Skip to main content

Degradation: Data Analysis and Analytical Modeling

  • Chapter
  • First Online:
Reliability and Life-Cycle Analysis of Deteriorating Systems

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

A central element in life-cycle modeling of engineered systems is the appropriate understanding, evaluation, and modeling of degradation. In this chapter we first provide a formal definition and a conceptual framework for characterizing system degradation over time. Afterward, we discuss the importance of actual field data analysis and, in particular, we present a conceptual discussion on data collection. We also present briefly the basic concepts of regression analysis, which might be considered the first and simplest approach to constructing degradation models. Regression analysis will be used later to obtain estimates of the parameters of degradation models. As an example, the special case of estimating the parameters of the gamma process (see Chap. 5) is presented. This chapter is not intended as a comprehensive discussion on degradation data analysis, as this topic has been widely studied in a variety of different research fields, and many tools and procedures are available for modeling degradation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data obtained from the Materials lab in the Department of Civil & Environmental Engineering at Los Andes University—Fatigue tests that follow the norm UNE-EN-12697-24:2006+A1 [38].

References

  1. W.Q. Meeker, L.A. Escobar, Statistical Methods for Reliability Data (Wiley, New York, 1998)

    MATH  Google Scholar 

  2. J.D. Kalbfleisch, R.L. Prentice, The Statistical Analysis of Failure Time Data (Wiley, New York, 1980)

    MATH  Google Scholar 

  3. M. Ben-Akiva, R. Ramaswamy, An approach for predicting latent infrastructure facility deterioration. Transp. Sci. 27(2), 174–193 (1993)

    Article  MATH  Google Scholar 

  4. S. Madanat, R. Mishalani, W.H.W. Ibrahim, Estimation of infrastructure transition probabilities from condition rating data. J. Infrastruct. Syst., ASCE 1(2), 120–125 (1995)

    Article  Google Scholar 

  5. B.S. Everitt, An Introduction to Latent Variable Models (Chapman and Hall, London, 1984)

    Book  MATH  Google Scholar 

  6. M. Ben-Akiva, F. Humplick, S. Madanat, R. Ramaswamy, Latent performance approach to infrastructure management. Transp. Res. Rec. 1311, 188–195 (1991)

    Google Scholar 

  7. M. Ben-Akiva, F. Humplick, S. Madanat, R. Ramaswamy, Infrastructure management under uncertainty: the latent performance approach. ASCE J. Transp. Eng. 119, 43–58 (1993)

    Article  Google Scholar 

  8. L. Nam, B.T. Adey, D.N. Fernando, Optimal intervention strategies for multiple objects affected by manifest and latent deterioration processes, in Structure and Infrastructure Engineering, 1–13 (2014)

    Google Scholar 

  9. B.R. Ellingwood, Y. Mori, Probabilistic methods for condition assessment, life prediction of concrete structures in nuclear power plants. Nucl. Eng. Des. 142, 155–166 (1993)

    Article  Google Scholar 

  10. Y. Mori, B. Ellingwood, Maintaining reliability of concrete structures. I: role of inspection/repair. J. Struct., ASCE, 120(3), 824–835, (1994)

    Google Scholar 

  11. D.M. Frangopol, M.J. Kallen, M. van Noortwijk, Probabilistic models for life-cycle performance of deteriorating structures: review and future directions. Program. Struct. Eng. Mater. 6(4), 197–212 (2004)

    Article  Google Scholar 

  12. A. Petcherdchoo, J.S. Kong, D.M. Frangopol, L.C. Neves, NLCADS (New Life-Cycle Analysis of Deteriorating Structures) User’s manual; a program to analyze the effects of multiple actions on reliability and condition profiles of groups of deteriorating structures. Engineering and Structural Mechanics Research Series No. CU/SR-04/3, Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder Co (2004)

    Google Scholar 

  13. E. Çinlar, Z.P. Bazant, E. Osman, Stochastic process for extrapolating concrete creep. J. Eng. Mech. Div. 103(EM6), 1069–1088 (1977)

    Google Scholar 

  14. C. Karlsson, W.P. Anderson, B. Johansson, K. Kobayashi, The Management and Measurement of Infrastructure: Performance, Efficiency and Innovation (New Horizons in Regional Science) (Edward Elgar Publishing, Northampton, 2007)

