
Automatic Identification of Below-Knee
Residuum Anatomical Zones

Giorgio Colombo1, Giancarlo Facoetti2(&), Caterina Rizzi3,
and Andrea Vitali3

1 Department of Mechanical Engineering, Polytechnic of Milan, Milan, Italy
giorgio.colombo@polimi.it
2 BigFlo S.R.L. (BG), Dalmine, Italy

giancarlo.facoetti@bigflo.it
3 Department of Management, Information and Production Engineering,

University of Bergamo (BG), Dalmine, Italy
{caterina.rizzi,andrea.vitali1}@unibg.it

Abstract. The research work presented in this paper is part of an innovative
framework that deals with the design process of lower limb prostheses. The
quality of the whole prosthesis depends on the comfort of the socket, which
realizes the interface between the patient body and the mechanical parts. We
developed a CAD system, named Socket Modelling Assistant that guides the
user during the design of the socket, exploiting domain knowledge and design
rules. In this work we present a preliminary study that describes the imple-
mentation of a software module able to automatically identify the critical areas
of the residuum to adequately modify the socket model and reach the optimal
shape. Once the critical areas have been identified, the Socket Modelling
Assistant can apply proper geometry modifications, in order to create the load
and off-load zones for a good pressure distribution over the residual limb.
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1 Introduction

This research work is part of a project whose aim is to develop an innovative design
framework for lower limb prosthesis design [1]. In particular, we refer to the module,
named Socket Modelling Assistant (SMA), that permits to replicate the traditional,
handmade socket design process and embeds design rules and orthopedic technicians’
knowledge.

One of the most important steps of socket design is the identification of critical
zones that have to be modified to ensure the realization of a comfortable socket. In fact,
due to the anatomical characteristic of the residuum, the appropriate pressure over
specific areas is crucial to provide the right fit and prevent pain. We focused the
attention on below knee residuum, which is characterized by the following critical
zones (Fig. 1): patella, medial tibia, patella tendon, lateral femoral condyle, crest of the
tibia, tibia terminal, head of the fibula, lateral tibia, popliteal depression and fibula end
[2, 3].
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Therefore, our main goal has been to develop a module to be integrated within
SMA that can identify automatically the mentioned areas. Once they are recognized,
SMA can perform the corresponding deformations, in automatic way, in order to create
the so-called load and off-load socket zones [1].

The implemented recognition algorithm exploits a supervised learning approach
[4], in which a number of artificial neural networks have been trained for the recog-
nition of a specific anatomical zone. In particular, we focused on the automatic rec-
ognition of the patella, the patella tendon and the tibia terminal.

2 Training Dataset

Artificial Neural Networks (ANN) are machine learning computational models inspired
by the biological brain and are useful to approximate complex functions that depend on
a large number of inputs [5].

In supervised learning, a given ANN is trained with a samples dataset consisting of
a number of input data and their corresponding correct output (usually
computed/labeled by human experts). After the training, the ANN is able to estimate
the transfer function between input and output and to generalize its response.

In our specific case, the training dataset is composed by a set of 3D models of the
residuum (STL files), on which prosthetists have labeled the anatomical zones. In
particular, in order to carry out preliminary tests, experts marked the patella center, the
patella tendon and the tibia terminal (Fig. 2).

One of the drawbacks of supervised learning is that it requires a good number of
training data. This is an important issue because, due the nature of our context, it’s
quite challenging to get a sufficient amount of lower limb residuum models.

We used 5 models as seed shapes to generate new residuum models. Performing
random scaling and skewing geometric operations on each seed have generated a new
set of models. The generated models are synthetic but are useful to train a recognition
system, because they respect the proportions and shapes of a real human limb.

Fig. 1. Anatomical zones of below knee residuum
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Generation of new synthetic data by performing geometric transformations on real data
is a useful technique used, for example, in optical character recognition systems [8].

Models generated from the first 4 seeds have been used to train the neural network
(with a proportion of 80 % for the training set, and 20 % for the validation set), while
the models generated from the fifth seed have been used to test the performance of the
networks on new cases. The models distribution for the training, validation and test
dataset is represented in Table 1.

