
Empirical Software Metrics for Benchmarking
of Verification Tools

Yulia Demyanova, Thomas Pani(B), Helmut Veith, and Florian Zuleger

Vienna University of Technology, Vienna, Austria
thomas.pani@tuwien.ac.at

Abstract. In this paper we study empirical metrics for software source
code, which can predict the performance of verification tools on spe-
cific types of software. Our metrics comprise variable usage patterns,
loop patterns, as well as indicators of control-flow complexity and are
extracted by simple data-flow analyses. We demonstrate that our met-
rics are powerful enough to devise a machine-learning based portfolio
solver for software verification. We show that this portfolio solver would
be the (hypothetical) overall winner of both the 2014 and 2015 Inter-
national Competition on Software Verification (SV-COMP). This gives
strong empirical evidence for the predictive power of our metrics and
demonstrates the viability of portfolio solvers for software verification.

1 Introduction

The success and gradual improvement of software verification tools in the last two
decades is a multidisciplinary effort – modern software verifiers combine methods
from a variety of overlapping fields of research including model checking, sta-
tic analysis, shape analysis, SAT solving, SMT solving, abstract interpretation,
termination analysis, pointer analysis etc.

The mentioned techniques all have their individual strengths, and a modern
software verification tool needs to pick and choose how to combine them into
a strong, stable and versatile tool. The trade-offs are based on both technical
and pragmatic aspects: many tools are either optimized for specific application
areas (e.g. device drivers), or towards the in-depth development of a technique
for a restricted program model (e.g. termination for integer programs). Recent
projects like CPA [10] and FrankenBit [20] have explicitly chosen an eclectic
approach which enables them to combine different methods more easily.

There is growing awareness in the research community that the benchmarks
in most research papers are only useful as proofs of concept for the individual
contribution, but make comparison with other tools difficult: benchmarks are
often manually selected, handcrafted, or chosen a posteriori to support a certain
technical insight. Oftentimes, neither the tools nor the benchmarks are avail-
able to other researchers. The annual International Competition on Software
Verification (SV-COMP, since 2012) [2,3,8,9] is the most ambitious attempt to
remedy this situation. Now based on more than 5,500 C source files, SV-COMP

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 561–579, 2015.
DOI: 10.1007/978-3-319-21690-4 39

562 Y. Demyanova et al.

has the most diverse and comprehensive collection of benchmarks available, and
is a natural starting point for a more systematic study of tool performance.

In this paper, we demonstrate that the competition results can be explained
by intuitive metrics on the source code. In fact, the metrics are strong enough to
enable us to construct a portfolio solver which would (hypothetically) win SV-
COMP 2014 [2] and 2015 [3]. Here, a portfolio solver is a SW verification tool
which uses heuristic preprocessing to select one of the existing tools [19,24,32].

Table 1. Sources of complexity for 4 tools participating in SV-COMP’15, marked with
+/−/N/A when supported/not supported/no information is available. Extracted from
competition reports [7] and tool papers [14,17].

Source of complexity CBMC Predator CPAchecker SMACK Corresp. feature

Unbounded loops − N/A N/A − LSB,LST,Lsimple,
Lhard

Pointers + + + + PTR

Arrays + − N/A + ARRAY INDEX

Dynamic data structures N/A + N/A + PTR STRUCT
REC

Non-static pointer offsets − + N/A N/A OFFSET

Non-static size of
heap-allocated memory

+ + N/A N/A ALLOC SIZE

Pointers to functions + N/A N/A N/A mfpcalls,mfpargs

Bit operations + − + − BITVECTOR

Integer variables + + + + SCALAR INT

Recursion − − − + mreccalls

Multi-threading + − − − THREAD DESCR

External functions + − N/A N/A INPUT

Structure fields + + N/A + STRUCT FIELD

Big CFG (≥ 100 KLOC) + N/A N/A + mcfgblocks,
mmaxindeg

Of course it is pointless to let a portfolio solver compete in the regular com-
petition (except, maybe in a separate future track), but for anybody who just
wants to verify software, it provides useful insights. Portfolio solvers have been
successful (and controversial) in combinatorially cleaner domains such as SAT
solving [25,33,37], quantified boolean satisfiability (QSAT) [30,31,34], answer
set programming (ASP) [18,27], and various constraint satisfaction problems
(CSP) [19,26,28]. In contrast to software verification, in these areas constituent
tools are usually assumed to be correct.

As an approach to software verification, portfolio solving brings interesting
advantages: (1) a portfolio solver optimally uses available resources, (2) it can

Empirical Software Metrics for Benchmarking of Verification Tools 563

avoid incorrect results of partially unsound tools, (3) machine learning in com-
bination with portfolio solving allows us to select between multiple versions of
the same tool with different runtime parameters, (4) the portfolio solver gives
good insight into the state-of-the-art in software verification.

To choose the software metrics, we consider the zoo of techniques discussed
above along with their target domains, our intuition as programmers, as well as
the tool developer reports in their competition contributions. Table 1 summarizes
these reports for tools CBMC, Predator, CPAchecker and SMACK: The first
column gives obstacles the tools’ authors identified, columns 2–5 show whether
the feature is supported by respective tool, and the last column references the
corresponding metrics, which we introduce in Sect. 2. The obtained metrics are
naturally understood in three dimensions that we motivate informally first:

1. Program Variables. Does the program deal with machine or unbounded inte-
gers? Are the ints used as indices, bit-masks or in arithmetic? Dynamic data
structures? Arrays? Interval analysis or predicate abstraction?

2. Program Loops. Reducible loops or goto programs? For-loops or ranking func-
tions? Widening, loop acceleration, termination analysis, or loop unrolling?

