Bss: A Phase-Bounded Model Checker
for Asynchronous Programs

Rupak Majumdar and Zilong Wang®™)

MPI-SWS, Kaiserslautern, Germany
{rupak,zilong}@mpi-sws.org

Abstract. A popular model of asynchronous programming consists of a
single-threaded worker process interacting with a task queue. In each step
of such a program, the worker takes a task from the queue and executes
its code atomically to completion. Executing a task can call “normal”
functions as well as post additional asynchronous tasks to the queue.
Additionally, tasks can be posted to the queue by the environment.

Bouajjani and Emmi introduced phase-bounding analysis on asynchro-
nous programs with unbounded FIFO task queues, which is a system-
atic exploration of all program behaviors up to a fixed task phase. They
showed that phase-bounded exploration can be sequentialized: given a
set of recursive tasks, a task queue, and a phase bound L > 0, one can
construct a sequential recursive program whose behaviors capture all
states of the original asynchronous program reachable by an execution
where only tasks up to phase L are executed. However, there was no
empirical evaluation of the method.

We describe our tool BBs that implements phase-bounding to analyze
embedded C programs generated from TinyOS applications, which are
widely used in wireless sensor networks. Our empirical results indicate
that a variety of subtle safety-violation bugs are manifested within a
small phase bound (3 in most of the cases). While our evaluation focuses
on TinyOS, our tool is generic, and can be ported to other platforms
that employ a similar programming model.

1 Introduction

In many asynchronous applications, a single-threaded worker process interacts
with a task queue. In each scheduling step of these programs, the worker takes a
task from the queue and executes its code atomically to completion. Executing
a task can call “normal” functions as well as post additional asynchronous tasks
to the queue. Additionally, tasks can be posted to the queue by the environ-
ment. This basic concurrency model has been used in many different settings:
in low-level server and networking code, in embedded code and sensor networks
[6], in smartphone programming environments such as Android or i0S, and in
Javascript. While the concurrency model enables the development of responsive
applications, interactions between tasks and the environment can give rise to
subtle bugs.

© Springer International Publishing Switzerland 2015

D. Kroening and C.S. P&sareanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 496-503, 2015.
DOI: 10.1007/978-3-319-21690-4_33

BBs: A Phase-Bounded Model Checker for Asynchronous Programs 497

Bouajjani and Emmi introduced phase-bounding [1]: a bounded systematic
search for asynchronous programs that explores all program behaviors up to a
certain phase of asynchronous tasks. Intuitively, the phase of a task is defined
as its depth in the task tree: the main task has phase 1, and each task posted
asynchronously by a task at phase ¢ has phase ¢ 4+ 1. Their main result is a
sequentialization procedure for asynchronous programs for a given fixed bound
L on the task phase.

In this paper, we describe our tool BBs! that implements phase-bounding
to analyze C programs generated from TinyOS applications, which are widely
used in wireless sensor networks. Our empirical results indicate that a variety of
subtle memory-violation bugs are manifested within a small phase bound (3 in
most of the cases). From our evaluation, we conclude that phase-bounding is an
effective approach in bug finding for asynchronous programs.

While our evaluation focuses on TinyOS, our tool is generic, and can be
ported to other platforms that employ a similar programming model. We leave
certain extensions, such as handling multiple worker threads, and the experi-
mental evaluation of this technique to other domains, such as smartphone appli-
cations or Javascript programs, for future work.

2 Sequentialization Overview

We now give an informal overview of Bouajjani and Emmi’s sequentialization
procedure. Given an asynchronous program, we first perform the following simple
transformation to reduce assertion checking to checking if a global bit is set: (1)
we add a global Boolean variable gError whose initial value is false; (2) we
replace each assertion assert(e) by gError = le; if(gError) return; and (3)
we add if (gError) return; at the beginning of each task’s body and after each
procedure call. The translation ensures that an assertion fails iff gError is true
at the end of main.

Intuitively, the sequentialization replaces asynchronous posts with “normal”
function calls. These function calls carry an additional parameter that specifies
the phase of the call: the phase of a call corresponding to an asynchronous post
is one more than the phase of the caller. The sequentialization maintains several
versions of the global state, one for each phase, and calls the task on the copy of
the global state at its phase. The task can immediately execute on that global
state, without messing up the global state at the posting task’s phase. Since
tasks are executed in FIFO order, notice that when two tasks t; and ty are
posted sequentially (at phase i, say), the global state after running ¢; is exactly
the global state at which ¢ starts executing. Thus, the copy of the global state
at phase i correctly threads the global state for all tasks executing at phase i.

