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Abstract. Recent experimental advances in biology allow researchers
to obtain gene expression profiles at single-cell resolution over hundreds,
or even thousands of cells at once. These single-cell measurements pro-
vide snapshots of the states of the cells that make up a tissue, instead of
the population-level averages provided by conventional high-throughput
experiments. This new data therefore provides an exciting opportunity
for computational modelling. In this paper we introduce the idea of
viewing single-cell gene expression profiles as states of an asynchronous
Boolean network, and frame model inference as the problem of recon-
structing a Boolean network from its state space. We then give a scal-
able algorithm to solve this synthesis problem. We apply our technique
to both simulated and real data. We first apply our technique to data
simulated from a well established model of common myeloid progenitor
differentiation. We show that our technique is able to recover the original
Boolean network rules. We then apply our technique to a large dataset
taken during embryonic development containing thousands of cell mea-
surements. Our technique synthesises matching Boolean networks, and
analysis of these models yields new predictions about blood development
which our experimental collaborators were able to verify.

1 Introduction

As biological data becomes more accurate and becomes available in larger
volumes, researchers are increasingly adopting concepts from computer science
to the modelling and analysis of living systems. Formal methods have been
successfully applied to gain insights into biological processes and to direct the
design of new experiments [3–5,12]. New single-cell resolution gene expression
measurement technology provides an exciting opportunity for modelling biolog-
ical systems at the cellular level. Single-cell gene expression profiles provide a
snapshot of the true states that cells can reach in the real experimental system,
a level of detail which has not been available before [15,18]. A major challenge for
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researchers is to move beyond established methods for the analysis of population
data, to new techniques that take advantage of single-cell resolution data [14].

Uncovering and understanding the gene regulatory networks (GRNs) which
underlie the behaviour of stem and progenitor cells is a central issue in molecular
cell biology. These GRNs control the self-renewal and differentiation capabilities
of the stem cells that maintain adult tissues, and become perturbed in diseases
such as cancer. They also specify the complex developmental processes that lead
to the initial formation of tissues in the embryo. Understanding how to effectively
control GRNs can lead to important insights for the programmed generation of
clinically-relevant cell types important for regenerative medicine, as well as into
the design of molecular therapies to target cancerous cells.

Biological systems can be modelled at different levels of abstraction. At a
molecular level, the biochemical events which occur inside a cell can be cap-
tured by stochastic processes, given by chemical master equations [24]. These
chemical events are fundamentally stochastic, driven by random fluctuations of
molecules present at low concentrations and by Brownian motion. Asynchro-
nous Boolean networks abstract away details of transcription, translation and
molecular binding reactions and represent the status of each modelled substance
as either active (on) or inactive (off), while using non-determinism to capture
different options that arise from stochastic behaviour [7,13,27]. In the cell, gene
activity is controlled by combinatorial logic in which proteins called transcrip-
tion factors cooperate to physically bind to a regulatory DNA region of a gene
and trigger (or inhibit) its transcription. Target genes may in turn code for tran-
scription factors, forming a complex GRN. Asynchronous Boolean networks are
particularly well suited to modelling GRNs because the combinatorial logic reg-
ulating gene activity can be expressed as a Boolean function. For example, gene
X may be activated by either the presence of gene A or by the presence of both
genes B and C. The presence of a repressor D may prevent X from becoming
triggered by the presence of these activating genes. When modelling the differ-
entiation of a cell using an asynchronous Boolean network, dynamics proceed by
a series of single–gene changes. Mature, differentiated cell types correspond to
stable attractor states of the model.

Predictions about the modes of interaction between genes resulting from
computational analysis can be tested experimentally through a range of assays.
For example, if analysis of a model predicts that gene X is activated by gene A,
a ChIP (Chromatin ImmunoPrecipitation) assay can be used to assess whether
the protein coded for by A binds to a regulatory region of X. Then, perturbations
which prevent the binding of A to this region can be introduced, and the effect
that this has on the expression of X can be examined.

State–space analyses of hand–built asynchronous Boolean network models
based on literature–derived gene regulatory interactions have been successfully
applied to model cell fate decisions, and to reproduce known experimental results
(e.g., [2,11,13]). Here we address the problem of automatically constructing such
models directly from data. If we think of single-cell gene expression profiles as the
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state space of an asynchronous Boolean network, can we identify the underlying
gene regulatory logic that could have generated this data?