3. Control Flow. Recursion? Function pointers? Multithreading? Simulink or
complex branching?

Our hypothesis is that precise metrics along these dimensions allow us to
predict tool performance. The challenge lies in identifying metrics which are pre-
dictive enough to understand the relationship between tools and benchmarks,
but also simple enough to be used in a preprocessing and classification step. Sec-
tions 2.1, 2.2 and 2.3 describe metrics which correspond to the three dimensions
sketched above, and are based on simple data-flow analyses.

Our algorithm for the portfolio is based on machine learning (ML) using
support vector machines (SVMs) [12,15] over the metrics defined above. Figure 1
depicts our experimental results on SV-COMP’15: Our tool T P is the overall
winner and outperforms all other tools – Sect. 4 contains a detailed discussion.

A machine-learning based method for selecting model checkers was previously
introduced in [35]. Similar to our work, the authors use SVM classification with
weights (cf. Sect. 3.1). Our approach is novel in the following ways:

– First, the results in [35] are not reproducible because (1) the benchmark is
not publicly available, (2) the verification properties are not described, and
(3) the weighting function – in our experience crucial for good predictions –
is not documented.

– Second, we use a larger set of verification tools (22 tools vs. 3). Our benchmark
is not restricted to device drivers and is 10 times larger (49 MLOC vs. 4 MLOC
in [35]).

– Third, in contrast to structural metrics of [35] our metrics are computed using
data-flow analysis. Based on tool designer reports (Table 1) we believe that
they have superior predictive power. Precise comparison is difficult due to
non-reproducibility of [35].

564 Y. Demyanova et al.

0
%

1
0

%
2
0

%
3
0

%
4
0

%
5
0

%
6
0

%
7
0

%
8
0

%
9
0

%
1
0
0

%
0

%

5
%

1
0

%

1
5

%

2
0

%

2
5

%

n
o
t

sh
o
w

n
fo

r

c
la

ri
ty

&
c
o
m

-

p
re

h
e
n
si

b
il
it
y

b
la

st

cb
m

c
(1

73
1)

cp
ac

h
ec

ke
r
(4

88
9)

es
b
m

c
(-
21

61
)

se
ah

or
n

(-
62

28
)

sm
ac

k

u
lt
im

at
ea

u
to

m
iz
er

(2
30

1)

T
P

T
ca

t

T
v
bs

re
p
o
rt

s
co

rr
ec

t
a
n
sw

er

reportsincorrectanswer

O
ve

ra
ll

S
V

-C
O

M
P

sc
o
re

in
p
a
re

n
th

es
es

F
ig
.
1
.
D

ec
is

iv
en

es
s-

re
li
a
b
il
it
y

p
lo

t
fo

r
S
V

-C
O

M
P

’1
5
.
T

h
e

h
o
ri

zo
n
ta

l
a
x
is

g
iv

es
th

e
p
er

ce
n
ta

g
e

o
f
co

rr
ec

t
a
n
sw

er
s
c,

th
e

v
er

ti
ca

l
a
x
is

th
e

n
u
m

b
er

o
f
in

co
rr

ec
t

a
n
sw

er
s
i.

D
a
sh

ed
li
n
es

co
n
n
ec

t
p
o
in

ts
o
f
eq

u
a
l
d
ec

is
iv

en
es

s
c
+
i.

T
h
e

O
ve

ra
ll

S
V

-C
O

M
P

sc
o
re

is
g
iv

en
(i

f
av

a
il
a
b
le

)
in

p
a
re

n
th

es
es

.

Empirical Software Metrics for Benchmarking of Verification Tools 565

While portfolio solvers are important, we also think that the software metrics
we define in this work are interesting in their own right. Our results show that
categories in SVCOMP have characteristic metrics. Thus, the metrics can be
used to (1) characterize benchmarks not publicly available, (2) understand large
benchmarks without manual inspection, (3) understand presence of language
constructs in benchmarks.

Summarizing, in this paper we make the following contributions:

– We define software metrics along the three dimensions – program variables,
program loops and control flow – in order to capture the difficulty of program
analysis tasks (Sect. 2).

– We develop a machine-learning based portfolio solver for software verification
that learns the best-performing tool from a training set (Sect. 3).

– We experimentally demonstrate the predictive power of our software metrics in
conjunction with our portfolio solver on the software verification competitions
SV-COMP’14 and SV-COMP’15 (Sect. 4).

2 Source Code Metrics for Software Verification

We introduce program features along the three dimensions – program variables,
program loops and control flow – and describe how to derive corresponding
metrics. Subsequent sections demonstrate their predictive power: In Sect. 3 we
describe a portfolio solver for software verification based on our metrics. In
Sect. 4 we experimentally demonstrate the portfolio’s success, thus attesting the
descriptive and predictive power of our metrics and the portfolio.

2.1 Variable Role Based Metrics

The first set of features that we introduce are variable roles. Intuitively, a variable
role is a usage pattern of how a variable is used in a program.

Fig. 2. Different usage patterns of integer variables.

Example 1. Consider the C program in Fig. 2a, which computes the number
of non-zero bits of the variable x. In every loop iteration, a non-zero bit of x is
set to zero and the counter n is incremented. For a human reading the program,
the statements n=0 and n++ in the loop body signal that n is a counter, and
statement x = x & (x-1) indicates that x is a bit vector.

566 Y. Demyanova et al.

Example 2. Consider the program in Fig. 2b, which reads a decimal number
from a text file and stores its numeric representation in variable val. State-
ment fd=open(path, flags) indicates that variable fd stores a file descriptor
and statement isdigit(c) indicates that c is a character, because function
isdigit() checks whether its parameter is a decimal digit character.