3 Features Extraction

In order to convert the 3D geometric data in an input suitable for a neural network, we
created a grid of 20 × 25 points in correspondence of the frontal view. Then, we casted
a ray, perpendicular to the grid (Z axis), from each of the grid points, computing its
intersection on the residuum model surface (Fig. 3).

The distances between the grid points plane and the intersection points represent
our features, thus the neural network input is represented by a matrix of 20 × 25
distances. Distances have been normalized in −1.0 /+ 1.0 range (Fig. 4).

In a given dataset sample, a correct output corresponds to each input. In this case,
the output consists of the position of the marker that experts assigned during the
manual labeling phase.

Specifically, the output is represented as X and Y coordinates on the grid, in
correspondence of the centre of a given anatomical zone (assuming the Z axis per-
pendicular to the grid).

Fig. 2. Patella, patella tendon and tibia terminal labelled by experts
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Table 1. Dataset creation

Seed Scaling Skewing New models Dataset

Seed 1 x, y, z x, y, z 50 Training set 80 %
Validation set 20 %Seed 2 x, y, z x, y, z 50

Seed 3 x, y, z x, y, z 50
Seed 4 x, y, z x, y, z 50
Seed 5 x, y, z x, y, z 10 Test set

Fig. 3. Ray casting on 3d model surface

Fig. 4. Features extraction
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4 Neural Network Architecture and Training

The neural network type used to recognize the anatomical zones is a feed-forward
network [6] composed by three layers (Fig. 5). The input layer has 500 neurons
(20 × 25 grid points), the hidden layer has 30 neurons and the output layer has 2
neurons, that represent the X and Y coordinates of the centre of the anatomical zone to
be identified.

The activation function of the hidden neurons is the sigmoid function, while the
input and output neurons have a linear activation function. The network has been
trained with the back propagation algorithm [6].

For each anatomical area to be identified (i.e., patella, patella tendon and tibia
terminal), a specific neural network has been trained with the back propagation
algorithm.

Since the size of the training dataset was small, to avoid over-fitting we adopted the
early-stopping approach. We trained several networks, and stopped the training when
the validation error started to increase [7]. Then we kept the network with the minimum
validation error. Figures 6, 7, 8 show the training error and validation error during the
training epochs, respectively for the patella, patella tendon and tibia terminal networks.

Fig. 5. Neural network architecture
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5 Results

Once the neural networks have been trained, we tested their performance on models
generated from the seed 5. The test error represents the distance between a given
anatomical area marker position, estimated by the network, and the real marker posi-
tion, labeled by human experts. Table 2 shows the test errors, that is a measure of the
performance of the networks. The test dataset has been composed by 10 models labeled
by human experts, and not used during the training.

Fig. 6. Neural network for patella area recognition training and validation error graph

Fig. 7. Neural network for patella tendon area recognition training and validation error graph
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Figure 9 shows the markers positions of each anatomical area: red markers have
been placed by humans experts, while green markers have been placed on the coor-
dinates estimated by the neural networks. Considering the application field, the per-
formances of the neural network are good, as stated by domain experts.

Fig. 8. Neural network for tibia terminal area recognition training and validation error graph

Fig. 9. Patella, patella tendon and tibia terminal predicted (green) and real (red) marker
positions.
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6 Conclusions

In this paper, we presented a system able to automatically recognize the important
anatomical areas of a below-knee residuum. In particular, the system deals with the
patella, the patella tendon and the tibia terminal zones. Once the anatomical areas have
been identified, correct geometric modification can be applied, in order to create load
and off-load zones on the residuum.

This is a preliminary work to test the validity of the approach, especially con-
cerning the extraction of the learning features from the 3D model of the residual limb.

Results are promising, however we have planned to develop further the learning
model, expanding the training dataset and adding new learning features. It could be
worth to investigate the generation of new synthetic data by merging operation: cre-
ating a new residuum model by blending the geometries of two existing models.

Once the recognition system will be embedded into the Socket Modelling Assistant,
new learning data can be acquired. During the design process, the system identifies and
marks the anatomical areas position; the user can accept the automatic choice of the
system, or can manually refine the position of the markers, in order to get more
precision. This operation generates a new sample learning data, useful to train further
the recognition algorithm. We have planned to apply the recognition algorithm also to
above knee residuum.
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