We encode the matching of an asynchronous Boolean network to a state
space as a synthesis problem and use constraint (satisfiability) solving techniques
for answering the synthesis problem. The synthesised network has to match
the data in two aspects. First, the resulting network should try to minimise
transitions to expression points that are not part of the sampled data. Second,
the resulting network should allow for a progression through the state space
in a way that matches the flow of time through the different experiments that
produced the data. A direct encoding of this problem into a satisfiability problem
does not scale well. We suggest a modular search that handles parts of the state
space and the network and does not need to reason about the entire network
at once. We consider two test cases. First, we try to reconstruct an existing
asynchronous Boolean network from its state space. We are able to reconstruct
Boolean rules from the original network. Second, we apply our technique to
experimental data derived from blood cell development. The network that is
produced by our technique matches known dependencies and suggests interesting
novel predictions. Some of these predictions were validated by our collaborators.

This paper describes the algorithm that we used to obtain the results in a
recently published biological paper on a single-cell resolution study of embryonic
blood development [16]. The biological paper includes full details of the exper-
iment that generated the data, and the biological validation of our resulting
synthesised model. Here, we cover the algorithmic aspects of our method.

2 Biological Motivation

Single-cell gene expression experiments produce gene expression profiles for indi-
vidually measured cells. Each of these gene expression profiles is a vector where
each element gives the level of expression of one gene in that cell. Figure 1 plots
the level of the genes Etv2 and Runx1 over 3934 cells.

Our experimental collaborators performed such gene expression profiling on
five batches of cells taken from four sequential developmental time points of
a mouse embryo. For each time point, the experiment aimed to capture every
cell with the potential to develop into a blood cell, providing a comprehensive

Fig. 1. Single–cell gene expression measurements for two genes, in 3934 cells.
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Fig. 2. State graph. Node colours correspond to the time point at which a state was
measured. States from the earliest of the time points are coloured blue, and states from
the last time point are coloured red (Color figure online).

single–cell resolution picture of the developmental timecourse of blood develop-
ment. This resulted in a data set of 3934 cell measurements. Full details of this
experiment and our analysis can be found in [16]. This data set is the first of its
kind, attempting to capture an entire tissue’s worth of progenitor cells across a
developmental time course. This level of coverage of the potential cell state space
is required for our approach to accurately recover gene regulatory networks, and
requires the measurement of thousands of cell profiles. Later we will introduce a
synthetic data set of a few hundred cell states in order to illustrate how our app-
roach works, but we would like to stress that to be usable on real experimental
data our algorithm needs to be able to scale thousands of cell states.

For each of 3934 cells, the level of expression of 33 transcription factor genes
was measured. Expression levels are non-negative real numbers, where the value
0 indicates that the given gene is unexpressed in the cell (see Fig. 1).

The key idea introduced in this paper is to view this gene-expression data as
a sample from the state-space of an asynchronous Boolean network. In the past,
manually curated Boolean networks have been successfully used to recapitulate
experimental results [2,11,13]. SuchBooleannetworkswerehand–constructed from
biological knowledge that has accumulated in the literature over many years. Here,
we aim to produce suchBooleannetworks automatically, directly fromgene expres-
sion data, by employing synthesis techniques. We aim to produce a Boolean net-
work that can explain the data and can be used to inform biological experiments
for uncovering the nature of gene regulatory networks in real biological systems.

In order to convert the data into a format that can be viewed as a Boolean net-
work state space, we first discretise expression values to binary, assigning the value
1 to all non-zero gene expression measurements. A value of zero corresponds to the
discovery threshold of the equipment used to produce the data. Discretising the
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3934 expression profiles in this way yields 3070 unique binary states, where every
state is a vector of 33 Boolean values corresponding to the activation/inactivation
level of each of 33 genes in a given cell. In an asynchronous Boolean network, transi-
tions correspond to the change of value of a single variable. Hence, we next look for
pairs of states that differ by only one gene (that is, the Hamming distance between
the two vectors is 1). An analysis of the strongly-connected components of this
graph shows that one strongly connected component contains 44 % of the states.
We note that in a random sample of 3934 elements from a space of 233, the chance
of seeing repeats or neighbours with Hamming–distance 1 is negligible.