Criteria for Choosing Roles. We implemented 27 variable roles and give
their informal definition in Table 2. Our choice of roles is inspired by standard
concepts used by programmers. In order to create the list of roles we inspected
the source code of the cBench benchmark [1] and came up with a minimum set
of roles such that every variable is assigned at least one role.

Roles as Features for Selecting a Verification Tool. The developer reports
in SV-COMP’15 [7] give evidence of the relevance of variable roles for selecting
verification tools. Most often authors mention language constructs which –
depending on whether they are fully, partially, or not modeled by a tool –
constitute its strong or weak points. We give examples of such constructs in
Table 1 and relate them to variable roles. A preliminary experiment in [16], where
we have successfully used variable roles to predict categories in SV-COMP’13,
gives further evidence for our claim.

Definition of Roles. We define roles using data-flow analysis, an efficient fixed-
point algorithm popular in optimizing compilers [6]. Our current definition of
roles is control-flow insensitive, and the result of analysis is a set of variables
ResR which are assigned role R. We give the definition of variable roles in [16].

Example 3. We describe the process of computing roles on the example of role
LINEAR for the code in Fig. 2a. Initially, the algorithm assigns to ResLINEAR

the set of all variables {x, y, n}. Then it computes the greatest fixed point in
three iterations. In iteration 1, variable x is removed, because it is assigned
expression x & (x-1), resulting in ResLINEAR = {y, n}. In iteration 2, variable
y is removed, because it is assigned variable x, resulting in ResLINEAR = {n}.
In iteration 3, ResLINEAR does not change, and the result of the analysis is
ResLINEAR = {n}.

Definition 1 (Variable Role Based Metrics). For a given benchmark file
f , we compute the mapping ResR from variable roles to the program variables
of f . We derive role metrics mR that represent the relative occurrence of each
variable role R: mR = |ResR|

/
|V ars|, where R ∈ Roles.

2.2 Loop Pattern Based Metrics

The second set of program features we introduce is a classification of loops.
The capability of Turing complete imperative languages to express unbounded

Empirical Software Metrics for Benchmarking of Verification Tools 567

Table 2. List of variable roles with informal definitions. Type struct type stands for
a C structure, any type for an arbitrary C type.

C type Role name Informal definition

int ARRAY INDEX Occurs in an array subscript expression

ALLOC SIZE Passed to a standard memory allocation function

BITVECTOR Used in a bitwise operation or assigned the result of a
bitwise operation or a BITVECTOR variable

BOOL Assigned and compared only to 0,1, the result of a
boolean operation or a BOOL variable

BRANCH COND Used in the condition of an if statement

CHAR Used in a library function which manipulates
characters, or assigned a character literal

CONST ASSIGN Assigned only literals or CONST ASSIGN variables

COUNTER Changed only in increment/decrement statements

FILE DESCR Passed to a library function which manipulates files

INPUT Assigned the result of an external function or passed
to it as a parameter by reference

LINEAR Assigned only linear combinations of LINEAR
variables

LOOP BOUND Used in a loop condition in a comparison operation,
where it is compared to a LOOP ITERATOR
variable

LOOP ITERATOR Occurs in loop condition, assigned in loop body

MODE Not used in comparison operations other than == and
!=; assigned and compared to constant values only

OFFSET Added to or subtracted from a pointer

SCALAR INT Scalar integer variable

SYNT CONST Not assigned in the program (a global or an unused
variable, or a formal parameter to a global
function)

THREAD DESCR Passed to a function of pthread library

USED IN ARITHM Used in addition/subtraction/multiplication/division

float SCALAR FLOAT Scalar float variable

int*, float* PTR SCALAR Pointer to a scalar value

struct type* PTR STRUCT Pointer to a structure

PTR STRUCT PTR Pointer to a structure which has a pointer field

PTR STRUCT REC Pointer to a recursively defined structure

PTR COMPL STRUCT Pointer to a recursively defined structure with more
than one pointer, e.g. doubly linked lists

any type* HEAP PTR Assigned the result of a memory allocation

PTR Pointer to any value

iteration entails hard and in general undecidable problems for any non-trivial
program analysis. On the other hand, in many cases iteration takes trivial forms,
for example in loops enumerating a bounded range (counting). In [29] we intro-

568 Y. Demyanova et al.

duce a family of loop patterns that capture such differences. Ability to reason
about bounds or termination of loops allows a verification tool to discharge the
(un)reachability of assertions after the loop, or to compute unrolling factors and
soundness limits in the case of bounded model checking. Thus we expect our
loop patterns to be useful program features for constructing our portfolio.

Criteria for Choosing Loop Patterns. We start with a termination proce-
dure for a restricted set of bounded loops. This loop pattern is inspired by basic
(bounded) FOR-loops, a frequently used programming pattern. It allows us to
implement an efficient termination procedure using syntactic pattern matching
and data-flow analysis. Additionally, this loop class lends itself to derive both a
stronger notion of boundedness, and weaker notions (heuristics) of termination.
We give an informal description of these patterns in Table 3; for details cf. [29]

Usefulness of Loop Patterns. In [29] we give evidence that these loop pat-
terns are a common engineering pattern allowing us to describe loops in a variety
of benchmarks, that they indeed capture classes of different empirical hardness,
and that the hardness increases as informally described in Table 3.

Definition 2 (Loop Pattern Based Metrics). For a given benchmark file f ,
we compute LSB,LST,Lsimple,Lhard, and the set of all loops Loops. We derive
loop metrics mP that represent the relative occurrence of each loop pattern P :
mP = |LP |

/
|Loops| where P ∈ {ST,SB, simple,hard}.