    Google Scholar 

  15. C. Valdez-Flores, R.M. Feldman, A survey of preventive maintenance models for stochastically deteriorating single unit systems. Nav. Res. Logist. Q. 36, 419–446 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. D.-G. Chen, J. Sun, K.E. Peace, Interval-Censored Time-to-Event Data: Methods and Applications (Chapman & Hall/CRC Biostatistics Series, Boca Raton, 2012)

    Book  MATH  Google Scholar 

  17. M.M. Desu, D. Raghavarao, Nonparametric Statistical Methods For Complete and Censored Data (Chapman & Hall/CRC Biostatistics Series, Boca Raton, 2003)

    MATH  Google Scholar 

  18. D.R. Helsel, Non-detects and Data Analysis: Statistics for Censored Environmental Data (Wiley, New Jersey, 2004)

    Google Scholar 

  19. W. Nelson, Applied Life Data Analysis (Wiley, New York, 1982)

    Book  MATH  Google Scholar 

  20. K.B. Misra, Reliability Analysis and Prediction: A Methodology Oriented Treatment (Elsevier, Amsterdam, 1992)

    MATH  Google Scholar 

  21. P.A. Tobias, D.C. Trindade, Applied Reliability, 2nd edn. (Van Nostrand, Amsterdam, 1995)

    MATH  Google Scholar 

  22. M.S. Nikulin, N. Limnios, N. Balakrishnan, W. Kahle, C. Huber-Carol, Advances in Degradation Modeling: Applications to Reliability, Survival Analysis and Finance, Statistics for Industry Technology (Birkhauser, Boston, 2010)

    Book  MATH  Google Scholar 

  23. B. Caicedo, J.A. Tristancho, L. Torel, Climatic chamber with centrifuge to simulate different weather conditions. Geotech. Test. J. 35(1), 159–171 (2012)

    Google Scholar 

  24. J. Kastner, E. Arnold, When can a computer simulation act as substitute for an experiment: a case study from chemistry, in Stuttgart Research Centre for Simulation Technology (SRC SimTech), pp. 1–18 (2011)

    Google Scholar 

  25. B. Anouk, S. Franceschelli, C. Imbert, Computer simulations as experiments. Synthese 169, 557–574 (2009)

    Article  MathSciNet  Google Scholar 

  26. R. Frigg, J. Reiss, The philosophy of simulation: hot new issues or same old stew? Synthese 169, 593–613 (2009)

    Article  MathSciNet  Google Scholar 

  27. M. Morrison, Models, measurement and computer simulation: the changing face of experimentation. Philos. Stud. 143, 33–57 (2009)

    Article  Google Scholar 

  28. E. Winsberg, Science in the Age of Computer Simulation (The University of Chicago Press, Chicago and London, 2010)

    Book  Google Scholar 

  29. A. Haldar, Recent Developments in Reliability-Based Civil Engineering (World Scientific Press, New Jersey, 2006)

    Book  Google Scholar 

  30. D.A. Ratkowsky, Nonlinear Regression Modeling: A Unified Practical Approach (Marcel Dekker, New York, 1983)

    MATH  Google Scholar 

  31. A.H.-S. Ang, W.H. Tang, Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering. (Wiley, New York, 2007)

    Google Scholar 

  32. C.J. Lu, W.Q. Meeker, Using degradation measures to estimate a time to failure distribution. Technometrics 34, 161–174 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Caro, A. Diaz, D. Rojas, H. Nuez, A micro-mechanical model to evaluate the impact of air void content and connectivity in the oxidation of asphalt mixtures. Construct. Build. Mater. 61, 181–190 (2014)

    Google Scholar 

  34. N.T. Kottegoda, R. Rosso, Probability, Statistics and Reliability for Civil and Environmental Engineers (McGraw Hill, New York, 1997)

    Google Scholar 

  35. B.M. Ayyub, R.H. McCuen, Probability Statistics and Reliability for Engineering and Statistics, 2nd edn. (Chapman & Hall/CRC Press, Boca Raton, 2003)

    MATH  Google Scholar 

  36. G.A.F. Seber, C.J. Wild, Nonlinear Regression (Wiley, New York, 1989)

    Book  MATH  Google Scholar 

  37. D.M. Bates, D.G. Watts, Nonlinear Regression Analysis and Its Applications (Wiley, New York, 1988)

    Book  MATH  Google Scholar 

  38. Technical committee AEN/CTN-41, Bituminous mixtures. test methods for hot mix asphalt. Part 24: Resistance to fatigue.AENOR—Asociacin Espaola de Normalizacin y certificacin, Madrid (2007)