A plot of the graph of the largest strongly connected component is given in
Fig. 2. We add an edge for every Hamming–distance 1 pair and cluster together
highly connected nodes. The colours of nodes correspond to the developmental
time the measurements was taken. Note that there is a clear separation between
the earliest developmental time point and the latest one. This representation
already suggests a clear change of states over the development of the embryo,
with separate clusters identifiable and obvious fate transitions between clusters.

We wish to find an asynchronous Boolean network that matches this graph.
For that we impose several restrictions on the Boolean network. Connections
between states correspond to a change in the value of one gene, however, we
do not know the direction of the change. Thus, we search simultaneously for
directions and update functions of the different genes that satisfy the follow-
ing two conditions: states from the earliest developmental time point should
be able to evolve, through a series of single–gene transitions, to the states from
the latest developmental time point. Secondly, the update functions must min-
imise the number of transitions that lead to additional, unobserved states, that
were not measured in the experiment.

3 Example: Reconstructing an ABN from its State Space

We first illustrate our synthesis method

Fig. 3. Boolean update functions for a
manually curated network.

using an example. We take an exist-
ing Boolean network, construct its asso-
ciated state space, and then use this
state space as input to our synthesis
method in order to try to reconstruct
the Boolean network that we started
with.

Krumsiek et al. introduce a Boolean
network model of the core regula-
tory network active in common myeloid
progenitor cells [13]. Their network is
based upon a comprehensive literature
survey. It includes a set of 11 Boolean variables (corresponding to genes) and
a Boolean update function for each variable (Fig. 3).1 The model is given
1 The function of Cebpa is modified from that in [13] to match the format we assume.
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Fig. 4. Boolean network state space.
Initial state is coloured green, stable
states red (Color figure online).

Fig. 5. Close–up of Boolean network
state space.

a well-defined initial starting state, representing the expression profile of the
common myeloid progenitor, and computational analysis reveals an acyclic, hier-
archical state space of 214 states with four stable state attractors (Fig. 4).

These stable attractors are in agreement with experimental expression pro-
files of megakaryocytes, erythrocytes, granulocytes and monocytes; four of the
mature myeloid cell types that develop from common myeloid progenitors.

We treat the state space of this Boolean network as we would treat experi-
mental data, forgetting all directionality information, and connecting all states
which differ in the expression of only one gene by an undirected edge (Figs. 4
and 5, where each edge is labelled with the single gene that changes in value
between the states it connects). We would now like to reconstruct the Boolean
network given in Fig. 3 from this undirected state space.

For each gene, we would like to assign a direction to each of its labelled edges
(or decide that it does not exist), in a way that is compatible with a Boolean
update function. For example, in Fig. 5, we may orient the Pu.1 -labelled edge
between states 97 and 95 in the direction s97 → s95, in the direction s95 → s97,
or decide that this is not a possible update. We also allow the edge to be directed
in both directions. If s97 → s95, we want a Boolean update function uPu.1 that
takes state s97 to state s95. Since there is no Pu.1–labelled edge leaving state
s150, we can also add the constraint that uPu.1 takes s150 to s150.

We also add reachability constraints that restrict which edges are included
and their orientation. Since the state space was constructed starting from a well-
defined initial state, we would like to enforce the constraint that each non-initial
state ought to be reachable by some directed path from the initial state. Since cell
development proceeds hierarchically and unidirectionally, we favour short paths
over long paths. This eliminates routes that seem biologically implausible, for
example routes that cross a fate transition and then return to where they began.
It also reduces the space of paths we have to search through. By increasing the
lengths of allowed paths, we can increase the number of considered solutions.
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Fig. 6. Synthesised update functions.

The results of applying our technique are shown in Figure 6. The method
reconstructs the Boolean update functions for all but one gene (EgrNab), in some
cases uniquely identifying the original function. We note that when multiple
solutions are found for an update function, these solutions, while not exact, all
provide useful regulatory information that could be verified experimentally. For
example, both solutions for Scl successfully predict Scl ’s activation by Gata1,
although one of the two solutions omits its repression by Pu.1.