Table 3. List of loop patterns with informal descriptions.

Loop pattern Empirical hardness Informal definition

Syntactically bounded loops
LSB

Easy The number of executions of the
loop body is bounded (considers
outer control flow)

Syntactically terminating
loops LST

Intermediate The loop terminates whenever
control flow enters it (disregards
outer control flow)

Simple loops Lsimple Advanced A heuristic derived from
syntactically terminating loops
by weakening the termination
criteria. A good heuristic for
termination

Hard loops Lhard Hard Any loop that is not classified as
simple

Empirical Software Metrics for Benchmarking of Verification Tools 569

2.3 Control Flow Based Metrics

Complex control flow poses another challenge for program analysis. To measure
its presence, we introduce five additional metrics: For control flow complexity, we
count (a) the number of basic blocks in the control flow graph (CFG) mcfgblocks,
and (b) the maximum indegree of any basic block in the CFG mmaxindeg. To
represent the use of function pointers, we measure (a) the ratio of call expressions
taking a function pointer as argument mfpcalls, and (b) the ratio of function call
arguments that have a function pointer type mfpargs. Finally, to describe the use
of recursion, we measure the number of direct recursive function calls mreccalls.

3 A Portfolio Solver for Software Verification

3.1 Preliminaries on Machine Learning

In this section we introduce standard terminology from the machine learning
(ML) community as can for example be found in [11].

Data Representation. A feature vector is a vector of real numbers x ∈ R
n.

A labeling function L : X → Y maps a set of feature vectors X ⊆ R
n to a set

Y ⊆ R, whose elements are called labels.

Supervised Machine Learning. In supervised ML problems, labeling function
L is given as input. Regression is a supervised ML problem where labels are real
numbers Y ⊆ R. In classification, in contrast, labels belong to a finite set of
integers Y ⊆ Z. Binary classification considers two classes Y = {1,−1}, and a
problem with more than two classes is called multi-class classification.

Given a set of feature vectors X, labeling function L and error measure
function Err : R

s × R
s → R, where s = |X|, a supervised ML algorithm

searches for function M : Rn → Y in some function space such that the value
Err(L(X),M(X)) is minimal.

Support Vector Machine. A support vector machine (SVM) [12,15] is
a supervised ML algorithm, parametrized by a kernel function K(xi, xj) ≡
φ(xi)T φ(xj), that finds a hyperplane wφ(xi) − b = 0 separating the data with
different labels. In the case of binary classification,

M(x) = sign

(
s∑

i=1

wiL(xi)φ(xi)T φ(x)

)

and Err =
1
2
wT w + C

s∑

i=1

ξi (1)

where sign(n) =

{
−1 if n < 0
1 if n ≥ 0

, xi ∈ X is a feature vector, C > 0 is the penalty

parameter of the error term, function φ is implicitly given through kernel function

570 Y. Demyanova et al.

K, and w, b and ξ are existentially quantified parameters of the optimization
problem

min
w,b,ξ

Err, subject to L(xi)(wT φ(xi) + b) ≥ 1 − ξi and ξi ≥ 0 (2)

with ξi measuring the degree of misclassification of point xi.
The kernel function K and C ∈ R are parameters of SVM. An example of

a non-linear kernel function is the Radial Basis Function (RBF): K(xi, xj) =
exp(−γ‖xi − xj‖2), γ > 0.

Probabilistic Classification. Probabilistic classification is a generalization of
the classification algorithm, which searches for a function MP : Rn → (Y →
[0, 1]) mapping a feature vector to a class probability distribution, which is a
function P : Y → [0, 1] from a set of classes Y to the unit interval. There is a
standard algorithm for estimating class probabilities for SVM [36].

Creating and Evaluating a Model. Function M is called a model, the set X
used for creating the model is called training set, and the set used for evaluating
the model X ′ is called test set.

To avoid overly optimistic evaluation of the model, it is common to require
that the training and test sets are disjoint: X ∩X ′ = ∅. A model which produces
accurate results with respect to the error measure for the training set, but results
in a high error for previously unseen feature vectors x
∈ X, is said to overfit.

Data Imbalances. Labeling function L is said to be imbalanced when it
exhibits an unequal distribution between its classes: ∃yi, yj ∈ Y .Num(yi)/
Num(yj) ∼ 100, where Num(y) = |{x ∈ X | L(x) = y}|, i.e. imbalances of the
order 100:1 and higher. Data imbalances significantly compromise the perfor-
mance of most standard learning algorithms [21].

A common solution for the imbalanced data problem is to use a weighting
function W : X → R [23]. SVM with weights is a generalization of SVM, where

Err = 1
2wT w + C

s∑

i=1

W (xi)ξi. W is usually chosen empirically.

An orthogonal solution of dealing with data imbalances is the reduction
of a multi-class classification problem to multiple binary classification prob-
lems: one-vs-all classification creates one model per class i, with the label-

ing function Li(x) =

{
1 if L(x) = i

−1 otherwise
, and the predicted value calculated as

M(x) = choose({i | Mi(x) = 1}), where a suitable operator choose is used to
choose a single class from multiple predicted classes.

Empirical Software Metrics for Benchmarking of Verification Tools 571

3.2 The Competition on Software Verification SV-COMP

Setup. A verification task in SV-COMP is given as a C source file f and a
verification property p. The property is either a label reachability check or a
memory safety check (comprising checks for freedom of unsafe deallocations,
unsafe pointer dereferences, and memory leaks). The expected answer ExpAns
is provided for each task by the designers of the benchmark. The verification
tasks are partitioned into categories, manually grouped by characteristic features
such as usage of bitvectors, concurrent programs, linux device drivers, etc.