The remaining complication is connecting the various copies of the global
state. For example, the global state when phase i starts is the same as the global
state at the end of executing phase i — 1, but we do not know what that state is

! BBs stands for Buffer phase-Bounded Sequentializer and can be downloaded at
https://github.com/zilongwang /bbs.

https://github.com/zilongwang/bbs

498 R. Majumdar and Z. Wang

(without executing phase i—1 first). Here, we use non-determinism. We guess the
initial values of the global state for each phase at the beginning of the execution.
At the end of the execution, we check that our guess was correct, using the then
available values of the global states at each phase. If the guess was correct, we
check if some copy of gError is set to true: this would imply a semantically
consistent run that had an assertion failure.

We now make the translation a bit more precise. Given a phase bound L € N,
i.e., the maximal number of phases to explore, the sequentialization consists of
four steps:

1. Track the phase of tasks at which they run in an execution. Intuitively, the
phase of main, the initial task, is 1, and if a task at phase i executes post p(e),
then the new task p is at phase 1 + 1. As an example, consider an error trace
in Fig. 1, task ¢y is at phase 1, and tasks t1,t2 are at phase 2. This tracking
can be done by augmenting each procedure’s parameter list with an integer
k that tracks the phase of the procedure. Consequently, we also replace each
normal synchronous procedure call p(e) by p(e, k), and each asynchronous
call post p(e) by post p(e, k + 1).

2. Replace each post p(e, k+ 1) by if (k < L) p(e, k+ 1);, meaning that if some
task at phase k posts the task p and k 4+ 1 does not exceed the phase bound
L, the task p is immediately called and runs at phase k+ 1 instead of putting
it into the task queue.

3. For each global variable g, create L copies of it, denoted by g¢[1],..., g[L]. Set
the initial value of the first copy g¢[1] to the initial value of g, and nondeter-
ministically guess the initial values of the other copies. For each statement of
a program, if g appears, then replace it by g[k]. Intuitively, the i-th copy of
global variables is used to record the evolution of global valuations along an
execution at phase 1.

4. Run the initial task ¢y at phase 1. When ty returns, for each phase i € [2, L],
enforce that the guessed initial values of the i-th copy are indeed equal to
the final values of the (i — 1)-th copy. Finally, a bug is found if some copy of
gError equals true.

Step 4 is better explained through an example. We present how a sequential-
ized execution in Fig. 2 is related to an error trace of Fig.1. Suppose that the
phase bound L = 2 and the above first three steps have been done correctly.

Consider segment (a) in Fig. 2 and segment (1) in Fig. 1. When task ¢, starts,
notice that the global state x in segment (1) and its first copy z[1] in segment
(a) are always the same because both are initialized to vg, and in each step of
their executions, the way that segment (1) modifies x is the same as the way
that segment (a) modifies [1]. In this case, we say that segment (a) uses the
first copy of the global state to “mimic” the evolution of the global state in
segment (1).

Since the last statement of segment (a) is if(k < L) p(e,k + 1); and the
current phase k = 1, segment (b) starts. Notice that segment (b) runs at phase
2 and only modifies the second copy of the global state z[2]. Additionally, if

BBs: A Phase-Bounded Model Checker for Asynchronous Programs 499

T=vg (1) =10 (2) T=V2 (3) T=v3

phase 1: @ 2 AN A
10 =01 T=voy
4 T=Y5 5y A=V
phase 2: T=04 5 @) ()%O
t1 T=0 12

Fig.1. An error trace before sequentialization. Circles denote the starting or end-
ing points of tasks. Solid lines denote the execution of tasks. Triangles with dashed
arrows indicate a post statement that posts a task to the queue; triangles without
dashed arrows are statements right after post statements. The cross represents where
the assertion fails. This error trace is read as follows: task to runs, posts tasks t1 and t2
to the task queue, and completes. Then ¢; and ¢2 runs one after another. We divided
the error trace into execution segments (1)—(5), ordered by their execution order. Val-
ues of the global state = at each segment are shown. E.g., when segment (1) starts and
ends, © = vo and x = v1, respectively. When segment (4) starts and ends, x = v4 and
T = vs, respectively. Note that due to the FIFO order, vs = va4.

phase 1: x[l}c:vo (@)= (c) all)=vy (e)z[l]=vs
. 0 z[l]=v,
x[2]=x* (b)

hase 2: _
p guess vy 2[2=vs

Fig. 2. The sequentialized error trace after sequentialization. Values of each copy of the
global state x at each segment are shown. E.g., when segment (a) starts and ends, the
first copy x[1] = vo and z[1] = v1, respectively. When segment (b) starts, the second
copy x[2] is guessed to vs. When segment (b) ends, z[2] = vs.

we assume that the initial value of x[2] are guessed correctly, i.e., vy, shown in
Fig. 2, then segment (b) uses the second copy of the global state to “mimic” the
evolution of the global state in segment (4).