4 Background to Asynchronous Boolean Networks

An asynchronous Boolean network (ABN) is B(V,U), where V = {v1, v2, . . . , vn}
is a set of variables, and U = {u1, u2, . . . , un} is a set of Boolean update functions.
For every ui ∈ U we have ui : {0, 1}n → {0, 1} associated with variable vi.
A state of the system is a map s : V → {0, 1}. We say that an update function
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ui is enabled at state s if ui(s) �= s(vi), i.e. applying the update function ui to
state s changes the value of variable vi.

State s′ = (d′
1, d

′
2, . . . , d

′
n) is a successor of state s = (d1, d2, . . . , di, . . . , dn)

if for some i we have ui is enabled, d′
i = ui(s), and for all j �= i we have

d′
j = dj . That is, we get to the next state s′, by non-deterministically selecting

an enabled update function ui and updating the value of the associated variable:
s′ = (d1, d2, . . . , ui(di), . . . , dn). If no update function is enabled, the system
remains in its current, stable, state, where it will remain: s′ = s.

An ABN induces a labelled transition system T = (N,R), where N is the
set of 2n states of the ABN, and R ⊆ N × V ×N is the successor relation. Each
transition (s1, vi, s2) is labelled with the variable vi such that s1(vi) �= s2(vi).

The undirected state space of an ABN is an undirected graph S = (N,E),
where each vertex n ∈ N is uniquely labelled with a state s of the Boolean
network, and there is an edge {s1, s2} ∈ E iff s1 and s2 differ in the value
of exactly one variable, v. The edge {s1, s2} is labelled with v. In general, an
undirected state space does not have to include all 2n states induced by a Boolean
network.

An ABN B(V,U) induces a directed state space on an undirected state space
S = (N,E). Consider the transition system T = (2V , R) of B(U, V ). Then, the
induced directed state space is S′ = (N,A), where (s1, s2) ∈ A implies that there
is a variable vi such that (s1, vi, s2) ∈ R. We say that (s1, s2) is compatible with
ui, if s2(vi) = us(s1), and for every j �= i we have s2(vj) = s1(vj).

5 Formal Definition of the Problem

Our synthesis problem can be stated as follows: we are given an undirected state
space S over a given set of variables V . We would like to extract a set of Boolean
update functions that induce a directed state space from S such that each of
the states in S are reachable from a given set of initial states. We also want to
ensure that no additional, undesired states not in S are reachable, by ruling out
transitions which ‘exit’ the state space.

More formally, we are given a set of variables V = {v1, v2, . . . , vn}, an undi-
rected state space S = (N,E) over V , and a set I ⊆ N of initial vertices.

We would like to find an update function ui : {0, 1}n → {0, 1} for each
variable vi ∈ V , such that the following conditions hold. Let U = {ui | vi ∈ V }
be the set of update functions.

1. Every non-initial vertex s ∈ N −I is reachable from some initial vertex si ∈ I
by a directed path in the directed state space induced by B(V,U) on S.

2. For every variable vi ∈ V , let Ni be the set of states without an outgoing
vi-labelled arc. For every i we require that for each s ∈ Ni, ui(s) = s(vi).

5.1 Generalising the Definition to Partial Data

Since we intend to apply our method in an experimental setting, where we only
have an incomplete sample from the possible states of the system, we relax
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this definition to extend it to partial data. Instead of requiring that every state
is reachable from those initial states that we have measured, we only require
that a set of final states are reachable. Instead of requiring that every undesired
transition is ruled out, we seek to maximise the number of such transitions which
are eliminated. This is formally stated next.

As before, we are given a set of variables V = {v1, v2, . . . , vn}, an undirected
state space S = (N,E) over V , and a designated set I ⊆ N of initial vertices.
In addition, we are given a designated set F ⊆ N of final vertices, along with
a threshold ti for each variable vi ∈ V . The threshold ti specifies how many
undesired transitions must be ruled out.

We would like to find an update function ui : {0, 1}n → {0, 1} for each
variable vi ∈ V , such that the following conditions hold. Let U = {ui | vi ∈ V }
be the set of update functions.

1. Every final vertex sf ∈ F is reachable from some initial vertex si ∈ I by a
directed path in the directed state space induced by B(V,U) on S.