Scoring. The competition assigns a score to each tool’s result on a verification
task v. The category score of a tool is defined as the sum of scores for individual
tasks in the category. In addition, medals are awarded to the three best tools
in each category. The Overall SV-COMP score considers all verification tasks,
with each constituent category score normalized by the number of tasks in it.

3.3 Tool Selection as a Machine Learning Problem

In this section, we first describe the setup of our portfolio solver T P, and then
define the notion of the best-performing tool tbest predicted by T P.

Definitions. A verification task v = 〈f, p, type〉 is a triple of a source file f ,
the property p and property type type (e.g. reachability or safety). Function
ExpAns : Tasks → {true, false} maps verification task v ∈ Tasks to true if
the property p holds for f and to false otherwise. We identify each verification
tool by a unique natural number t ∈ N.

The result of a run of a tool t on a verification task v is a pair 〈anst,v,
runtimet,v〉, where anst,v ∈ {true, false, unknown} is the tool’s answer whether
the property holds, and runtimet,v ∈ R is the runtime of the tool in seconds.
The expected answer for a task v is a boolean value ExpAns(v).

Machine Learning Data. We compute feature vectors from the metrics and
the results of the competition as follows: for verification task v we define
feature vector x(v)=(mARRAY INDEX(v), . . . ,mPTR(v),mST(v), . . . ,mhard(v),
mcfgblocks(v), . . . , mreccalls(v), type(v)), where the mi(v) are our metrics from
Sect. 2 and type(v) ∈ {0, 1} encodes if the property is reachability or memory
safety.

The portfolio solver predicts a tool identifier t ∈ {1, . . . , n}, which is a multi-
class classification problem. We use a generalization of the one-vs-all classifica-
tion to solve the problem. We define the labeling function Lt(v) for tool t and
task v as follows:

Lt(v) =

⎧
⎪⎨

⎪⎩

1 if anst,v = ExpAns(v)
2 if anst,v = unknown

3 if anst,v
= unknown ∧ anst,v
= ExpAns(v)

572 Y. Demyanova et al.

where we treat opted-out categories as if the tool answered unknown for all of
the category’s verification tasks.

Formulation of the Machine Learning Problem. Given |Tools| classifica-
tion problems for a task v, the portfolio algorithm chooses a tool tbest as follows:

tbest =

⎧
⎪⎨

⎪⎩

choose(TCorr(v)) if TCorr(v)
= ∅
choose(TUnk(v)) if TCorr(v) = ∅ ∧ TUnk(v)
= ∅
twinner if TCorr(v) = ∅ ∧ TUnk(v) = ∅

where TCorr(v) = {t ∈ Tools | Mt(v) = 1}, TUnk(v) = {t ∈ Tools |
Mt(v) = 2} and twinner is the winner of the competition, e.g. CPAchecker in SV-
COMP’15. We now describe two alternative ways of implementing the operator
choose.

1. “Success/Fail + Time”: T PSuccFailT ime. We formulate |Tools| additional
regression problems, where the predicted value is the runtime of the tool
runtimet,v. We define choose(T) = arg min

t∈T
runtimet,v.

2. “Success/Fail + Probability”: T PSuccFailProb. We define the operator
choose(T) = arg max

t∈T
Pt,v, where Pt,v is class probability estimate.

In Table 4 we compare the two choose operators for category Overall in the
setup of SV-COMP’14 according to 3 different criteria: the score, the percentage
of correctly and incorrectly answered tasks and the place in the competition.

Configuration T PSuccFailProb yields a higher score and number of correct
answers with less runtime. We believe this is due to the tool runtimes varying in
the range of 5 orders of magnitude (from tenth parts of a second to 15 min), which
causes high error rates in the predicted runtime. We therefore use configuration
T PSuccFailProb and in the following refer to it as T P.

Table 4. Comparison of 2 formulations of T P.

Setting Correct/Incorrect/ Score Runtime, s Place

Unknown answers, %

T PSuccFailT ime 92/3/6 1384 279859 1

T PSuccFailProb 93/1/5 1494 132688 1

The Weighting Function. We analyzed the results of SV-COMP’14 and
observed, that the labeling function in the formulation of T PSuccFailProb is
highly imbalanced: the label which corresponds to incorrect answers, Lt(v) = 3,
occurs in less than 4 % for all tools.

We therefore use SVM with weights, in accordance with the standard practice
in machine learning. We note that we use the same weighting function for our

Empirical Software Metrics for Benchmarking of Verification Tools 573

experiments in the setup of SV-COMP’15 without any changes. Given a task v
and tool t, we calculate the weighting function W as follows:

W (v, t) = Potential(v) ∗ Criticality(v) ∗ Performance(t, Cat(v))
∗ Speed(t, Cat(v))

– where Potential(v) = scoremax(v)− scoremin(v) is the difference of the max-
imal and minimal possible scores for task v. For example, in the setup of
SV-COMP’14, if v is safe, then scoremax(v) = 2 and scoremin(v) = −8;

– Criticality(v) =
1

|{t ∈ Tools | anst,v = ExpAns(v)}| is inversely propor-

tional (subject to a constant factor) to the probability of randomly choosing
a tool which gives the expected answer;

– Performance(t, c) =
cat score(t, c)

cat score(tcbest, c)
is the ratio of the scores of tool

t and the best in category c tool tcbest, where given the score scoret,v of
tool t for task v, tcbest = arg max

ti∈Tools

(
cat score(ti, c)

)
and cat score(t, c) =

∑

{v∈Tasks|Cat(v)=c}

(
scoret,v

)
;

– Speed(t, c) =
ln(rel time(t, c))

ln(rel time(tcfst, c))
is the relative difference of the orders

of magnitude of the fraction in total runtime of the time spent by tool t
and the fastest in category c tool tcfst respectively, where rel time(t, c) =
(
cat time(t, c)

)/(∑

ti∈Tools

cat time(ti, c)
)
, tcfst = arg min

ti∈Tools

(
cat time(ti, c)

)

and cat time(t, c) =
∑

{v∈Tasks|Cat(v)=c}
runtimet,v.

