (with zero-test), it is NP-complete.

The proof of Theorem 4 is very involved. Given a run of D compatible with
a finite multiset of runs of C, we construct another run of D compatible with a
finite multiset of N-bounded runs of Cy. (Here we extend compatibility to runs:
runs are compatible if the words they accept are compatible.)

The proof starts with the Distributing lemma, which, loosely speaking, shows
how to replace a run of C' by a multiset of “smaller” runs of C' without the
leader “noticing”. After this preliminary result, the first key proof element is
the Boundedness Lemma. Let o be an infinite run of D compatible with a finite
multiset R of runs of C'. The Boundedness Lemma states that, for any number
Z, the first Z steps of o are compatible with a (possibly larger) multiset Ry of
runs of C. Since the size of Rz may grow with Z, this lemma does not yet
prove Theorem 4: it only shows that ¢ is compatible with an infinite multiset
of runs of Cp. This obstacle is overcome in the final step of the proof. We show
that, for a sufficiently large Z, there are indices i < j such that, not o itself,
but the run (0)1__1-((0)”1“]-)“) for adequate ¢ and j is compatible with a finite
multiset of runs of C. Loosely speaking, this requires to prove not only that the
leader can repeat (¢);11.; infinitely often, but also that the runs executed by
the instances of C'y while the leader executes (0);41..; can be repeated infinitely
often.

The Distributing Lemma. Let p = co 5 ¢1 2 ¢ =% .-+ be a (finite or infinite)
run of C. Let r; be the PDM-rule of C' generating the transition ¢;_; — ¢;. Then
p is completely determined by ¢y and the sequence r17r373 . .. Since ¢q is also fixed
(for fixed C), in the rest of the paper we also sometimes write p = rirors...
This notation allows us to speak of dom(p), (p)x, (p)i..; and (p)i..co-

We say that p distributes to a multiset R of runs of C if there exists an
embedding function 1) that assigns to each run p’ € R and to each position
1 € dom(p’) a position ¥(p’,4) € dom(p), and satisfies the following properties:

Model Checking Parameterized Asynchronous Shared-Memory Systems 81

~ (p)i = (P)y(p,i)- (A rule occurrence in p’ is matched to another occurrence
of the same rule in p.)

— 1) is surjective. (For every position k € dom(p) there is at least one p' € R
and a position i € dom(p’) such that ¥ (p’,i) = k, or, informally, R “covers”
p-)

— If i < g, then ¥ (p', 1) < ¥(p', 7). (Sow(p', 1)1p(p’,2) - is a scattered subword
of p.)

Example 3. Let p be a run of a PDM P. Below are two distributions R and S
of p = rerpryrerere. On the left we have R = {p}, ph, p5}, and its embedding
function ; on the right S = {¢}, 0%, 0%}, and its function ¢.

123456 123456
P=TagTobThbTcTeTe P=TagTobThTecTeTe
pL="ra Te ol =1, Te
Py ="TaTo Te Oy =Ta Ty TeTe

P3 =Ta Th Tc 03 =Tq b TeTe

Lemma 5. (Distributing Lemma). Let u € L(D), and let M be a multiset
of words of L(C) compatible with u. Let v € M and let p an accepting run of v
in C' that distributes to a multiset R of runs of C, and let M the corresponding
multiset of words. Then M & {v} ® Mg 1is also compatible with w.

The Boundedness Lemma. We are interested in distributing a multiset of runs of
C' into another multiset with, loosely speaking, “better” effective stack height.

Fix a run p of C and a distribution R of p with embedding function . In
Example 3, (p)1..4 is distributed into (p})1.1, (ph)1.2 and (p4)1..3. Assume p
is executed by one contributor. We can replace it by 3 contributors executing
P, Py P, without the rest of the network noticing any difference. Indeed, the
three processes can execute r, immediately after each other, which for the rest
of the network is equivalent to the old contributor executing one r,. Then we
replace the execution of (p)2.4 by (p5)2(p5)2..3-

We introduce some definitions allowing us to formally describe such facts.
Given k € dom(p), we denote by c(p, k) the configuration reached by p after k
steps. We naturally extend this notation to define ¢(p,0) as the initial config-
uration. We denote by lasty(p’, i) the largest position k& € dom(p’) such that
Y(p', k) < (similarly if none exists, we fix lasty(p', i) = 0). Further, we denote
by ¢y (p’, k) the configuration reached by p’ after k steps of p, that is, the con-
figuration reached by p’ after the execution of lasty (p’, k) transitions; formally,
Cw(plv k) = C(plv lasty, (p/a k)).