2. For every variable vi ∈ V , let Ni be the set of states without an outgoing vi-
labelled arc. For every i the number of states s ∈ Ni such that ui(s) = s(vi)
is greater or equal to ti.

In the remainder of the text, we refer to condition 1 as the reachability con-
dition and condition 2 as the threshold condition.

We restrict the search to update functions of the form f1 ∧ ¬f2, where fi
is a monotone Boolean formula. The inputs to f1 are the activating inputs to
the gene and the inputs to f2 are the the repressing inputs. This restriction was
chosen after discussion with biologist colleagues and consultation of the literature
(e.g., [2,13]).

6 A Direct Encoding

We start with a direct encoding of the search for a matching Boolean network.
The search is parameterised by the shape of update functions (how many activa-
tors and how many repressors each variable has), the length of paths from initial
states to final states, and the thresholds for each variable. By increasing the
first two parameters and decreasing the last we can explore all possible Boolean
networks.

6.1 Possible Update Functions

In order to represent the Boolean update function for gene vi, ui = f1 ∧ ¬f2,
we use a bitvector encoding. We represent the Boolean formula fj by a set of
bitvectors, {a1, a2, . . . an}, aj ∈ V ∪ {∨,∧}, where each bitvector ai represents a
variable or a Boolean operator, and solutions take the form of a binary tree. For
example, the formula v1 ∧ (v2 ∨ v3) is represented by the solution a1 = ∧, a2 =
∨, a3 = v1, a4 = v2, a5 = v3. We restrict the syntactic form of possible update
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functions so that each variable appears only once, and each possible function
has one canonical representation. For example, the function (v1 ∧ (v2 ∨ v3)) is
included in our search space while (v1 ∧ v2) ∨ (v1 ∧ v3) is not. We search for
functions up to a maximum number of activators, Ai, and a maximum number
of repressors, Ri.

To encode the application of function ui to a state s, ui(s), we add impli-
cations which unwrap the bitvector encoding of ui to the constituent variables
and logical operators; substituting values, s(vj), for variables, vj , and directly
mapping operations to logical constraints in the Boolean satisfiability formula.
For example, the application of the function (v1 ∨ v2) ∧ ¬v3 to the state s1 is
mapped to (s1(v1) ∨ s1(v2)) ∧ ¬s1(v3).

6.2 Ensuring Reachability

To enforce the global reachability condition we consider all of the underlying
directed edges in the undirected state space S = (N,E), and their associated
single–gene transitions.

Recall that we require every final vertex to be reachable from some initial
vertex by a directed path in the directed state space induced on S by the Boolean
network. That is, we require that every final vertex is reachable by a directed
path, and that every vj-labelled edge along this path is compatible with its
associated update function, uj .

To enforce this we add constraints that track the compatibility of edges with
update functions and define reachability recursively. We consider reachability by
paths up to a maximum length: recall that we consider shorter paths to be more
biologically likely. By iteratively increasing the length of the paths considered,
we can obtain all satisfying models.

We introduce a pair of Boolean variables eij , eji for each vi-labelled undi-
rected edge {si, sj} ∈ E, which track the value of the application of ui to si and
to sj (and the compatibility of the underlying directed edges (si, sj) and (sj , si)
with ui). eij is true iff ui(si) = sj(v).

We introduce an integer given by a bitvector encoding, rn, for each node
n ∈ N . Bitvector rn encodes the fact that node n is reachable from an initial
node in rn steps, up to some maximum encodable value 2|rn| −1. Bitvector rn is
given a value of −1 to indicate that n is not reachable in this maximum number
of steps.

Reachability is then defined inductively:

1. Initial nodes are reachable in zero steps: for every i ∈ I, ri = 0.
2. A non–initial node si is reachable in M steps if there is a compatible incoming

edge (sj , si) from another node sj , and sj is itself reachable in fewer than M
steps. That is, for every n = sj ∈ N−I and m = si ∈ N such that {si, sj} ∈ E
we have eij → rm < rn. We also have that non–initial nodes cannot be reached
in zero steps: For every n ∈ N − I, rn = −1 ∨ rn > 0.