Implementation of T P. Finally, we discuss the details of the implementa-
tion of T P. We use the SVM ML algorithm with the RBF kernel and weights
implemented in the LIBSVM library [13]. To find optimal parameters for a ML
algorithm with respect to the error measure function, we do exhaustive search
on the grid, as described in [22].

4 Experimental Results

4.1 SV-COMP 2014 vs. 2015

As described in Sect. 3.2, SV-COMP provides two metrics for comparing tools:
score and medal counts. As the scoring policy has recently changed (the penalties
for incorrect answers were increased) after a close jury vote [4], we are interested
in how stable the scores are under different scoring policies. The following table
gives the three top-scoring tools in Overall and their scores in SV-COMP’14
and ’15, as well as the top-scorers of SV-COMP’14 if the 2015 scoring policy
had been applied, and vice versa:

574 Y. Demyanova et al.

Competition Scoring 1st place (score) 2nd place (score) 3rd place (score)

SV-COMP’14 Original CBMC (3,501) CPAchecker (2,987) LLBMC (1,843)

Like ’15 CPAchecker (3,035) CBMC (2,515) LLBMC (2,004)

SV-COMP’15 Original CPAchecker (4,889) Ult. Aut. (2,301) CBMC (1,731)

Like ’14 CPAchecker (5,537) SMACK (4,120) CBMC (3,481)

Discussion. Clearly, the scoring policy has a major impact on the competition
results: If the ’15 policy is applied to SV-COMP’14, the first and second placed
tools switch ranks. SV-COMP’15, applying the previous year’s policy has an
even stronger effect: Ultimate Automizer loses its silver medal to SMACK, a tool
originally not among the top three, and CBMC almost doubles its points.

Given that SV-COMP score and thus also medal counts are rather volatile,
we introduce decisiveness-reliability plots (DR-plots) in the next section to com-
plement our interpretation of the competition results.

4.2 Decisiveness-Reliability Plots

To better understand the competition results, we create scatter plots where
each data point v = (c, i) represents a tool that gives c% correct answers and
i% incorrect answers. Figures 1 and 3 show such plots based on the verification
tasks in SV-COMP’14 and ’15. Each data point marked by an unfilled circle� represents one competing tool. The rectilinear distance c + i from the origin
gives a tool’s decisiveness, i.e. the farther from the origin, the fewer times a tool
reports “unknown”. The angle enclosed by the horizontal axis and v gives a tool’s
(un)reliability, i.e. the wider the angle, the more often the tool gives incorrect
answers. Thus, we call such plots decisiveness-reliability plots (DR-plots).

Discussion. Figures 1 and 3 show DR-plots for the verification tasks in SV-
COMP’14 and’15. For 2014, all the tools are performing quite well on soundness:
none of them gives more than 4 % of incorrect answers. CPAchecker, ESBMC
and CBMC are highly decisive tools, with more than 83 % correct answers.

In 2015 (Fig. 1) the number of verification tasks more than doubled, and
there is more variety in the results: We see that very reliable tools (BLAST,
SMACK, and CPAchecker) are limited in decisiveness – they report “unknown”
in more than 40 % of cases. The bounded model checkers CBMC and ESBMC
are more decisive at the cost of giving up to 10 % incorrect answers. We also
give Overall SV-COMP scores (where applicable) in parentheses. Clearly, tools
close together in the DR-plot not necessarily have similar scores because of the
different score weights prescribed by the SV-COMP scoring policy.

Referring back to Figs. 1 and 3, we also show the theoretic strategies
Tcat and Tvbs marked by a square �: Given a verification task v, Tcat selects
the tool winning the corresponding competition category Cat(v). Tvbs is the
virtual best solver (VBS) and selects the best performing tool per verification

Empirical Software Metrics for Benchmarking of Verification Tools 575

0
%

1
0

%
2
0

%
3
0

%
4
0

%
5
0

%
6
0

%
7
0

%
8
0

%
9
0

%
1
0
0

%
0

%

2
%

4
%

6
%

8
%

1
0

%

n
o
t

sh
o
w

n
fo

r

c
la

ri
ty

&
c
o
m

-

p
re

h
e
n
si

b
il
it
y

bl
as

t

cb
m
c
(3

50
1)

cp
ac

he
ck

er
(2

98
7)

cp
al
ie
n

es
bm

c
(9

75
)

fb
it

llb
m
c
(1

84
3)

pr
ed

at
or

(-
18

4)

sy
m
bi
ot

ic
(-
22

0)

uf
o

T
P T
ca
t T

v
bs

re
p
o
rt

s
co

rr
ec

t
a
n
sw

er

reportsincorrectanswer

C
o
rr

ec
ta

n
d

in
co

rr
ec

t
a
n
sw

er
s

b
y

to
o
ls

o
n

S
V

-C
O

M
P

’1
4
,

O
ve

ra
ll
 S

V
-C

O
M

P
sc

o
re

in
p
a
re

n
th

es
es

F
ig
.
3
.
D

ec
is

iv
en

es
s-

re
li
a
b
il
it
y

p
lo

t
fo

r
S
V

-C
O

M
P

’1
4
.