Ezxample 4. Let p, R, and ¥ as in Example 3. Assuming that the PDM P has
one single state p, stack symbols { L, a} such that the three rules r,,r, and r.
are given by r,: pL — pal, ry: pa — paa, and r.: pa — p, then we have
c(p,5) = paL. Further, lasty(p},5) = 1, lasty(p5,5) = 3, and lasty(p5,5) = 3.
Finally, ¢y (p],5) = pal, cy(ph,5) = pal, and cy(ps,5) = pal.

Given Z € dom(p) and K € N, we say that a distribution R of p is (Z, K)-
bounded if for every p’ € R and for every ¢ < Z, the effective stack height of

82 A. Durand-Gasselin et al.

cy(p',1) is bounded by K. Further, we say that R is synchronized if for every
configuration c(p, i) with effective stack height 1 and for every p’ € R, ¢y (p’, i) =
¢(p, i) (same control state and same stack content), and also has effective stack
height 1.2 The Boundedness Lemma states that there is a constant N, depending
only on C, such that for every run p of C' and for every Z € dom(p) there is a
(Z, N)-bounded and synchronized distribution Rz of p. The key of the proof is
the following lemma.

Lemma 6. Let N = 2|Qc|?|I'c| + 1. Let p be a run of C and Z € dom(p)
be the first position of p such that c¢(p, Z) is not N-bounded. Then there is a
(Z, N)-bounded and synchronized distribution of p.

Proof sketch. We construct a (Z, N)-bounded and synchronized distribution
{pa,pp} of p. Let aN+1aN -aqwg be the stack content of ¢(p, Z). Define
{7,921, 7 P2, Doy, pN, pN} C dom(p) such that for each i, 1 < ¢ < N
we have c(p, p’;) and c(p, p ;) are the configurations immediately after the sym-
bol «; in ¢(p, Z) is pushed, respectively popped and such that the stack con-
tent of each configuration between 7’; (included) and p; (excluded) equals
Wy 01 - - - cqwy for some w, € I'5. We get c(p, D) = a1 ... agwp and
c(p, Pi) = qlai1 ... apwy for some g;, ¢, € Q. Observe that the following holds:
P1< - <PNa<PN<Z<DPN<DPN-1<- <DL

Since N = 2|Qc¢|?|Ic| + 1, by the pigeonhole principle we find ¢, , ¢’ and
three indices 1 < j1 < j» < j3 < N such that by letting w; = oy, 1+,
Wy = Qj,—1 - and w3 = a1 - - @y, We have:

p =P 5, laow] (D)5, . 7;, lgow2wn] (05, 7, [gawswaw]

’ ’ ’
(P71 55, @ wsw2wr] (P 5y, [wewn] (D)5, o5 (w0l ()5, e -

Here, the notation indicates that we reach configuration [gaw;] after (p)
the configuration [gawsw;] after (pl__?jz, etc.

Now define p, from p by simultaneously deleting (p)?h 1.7y, and
(p)s T ipsr. 55, - We similarly define py, by deleting (P)?j2+1..?,~3 and (p)?,g“-?h'
The followmg shows that p, defines a legal run since it is given by

1--?;'1’

L7 11 (0% 1407, s1l(P) 5 1y 415, [0 wsw1] (05,4, 5, [0
Oh.5,, low] D)z, 0.5, laowsole)p, 5, e)5, .5, [dw]

(P, 4100

A similar reasoning holds for py. Finally, one can show that {p., pp} is a (Z, N)-
bounded and synchronized distribution of p.

Lemma 7. (Boundedness Lemma). Let N = 2|Qc|?|Ic|+ 1, and let p be
a run of C. For every Z € dom(p) there is an (Z, N)-bounded and synchronized
distribution Rz of p.

3 Notice that the effective stack height of a configuration depends on the run it belongs
to, and so ¢(p,i) = cy(p’,i) does not necessarily imply that they have the same
effective stack height.

Model Checking Parameterized Asynchronous Shared-Memory Systems 83

The proof is by induction on Z. The distribution ¢ z41, Rz41 is obtained
from ¢z, Rz by distributing each run p’ of Rz to a (¥z(p', Z) + 1, N)-bounded
run (applying Lemma 6).

Proof Sketch of Theorem 4. Given a run o of D compatible with a finite multiset
M of runs of C, we construct another run 7 of D, and a multiset R of N-
bounded runs of C'y such that 7 and R are compatible as well. We consider only
the special case in which M has one single element p (and one single copy of
it). Since o is compatible with p, we fix a witness 7 € S such that # € o () p.
We construct a “lasso run” out of 7 of the form Aj[Ag]“. It suffices to find two
positions in m where the content of the store is the same, the corresponding
configurations of the leader are the same, and similarly for each contributor; the
fragment between these two positions can be repeated (is “pumpable”).