Finally, we add a constraint that every final node n ∈ F is reachable from
some initial node: rn �= −1.
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6.3 Enforcing the Threshold Condition

We enforce the threshold condition for each update function as follows.
Consider an update function ui : V → {0, 1}. We say that a node s ∈ Ni

is negatively matched by ui if ui(s) = s(vi). That is, by using ui as the update
function of variable vi, ui does not change the value of vi from node s. We are
searching for an update function such that a maximum number of nodes from
Ni are negatively matched.

We add a variable, mis for each node s ∈ Ni to record whether ui negatively
matches s. We then add a constraint demanding that the number of negatively
matched nodes is greater than or equal to the threshold:

∑
s∈Ni

mis ≥ ti.
We search for satisfying assignments to the constraint variables encoding the

representation of the Boolean update functions ui for all vi in V . The resulting
synthesised Boolean network is the combination of these update functions.

Unfortunately, in practice the direct encoding of the search does not scale to
handle our experimental data. In the next section we suggest a compositional
way to solve the problem.

7 A Compositional Algorithm

We now introduce our compositional algorithm, which scales better than the
direct encoding given above. The problem of synthesising a Boolean network
from the data is partitioned to three stages. Crucially, we avoid searching for
a complete Boolean network and consider parts of the network that can be
constructed independently.

7.1 Pruning the Set of Possible Edges

We start by building a directed graph from the given undirected state space
S = (N,E), by considering which of the underlying directed edges in E are
compatible with some Boolean update function, and pruning those that are not.
We consider each underlying directed edge (s1, s2) and (s2, s1) of each of the
vi-labelled undirected edges {s1, s2} in E independently.

We pose a decision problem for each directed edge (s1, s2): whether there
exists some Boolean update function ui satisfying the threshold condition (con-
dition 2, Sect. 5.1) such that ui(s1) = s2(vi). This is encoded as a Boolean sat-
isfiability problem, adding constraints to represent the encoding of the update
function, the threshold condition, and the evaluation of the function at the spe-
cific edge under consideration. We say that a satisfying function, ui, is compatible
with (s1, s2). Once a compatible function has been found, it can quickly be eval-
uated outside the solver at other edges to try reduce the number of SAT queries
we have to make.

After making a query for each edge, we are left with a directed graph, which
is the existential projection of all compatible update functions for each of the
variables v ∈ V . We have eliminated edges which have no compatible update
function, and cannot participate in the reachability condition. On the example
data set from Sect. 3, this step removes 18 % of the possible edges.
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7.2 Ensuring Reachability

We now come to the only part of the algorithm that considers the edges of all
variables together, in order to enforce the global reachability condition (condition
1, Sect. 5.1). This phase does not require the solving of a Boolean satisfiability
problem, and as a result is very efficient.

We construct, for each pair of initial nodes i ∈ I and final nodes f ∈ F , the
shortest path pif from i to f in the directed graph that was built in the previous
phase of the algorithm. These paths can be computed via a breadth–first search.

Due to the edge pruning of the previous phase of the algorithm, if there is
no path to a final node f , this implies that there are no satisfying models (at
the given threshold and function size parameters). Otherwise, our reachability
condition will be enforced by fixing a set of directed edges Pi for each variable
vi ∈ V corresponding to these shortest paths. We will then require that the
update function we search for, ui, is compatible with each of the edges in Pi.

We choose, for each final node f , one path pf = pif from one of the initial
nodes i. By fixing this path, we ensure that f is reachable from an initial node.
We define pf |i as the set of vi-labelled edges in the path pf . We define Pi, the
vi-labelled edges which must be fixed to ensure reachability via the chosen paths,
as the the set of vi-labelled edges in pf for each final node f :

Pi =
⋃

f∈F

{(s1, s2) | (s1, s2) ∈ pf |i} (1)

By considering only the edges in Pi, we can search for an update function
for vi independently of all other variables, while ensuring the global reachability
condition holds.

7.3 Final Update Functions

We can now search for the update function of variable vi, ui, independently of
all other variables. We fix the vi-labelled edges computed in the previous phase
and encode the search for ui as a Boolean satisfiability problem.

As before we add constraints to encode the representation of ui, and to
enforce the threshold condition. We fix each of the vi-labelled edges (s1, s2) ∈ Pi

to establish reachability, by adding a conjunction requiring that ui is compatible
with each of them: ui(s1) = s2(vi).