576 Y. Demyanova et al.

(a) Overall SV-COMP score, runtime and medal counts for SV-COMP’14.

blast cbmc

cpa-
che-
cker

cpa-
lien

esbmc fbit llbmc ufo T P Tcat Tvbs

Overall
468
2066

1292
4991

1235
1865

266
776

695
4024

666
898

853
978

735
381

1494
2211

1732
1310

1840
270

Medals 1/0/0 2/2/2 2/1/1 0/0/0 1/0/1 0/0/2 1/0/1 1/1/0 1/5/1 - -

(b) Overall SV-COMP score, runtime and medal counts for SV-COMP’15.

blast
cas-
cade

cbmc

cpa-
che-
cker

pre-
da-

torhp
smack

ulti-
mate-
kojak

ulcseq T P Tcat Tvbs

Overall
737
4546

806
5146

684
11936

2228
6288

389
96

1542
8727

1215
7979

273
12563

2511
6260

3231
4360

3768
1882

Medals 1/0/0 0/0/0 1/1/1 2/1/5 1/0/1 2/1/1 0/2/0 0/0/0 1/6/1 - -

Fig. 4. Experimental results for the eight best competition participants in Overall,
plus our portfolio T P and the idealized strategies Tcat, Tvbs on random subsets of SV-
COMP, given as arithmetic mean of 10 experiments on the resp. test sets testyear. The
first row shows the Overall SV-COMP score and beneath it the runtime in minutes. We
highlight the gold, silver, and bronze medal in dark gray, light gray and white+bold
font, respectively. The second row shows the number of gold/silver/bronze medals won
in individual categories.

task. Both strategies illustrate that combining tools can yield an almost per-
fect solver, with ≥ 95% correct and 0 % incorrect answers. (Note that these
figures may give an overly optimistic picture – after all the benchmarks are sup-
plied by the competition participants.) The results for Tvbs compared to Tcat

indicate that leveraging not just the category winner provides an advantage in
both reliability and decisiveness. A useful portfolio would thus lie somewhere
between CPAchecker, CBMC, Tcat, and Tvbs, i.e. improve upon the decisiveness
of constituent tools while minimizing the number of incorrect answers.

4.3 Evaluation of Our Portfolio Solver

We implemented the ML-based portfolio T P for SV-COMP’14 in our tool Ver-
ifolio [5]. When competition results for SV-COMP’15 became available, we suc-
cessfully evaluated the existing techniques on the new data. We present these
results both in terms of the traditional metrics used by the competition (SV-
COMP score and medals), and by its placement in DR-plots:

Setup. For our experiments we did not rebuild the infrastructure of SV-COMP,
but use numeric results from the competition to compare our portfolio approach
against other tools. Following a standard practice in ML [11], we randomly split
the verification tasks of SV-COMP’year into a training set trainyear and a test
set testyear with a ratio of 60:40. We train our portfolio on trainyear and re-run
the competition on testyear, with the portfolio participating as an additional

Empirical Software Metrics for Benchmarking of Verification Tools 577

tool. As the partitioning into training and test sets is randomized, we conduct
the experiment 10 times and report the arithmetic mean of all figures. Figures
4a and b show the Overall SV-COMP scores, runtimes and medal counts. The
DR-plots in Figs. 1 and 3 show the portfolio marked by a filled circle •.

Overhead of Feature Extraction. By construction, our portfolio incurs an over-
head for feature extraction and prediction before actually executing the selected
tool. We find this overhead to be negligible with a median time of x̃features = 0.5
seconds for feature extraction and x̃prediction = 0.5 seconds for prediction.

Discussion. First, we discuss our results in terms of Overall SV-COMP score
and medals. The experimental results for SV-COMP’14 in Fig. 4a show that our
portfolio overtakes the original Overall winner CBMC with 16 % more points. It
wins a total of seven medals (1/5/1 gold/silver/bronze) compared to CBMC’s
six medals (2/2/2). For SV-COMP’15 (Fig. 4b), our portfolio T P is again the
strongest tool, collecting 13 % more points than the original Overall winner
CPAchecker. Both CPAchecker and T P collect 8 medals, with CPAchecker’s
2/1/5 against T P’s 1/6/1.

Second, we discuss the DR-plots in Figs. 1 and 3. Our portfolio T P positions
itself between CPAchecker, CBMC and the theoretic strategies Tcat and Tvbs.
Furthermore, T P falls halfway between the concrete tools and idealized strate-
gies. We think this is a promising result, but also leaves room for future work.
Here we invite the community to contribute further feature definitions, learning
techniques, portfolio setups, etc. to enhance this approach.

Constituent Verifiers Employed by Our Portfolio. Our results could suggest that
T P implements a trade-off between CPAchecker’s conservative-and-sound and
CBMC’s decisive-but-sometimes-unsound approach. Contrarily, our experiments
show that significantly more tools get selected by our portfolio solver. Addition-
ally, we find that our approach is able to select domain-specific solvers: For
example, in the Concurrency category, T P almost exclusively selects variants of
CSeq, which translates concurrent programs into equivalent sequential ones.

Wrong Predictions. Finally, we investigate cases of wrong predictions made by
the portolio solver, which are due to two reasons:

First, ML operates on the assumption that the behavior of a verification
tool is the same for different verification tasks with the same or very similar
metrics. However, sometimes this is not the case because tools are (1) unsound,
e.g. SMACK in category Arrays, (2) buggy, e.g. BLAST in DeviceDrivers64, or
(3) incomplete, e.g. CPAchecker in ECA.