Given a position ¢ of 7, let i, and i, denote the corresponding positions in
p and o.* Further, for every Z let Rz be a (Z, N)-bounded and synchronized
distribution of p with embedding function ¢ (which exists by the Boundedness
Lemma). Let Rz (i,) = {cy(n,i,) | 1 € Rz} denote the multiset of configurations
reached by the runs of Ry after ¢ steps of . Using Proposition 1 and that (i)the
store has a finite number of values, (ii) Rz is (Z, N)-bounded, and (iii)there
are only finitely many active prefixes of length at most N, we can apply the
pigeonhole principle to find a sufficiently large number Z and three positions
1 < j < k < Z in 7 satisfying the following properties:

(1) The contents of the store at positions i and k of 7 coincide.

(2) The configurations c¢(o,i,) and c(o,k,) of the leader have effective stack
height 1, same topmost stack symbol and same control state. Further, o
enters and leaves some accepting state between i, and k.

(3) The configuration c(p, j,) has effective stack height 1.

(4) For every configuration of Rz (i,) there is a configuration of Rz (k,) with the
same control state and active prefix, and vice versa.

Condition (4) means that, after removing the dark suffixes, Rz(i,) and Rz(k,)
contain the same pruned configurations, although possibly a different number of
times (same set, different multisets). If we obtain the same multiset, then the
fragment of m between positions ¢ and k is pumpable by (1) and (2), and we are
done. Otherwise, we use (3) and the fact that Rz is synchronized (which had not
been used so far) to obtain a new distribution in which the multisets coincide.
This is achieved by adding new runs to Rz.

References

1. Abdulla, P.A., Bertrand, N., Rabinovich, A., Schnoebelen, P.: Verification of prob-
abilistic systems with faulty communication. Inf. Comput. 202(2), 105-228 (2005)

2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: LICS’1996. pp. 313-321. IEEE Computer Society
(1996)

Position p in 7 defines position p, in o such that (0)1.,, = Projs ((m)1.p),
similarly p, is defined as satisfying (p)1..p, = Proj s, ((7)1..p)-

84

10.

11.

12.

13.

14.

15.

A. Durand-Gasselin et al.

Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91-101 (1996)

Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model
checking of rendezvous systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014.
LNCS, vol. 8704, pp. 109-124. Springer, Heidelberg (2014)

. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of

population protocols. Distrib. Comput. 20(4), 279-304 (2007)

Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307-309 (1986)

Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: CONCUR’1997: Proceedings of 8th Interna-
tional Conference on Concurrency Theory. LNCS, vol. 1243, pp. 135-150. Springer
(1997)

Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS’1999. pp. 352-359. IEEE Computer Society (1999)

Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous
shared-memory systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 124-140. Springer, Heidelberg (2013)

German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675-735 (1992)

Grédel, E.: Subclasses of presburger arithmetic and the polynomial-time hierarchy.
Theor. Comput. Sci. 56, 289-301 (1988)

Hague, M.: Parameterised pushdown systems with non-atomic writes. In: Proceed-
ings of FSTTCS’2011. LIPIcs, vol. 13, pp. 457—468. Schloss Dagstuhl (2011)
Meyer, R.: On boundedness in depth in the pi-calculus. In: Procedings of IFIP
TCS 2008. IFIP, vol. 273, pp. 477-489. Springer (2008)

Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0,1, co)-counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107-122.
Springer, Heidelberg (2002)

Verma, K.N.; Seidl, H., Schwentick, T.: On the complexity of equational horn
clauses. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 337—
352. Springer, Heidelberg (2005)

	Model Checking Parameterized Asynchronous Shared-Memory Systems
	1 Introduction
	2 Formal Model: Non-atomic Networks
	2.1 Systems as Languages
	2.2 Non-atomic Networks
	2.3 The Model-Checking Problem for Linear-Time Properties

	3 MC(FSM,FSM) is NP-Complete
	3.1 (FSM,FSM)-Networks: Populations and Transition System
	3.2 The Abstract Transition System
	3.3 Realizable Cycles of the Abstract Transition System

	4 MC(PDM,FSM) is NP-Complete
	5 MC(PDM,PDM) is in NEXPTIME
	5.1 A FSM for Runs of Bounded Effective Stack Height
	5.2 The Reduction Theorem

	References