We search for satisfying assignments of the constraint variables encoding ui,
using an allsat procedure to extract all possible update functions for variable
vi. This gives rise to a set of update functions per variable and a set of Boolean
networks from the product of the set of update functions per variable.

We note that this final phase of the algorithm can fail to find update functions
for a variable vi, because there are no possible update functions compatible with
all of the path edges Pi that were computed in the previous phase. That is, while
each edge in Pi is individually compatible with some update function, there may
be no update function that is compatible with every edge in Pi. In order to
cope with this limitation, we can extract the minimal unsatisifiable core of the
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Data set Genes States Direct (seconds) Compositional (seconds)

CMP (synthetic) 11 214 25 77
Blood stem cells 21 753 Out of Memory 5114
Embryonic (66% of states) 33 956 Out of Memory 3364
Embryonic (full) 33 1448 Out of Memory 8709

Fig. 7. Performance of direct encoding and compositional algorithm on example data
sets.

Boolean formula, and search for replacement paths that exclude incompatible
combinations of edges. This step can be iterated until satisfying solutions are
found for all variables, or until no path can be found, implying that there are
no valid models.

By extending our search from the shortest paths between initial and final
node pairs in the directed graph to the k-shortest paths between pairs and incre-
mementally increasing k [26], we can increase the number of possible update
functions that we consider. In the limit, we will obtain all satisfying models.

An implementation of our algorithm, which is written in F# and uses
Z3 as the satisfiability solver, is available at https://github.com/swoodhouse/
SCNS-Toolkit. In Fig. 7 we present experimental results from running our imple-
mentation of the direct encoding from Sect. 6 and compositional algorithm on
four data sets: the small synthetic data set from Sect. 3, the large embryonic
experimental data set from Sect. 2, and a second experimental data set covering
blood stem cells. We also show results from rerunning on the embryonic data
set with a third of states removed. All experiments were performed on an Intel
Core i5 @ 1.70GHz with 8GB of RAM, using a single thread.

While the direct encoding synthesised a matching Boolean network on the
small synthetic data set faster than our compositional algorithm, it cannot scale
to the real experimental data sets, quickly running out of memory. The composi-
tional algorithm, on the other hand, can scale to handle real data sets of the sort
produced by our experimental collaborators. All experiments terminated within
a few hours, when running on a single thread. The compositional algorithm can
easily be parallelised over variables, which would further increase its efficiency.

8 Application to the Experimental Dataset

We now return to the experimental data set introduced in Sect. 2.
Recall that cell measurements were taken from four sequential developmental

time points, and that the state graph resulting from discretisation of the data
(Fig. 2) exhibited a clear separation between the earliest developmental time
point (states coloured blue) and the latest (states coloured red). We applied our
synthesis technique to this data, taking the initial states to be the states from
the first time point, and the final states to be the states from the latest time
point. For complete details, we direct the reader to [16].

The result of the synthesis was a set of possible Boolean update functions
for each of the 33 genes, with several genes having a uniquely identified update

https://github.com/swoodhouse/SCNS-Toolkit
https://github.com/swoodhouse/SCNS-Toolkit
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function. By applying standard techniques for the analysis of Boolean networks,
we found the stable state attractors and performed computational perturbations.
The synthesised network, along with the subsequent computational analysis led
to a set of predictions which were then tested experimentally. We found that
our results were robust when performing bootstrapping, removing a third of the
data at random and rerunning the synthesis algorithm.

Our experimental collaborators were able to validate key predictions made by
our analysis. The update function for one of the genes at the core of this network,
Erg, which directly activates many other genes, was tested experimentally by a
range of assays. Evidence was found that the activators specified in the gene’s
synthesised update function (Hoxb4 and Sox17 ) do indeed activate expression of
the gene, and furthermore in a fashion consistent with the Boolean “OR” logic of
the synthesised update function. This could be regarded as a “local” validation
of our model, testing two of the directed edges in the network.

Computational perturbations to another gene at the core of the network,
Sox7, indicated that when Sox7 was forced to always be expressed, stable states
corresponding to cells from the final developmental time point (blood progeni-
tors) no longer exist. Cell differentiation assays confirmed this prediction exper-
imentally, finding that when this gene was forced to be expressed, the number
of cells which normally emerge at this final time point is significantly reduced.
This can be thought of as a “global” validation of our model, as it is a prediction
about the behaviour of the whole network under a certain perturbation.