After segment (b) completes, the control goes back to phase 1 and segment
(c) starts. Note that segment (b) does not modify the first copy x[1], and hence
when segment (c) starts, the value of z[1] is still v1. As a result, segment (c) uses
the first copy of the global state to “mimic” the evolution of the global state in
segment (2).

After segment (c) completes, segment (d) starts. Note that since segment (c)
does not modify the second copy x[2], the value of x[2] is still v5 at the beginning
of segment (d), which is the same as the value of x at the beginning of segment
(5). Hence segment (d) uses x[2] to mimic x in segment (5). When segment (d)
completes, segment (e) starts to use the first copy x[1] to mimic segment (3).

Finally, When segment (e) completes, by using assume statements, we enforce
that the initial value for the second copy z[2] is indeed guessed to vy in order
to satisfy the FIFO order imposed by the task queue. After the enforcement,
the sequential execution in Fig. 2 and the error trace in Fig. 1 reach exactly the
same set of global states. Hence we conclude that a bug is found.

500 R. Majumdar and Z. Wang

3 Experimental Evaluation

We first provide a brief introduction to TinyOS applications. We then present
the design of BBS and elaborate on our experimental results.

3.1 TinyOS Execution Model

TinyOS [7] is a popular operating system designed for wireless sensor networks.
It uses nesC [6] as the programming language and provides a toolchain that
translates nesC programs into embedded C code and then compiles the C code
into executables which are deployed on sensor motes to perform operations such
as data collection.

TinyOS provides a programming language (nesC) and an execution model
tailored towards asynchronous programming. A nesC program consists of tasks
and interrupt handlers. When the program runs, TinyOS associates a scheduler,
a stack, and a task queue with it, and starts to run the “main” task on the stack.
Tasks run to completion and can post additional tasks into the task queue. When
a task completes, the scheduler dequeues the first task from the task queue, and
runs it on the stack.

Hardware interrupts may arrive at any time (when the corresponding inter-
rupt is enabled). For instance, a timer interrupt may occur periodically so that
sensors can read meters, or a receive interrupt may occur to notice sensors that
packets arrived from outside. When an (enabled) interrupt occurs, TinyOS pre-
empts the running task and executes the corresponding interrupt handler defined
in the nesC program. An interrupt handler can also post tasks to the task queue,
which is used as a mechanism to achieve deferred computation and hide the
latency of time-consuming operations such as I/O. Once the interrupt handler
completes, the interrupted task resumes.

3.2 BBs Overview

We implemented BBS to perform phase-bounded analysis for TinyOS applica-
tions. BBS checks user-defined assertions as well as two common memory viola-
tions in C programs: out-of-bound array accesses (OOB) and null-pointer deref-
erence.

The workflow of BBs is shown in Fig. 3. First, given a TinyOS application
consisting of nesC files, the nesC compiler nescc combines them together and
generates a self-contained embedded C file. nescc supports many mote platforms
and generates different embedded C code based on platforms. In our work, we
let nescc generate embedded C code for MSP430 platforms.

BBs takes as inputs the MSP430 embedded C file containing assertions and
a phase bound, and executes three modules.

The first module performs preprocessing and static analysis on the C pro-
gram to instrument interrupts and assertions. Interrupt handlers are obtained
from nescc-generated attributes in the code. A naive way to instrument inter-
rupts is to insert them before each statement of the C program. However, if a

BBs: A Phase-Bounded Model Checker for Asynchronous Programs 501

nesC files II

MSP430
embedded C

(

—_—

i 1
Preplfocessmg.& sequentialization }-’ CBMC |
static analysis

\

phase bound

Fig. 3. The workflow of BBs

statement does not have potentially raced variables?, we do not need to instru-
ment interrupts before it, because the execution of such statements commutes
with the interrupt handler: either order of execution leads to the same final state.
Thus BBs performs static analysis to compute potentially raced variables and
instruments interrupts accordingly.

The second module implements the sequentialization algorithm. The result-
ing sequential C program is fed into the bounded model checker CBMC [3,4],
which outputs either an error trace or “program safe” up to the phase bound
and the bound imposed by CBMC.

3.3 Experimental Experience with BBS

We used BBS to analyze eight TinyOS applications in the apps directory from
TinyOS’s source tree. These benchmarks cover most of the basic functionali-
ties provided by a sensor mote such as timers, radio communication, and serial
transmission.