Second, the data imbalances lead to the following bias in ML: For a verifica-
tion tool that is correct most of the time, ML will prefer the error of predicting
that the tool is correct (when in fact incorrect) over the error that a tool is incor-
rect (when in fact correct), i.e. “good” tools are predicted to be even “better”.

578 Y. Demyanova et al.

References

1. Collective benchmark (cBench). http://ctuning.org/wiki/index.php/CTools:
CBench. Accessed 6 Feb 2015

2. Competition on Software Verification 2014. http://sv-comp.sosy-lab.org/2014/.
Accessed 6 Feb 2015

3. Competition on Software Verification 2015. http://sv-comp.sosy-lab.org/2015/.
Accessed 6 Feb 2015

4. SV-COMP 2014 - Minutes. http://sv-comp.sosy-lab.org/2015/Minutes-2014.txt.
Accessed 6 Feb 2015

5. Verifolio. http://forsyte.at/software/verifolio/. Accessed 11 May 2015
6. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Princiles, Techniques, and Tools.

Addison-Wesley, Reading (1986)
7. Baier, C., Tinelli, C. (eds.): TACAS 2015. LNCS, vol. 9035. Springer, Heidelberg

(2015)
8. Beyer, D.: Status report on software verification. In: Ábrahám, E., Havelund, K.

(eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 373–388. Springer, Heidelberg
(2014)

9. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015)

10. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)

11. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

12. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classi-
fiers. In: Conference on Computational Learning Theory (COLT 1992), pp. 144–152
(1992)

13. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM TIST
2(3), 27 (2011)

14. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

15. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

16. Demyanova, Y., Veith, H., Zuleger, F.: On the concept of variable roles and its
use in software analysis. In: Formal Methods in Computer-Aided Design (FMCAD
2013), pp. 226–230 (2013)

17. Dudka, K., Peringer, P., Vojnar, T.: Byte-precise verification of low-level list manip-
ulation. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935,
pp. 215–237. Springer, Heidelberg (2013)

18. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.:
A portfolio solver for answer set programming: preliminary report. In: Delgrande,
J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 352–357. Springer,
Heidelberg (2011)

19. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62 (2001)
20. Gurfinkel, A., Belov, A.: FrankenBit: bit-precise verification with many bits. In:

Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp.
408–411. Springer, Heidelberg (2014)

http://ctuning.org/wiki/index.php/CTools:CBench
http://ctuning.org/wiki/index.php/CTools:CBench
http://sv-comp.sosy-lab.org/2014/
http://sv-comp.sosy-lab.org/2015/
http://sv-comp.sosy-lab.org/2015/Minutes-2014.txt
http://forsyte.at/software/verifolio/

Empirical Software Metrics for Benchmarking of Verification Tools 579

21. He, H., Garcia, E.A.: Learning from imbalanced data. Knowl. Data Eng. 21(9),
1263–1284 (2009)

22. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector
classification (2003)

23. Huang, Y.M., Du, S.X.: Weighted support vector machine for classification with
uneven training class sizes. Mach. Learn. Cybern. 7, 4365–4369 (2005)

24. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-
putational problems. Science 275(5296), 51–54 (1997)

25. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011)

26. Lobjois, L., Lemâıtre, M.: Branch and bound algorithm selection by performance
prediction. In: Mostow, J., Rich, C. (eds.) National Conference on Artificial Intelli-
gence and Innovative Applications of Artificial Intelligence Conference, pp. 353–358
(1998)

27. Maratea, M., Pulina, L., Ricca, F.: The multi-engine ASP solver me-asp. In: del
Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 484–
487. Springer, Heidelberg (2012)

28. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., OSullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Irish Confer-
ence on Artificial Intelligence and Cognitive Science (2008)

29. Pani, T.: Loop patterns in C programs. Diploma Thesis (2014). http://forsyte.at/
static/people/pani/sloopy/thesis.pdf

30. Pulina, L., Tacchella, A.: A multi-engine solver for quantified boolean formulas.
In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 574–589. Springer, Heidelberg
(2007)

31. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified boolean
formulas. Constraints 14(1), 80–116 (2009)

32. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
33. Roussel, O.: Description of ppfolio. http://www.cril.univ-artois.fr/∼roussel/

ppfolio/solver1.pdf
34. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proceedings of the

Conference on Artificial Intelligence (AAAI), pp. 255–260 (2007)
35. Tulsian, V., Kanade, A., Kumar, R., Lal, A., Nori, A.V.: MUX: algorithm selection

for software model checkers. In: Working Conference on Mining Software Reposi-
tories, pp. 132–141 (2014)

36. Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification
by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)

37. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

http://forsyte.at/static/people/pani/sloopy/thesis.pdf
http://forsyte.at/static/people/pani/sloopy/thesis.pdf
http://www.cril.univ-artois.fr/~roussel/ppfolio/solver1.pdf
http://www.cril.univ-artois.fr/~roussel/ppfolio/solver1.pdf

	Empirical Software Metrics for Benchmarking of Verification Tools
	1 Introduction
	2 Source Code Metrics for Software Verification
	2.1 Variable Role Based Metrics
	2.2 Loop Pattern Based Metrics
	2.3 Control Flow Based Metrics

	3 A Portfolio Solver for Software Verification
	3.1 Preliminaries on Machine Learning
	3.2 The Competition on Software Verification SV-COMP
	3.3 Tool Selection as a Machine Learning Problem

	4 Experimental Results
	4.1 SV-COMP 2014 vs. 2015
	4.2 Decisiveness-Reliability Plots
	4.3 Evaluation of Our Portfolio Solver

	References