9 Related Work

Previous analyses of single-cell gene expression data have mostly been based
on statistical properties of the data viewed as a whole, such as the correlation
in the level of expression of pairs of genes [8,15]. Such analysis cannot recover
mechanistic Boolean logic, does not infer the direction of interactions and cannot
easily distinguish direct from indirect influence.

Boolean networks were introduced by Kauffman in order to study random
models of genetic regulatory networks [10]. They have since been applied in
a range of contexts, from modelling blood stem and progenitor differentiation
[2,13], to the yeast apoptosis network [11], to the network regulating pluripotency
in embryonic stem cells [9]. BDD-based algorithms for state-space exploration
and finding attractors of Boolean networks have been introduced [7,27].

Synthesis is the problem of producing programs or designs from their speci-
fications. In recent years much progress has been made on the usage of SAT and
SMT solvers for synthesis. Essentially, the existence of a program that solves a
certain problem is posed as a satisfiability query. Then, a solver tries to search
for a solution to the query, which corresponds to a program. For example, Srivas-
tava et al. [22,23] show that the capabilities of SMT solvers to solve quantified
queries enable the search for conditions and code fragments that match a given
specification. Similarly, Solar-Lezama et al. [21] build a framework for writing
programs with “holes” and letting a search algorithm find proper implementa-
tions for them. The approach of reactive synthesis [19] is similar to ours in the
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type of artefact that it produces. However, the techniques that we are using are
more related to those explained above. Recently, Beyene et al. [1] have shown
how constraint solving can be used also in the context of reactive synthesis.

Synthesis has recently been applied in the context of biology. Köksal et al. show
howto synthesise state-machine-likemodels fromgenemutation experiments using
a novel counterexample-guided inductive synthesis (CEGIS) algorithm [12]. Their
approach uses constraint solvers to search for program completions that match
given specifications, as explained above. Both the data and the type of model are
different to those dealt with here, which called for a new approach.

Recently, there have been several applications of synthesis to Boolean net-
works. Dunn et al. [6] and Xu et al. [25] show how to fit an existing static, topo-
logical regulatory network for embryonic stem cells to gene expression data in
order to obtain an executable Boolean network, under the assumption that exper-
imentally measured data represent stable states of the system. This assumption
may be appropriate for cell lines maintained in culture, but it does not adapt
well to developmental processes such as ours, where cells are transiting through
intermediate states in order to develop into a particular lineage.

Recent work of Karp and Sharan [20] shows how to synthesise Boolean net-
works given a topological network and a set of perturbation experiments, by
reduction to integer linear programming. In [17], Paoletti et al. synthesise a
related class of models (which incorporate timing and spatial information) from
perturbation data, via reducion to SMT. To the best of our knowledge, our app-
roach is the first to synthesise gene regulatory network models directly from raw
gene expression data, without the need of either genetic perturbation data or
a-priori information about the topology of the network.

10 Conclusions and Future Work

We presented a technique for synthesising Boolean networks from single–cell
resolution gene-expression data. This new and exciting type of data allows us to
consider the state of each cell separately, giving rise to “state snapshots”, which
we treat as the states of an asynchronous Boolean network. Our key insight is
that the update functions of each variable can be sought after separately, giving
rise to reasonably sized satisfiability queries. We then combine the single gene
update functions by considering the flow of time included in the data.

We are able to reconstruct rules from a manually curated Boolean network
and produce a set of possible Boolean networks for the given experimental data,
for which no similar curated Boolean network is available. The discussion with
biologists about this Boolean network led to a set of predictions, which were
then experimentally validated in the lab.

We are awaiting similar data from additional experiments to apply the same
technique to. At the same time, we are considering the usage of advanced
search techniques, as used in this paper, to the analysis of other types of high-
throughput data. Future work in the experimental domain includes the validation
of more of the links in our synthesised network, and the design of further gene
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perturbation experiments motivated by the results of computational perturba-
tions. An interesting question for future research is whether techniques like ours,
which achieve scalability by treating different aspects of a graph data structure
seperately, are applicable to other domains where graph–like data is generated.
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