In Table1, we summarize the size and complexity of these benchmarks in
terms of (1) lines of code in the cleanly reformatted ANSI C program after the
preprocessing stage, (2) the number of types of tasks that can be posted, (3)
the number of types of hardware interrupts that are expected, (4) the number
of global variables as well as the number of potentially raced variables (found
by the static analysis).

In each of the first three benchmarks, we manually injected a realistic memory
violation bug that programmers often make. The rest five benchmarks were
previously known to be buggy [2,5,8,9]. The TestSerial benchmark contains two
bugs and each of the rest has one bug. We ran BBS on these benchmarks to see
whether it could find these bugs efficiently within small phase bounds.

Experimental Results. All experiments were performed on a 2 core Intel Xeon
X5650 CPU machine with 64GB memory and 64bit Linux (Debian/Lenny).
Table 2 lists the analysis results, showing that BBS successfully uncovered all
bugs that are injected in the first three benchmarks, as well as all previously
known bugs in the rest five benchmarks. We report the type of bugs, the minimal

2 A potentially raced variable is accessed by both tasks and interrupt handlers, and
at least one access from both is a write.

502 R. Majumdar and Z. Wang

Table 1. TinyOS benchmarks

Benchmark LOC | Tasks | Interrupt | Global | Potentially raced
types variables | global variables
TestAdc 6738 | 9 2 100 19
TestEui 7467 | 13 3 138 17
Test AM 11259 | 13 5 154 27
BlinkFail 3153| 3 1 64 5
TestSerial 6590 | 10 3 127 17
TestPrintf 6882 | 13 3 136 18
TestDissemination | 13004 | 17 5 166 37
TestDip 17091 | 25 7 243 49

Table 2. Experimental results

Benchmark Bug type Min phase Time Error trace
Seq. (s) | CBMC (s) | (in steps)
TestAdc NullPtr 2 3.92 15.92 2014
TestEui OOB 2 3.97 12.78 9425
Test AM NullPtr 3 5.88 342.99 12925
BlinkFail OOB 3 2.55 2.69 3773
TestSerial (0]0):] 4 3.75 23.92 13531
User-defined | 4 39.01 14161
TestPrintf (0]0):] 3 3.78 30.32 14154
TestDissemination | NullPtr 3 5.95 843.68 17307
TestDip NullPtr 3 7.69 681.81 20274

phases that are required to uncover the bugs, the time used in both sequential-
ization and CBMC, and the lengths of error traces. Notice that all bugs were
found within small phase bounds, that is, at most 4 phases. This result indicates
that the phase-bounded approach effectively uncovers interesting bugs within
small phase bounds for realistic C programs.

References

1. Bouajjani, A., Emmi, M.: Bounded phase analysis of message-passing programs.
STTT 16(2), 127-146 (2014)

2. Bucur, D., Kwiatkowska, M.Z.: Software verification for TinyOS. In: Proceedings of
the 9th ACM/IEEE International Conference on Information Processing in Sensor
Networks, IPSN 2010, pp. 400-401, ACM (2010)

3. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168-176. Springer,
Heidelberg (2004)

BBs: A Phase-Bounded Model Checker for Asynchronous Programs 503

. Clarke, E., Kroening, D., Yorav, K.: Behavioral consistency of C and Verilog pro-
grams using bounded model checking. In: Proceedings of the 40th Annual Design
Automation Conference, DAC 2003, pp. 368-371. ACM, New York, NY, USA (2003)
. Cooprider, N., Archer, W., Eide, E., Gay, D., Regehr, J.: Efficient memory safety
for TinyOS. In: Proceedings of the 5th International Conference on Embedded Net-
worked Sensor Systems, SenSys 2007, pp. 205-218. ACM, New York, NY, USA
(2007)

. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
language: a holistic approach to networked embedded systems. In: Proceedings of
the ACM SIGPLAN 2003 Conference on Programming Language Design and Imple-
mentation, PLDI 2003, pp. 1-11. ACM, New York, NY, USA (2003)

. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for networked sensors. In: Proceedings of the Ninth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS IX, pp. 93-104. ACM, New York, NY, USA (2000)

. Li, P., Regehr, J.: T-check: bug finding for sensor networks. In: Proceedings of
the 9th ACM/IEEE International Conference on Information Processing in Sensor
Networks, IPSN 2010, pp. 174-185. ACM, New York, NY, USA (2010)

. Safe TinyOS. http://docs.tinyos.net/index.php/Safe_TinyOS

http://docs.tinyos.net/index.php/Safe_TinyOS

	BBS: A Phase-Bounded Model Checker for Asynchronous Programs
	1 Introduction
	2 Sequentialization Overview
	3 Experimental Evaluation
	3.1 TinyOS Execution Model
	3.2 BBS Overview
	3.3 Experimental Experience with BBS

	References