    Google Scholar 

  39. J.M. Van Noortwijk, A survey of the application of gamma processes in maintenance. Reliab. Eng. Syst. Saf. 94, 2–21 (2009)

    Article  Google Scholar 

  40. J.M. van Noortwijk, A survey of the application of gamma processes in maintenance. Reliab. Eng. Syst. Saf. 94, 2–21 (2009)

    Article  Google Scholar 

  41. G.J.C.M. Hoffmans, K.W. Pilarczyk, Local scour downstream of hydraulic structures. Hydraul. Eng. 12(14), 326–340 (1995)

    Article  Google Scholar 

  42. T. Nakagawa, Maintenance Theory of Reliability (Springer, London, 2005)

    Google Scholar 

  43. H. Streicher, A. Joanni, R. Rackwitz, Cost-benefit optimization and risk acceptability for existing, aging but maintained structures. Struct. Saf. 30, 375–393 (2008)

    Article  Google Scholar 

  44. M. Sánchez-Silva, G.-A. Klutke, D. Rosowsky, Life-cycle performance of structures subject to multiple deterioration mechanisms. Struct. Saf. 33(3), 206–217 (2011)

    Google Scholar 

  45. W. Harper, J. Lam, A. Al-Salloum, S. Al-Sayyari, S. Al-Theneyan, G. Ilves, K. Majidzadeh, Stochastic optimization subsystem of a network-level bridge management system. Transportation Research Record, page 1268 (1990)

    Google Scholar 

  46. S. Gopal, K. Majidzadeh, Application of Markov decision process to level-of service-based maintenance systems. Transp. Res. Rec. 1304, 12–18 (1991)

    Google Scholar 

  47. Y. Kleiner, Scheduling inspection, renewal of large infrastructure assets. J. Infrastruct. Syst., ASCE 7(4), 136–143 (2001)

    Article  Google Scholar 

  48. R.G. Mishalani, S.M. Madanat, Computation of infrastructure transition probabilities using stochastic duration models. J. Infrastruct. Syst., ASCE 8(4), 139–148 (2002)

    Article  Google Scholar 

  49. V.M. Guillaumot, P.L. Durango, S. Madanat, Adaptive optimization of infrastructure maintenance and inspection decisions under performance model uncertainty. ASCE Infrastruct. Syst. 9(4), 133–139 (2003)

    Article  Google Scholar 

  50. O. Kubler, M.H. Faber, Optimal design of infrastructure facilities subject to deterioration, in Proceedings of the ICASP’03 Der Kiureighian, Madanat & Pestana (Eds), 1031–1039 (2003)

    Google Scholar 

  51. M.D. Pandey, Probabilistic models for condition assessment of oil and gas pipelines. Int. J. Non-Destruct. Test. Eval. 31(5), 349–358 (1998)

    Google Scholar 

  52. D. Straub, Stochastic modeling of deterioration processes through dynamic Bayesian networks. J. Eng. Mech., ASCE 135(10), 1089–1098 (2009)

    Article  Google Scholar 

  53. D. Straub, D. Kiureghian, Reliability acceptance criteria for deteriorating elements of structural systems. J. Struct. Eng., ASCE 137(12), 1573–1582 (2011)

    Article  Google Scholar 

  54. P. Thoft-Christensen, Reliability profiles for concrete bridges, in Struct. Reliab. Bridge Eng., ed. by D.M. Frangopol, G. Hearn (McGraw-Hill, New York, 1996)

    Google Scholar 

  55. A.S. Nowak, C.H. Park, M.M. Szerszen, Lifetime reliability profiles for steel girder bridges, in Optimal Perform. Civil Infrastruct. Syst., ed. by D.M. Frangopol (ASCE, Reston, Virginia, 1998), pp. 139–154

    Google Scholar 

  56. P. Thoft-Christensen, Assessment of the reliability profiles for concrete bridges. Eng. Struct. 20(11), 1004–1009 (1998)

    Article  Google Scholar 

  57. J.S. Kong, D.M. Frangopol, Life-cycle reliability-based maintenance cost optimization of deteriorating structures with emphasis on bridges. J. Struct. Eng. 129(6), 818–828 (2003)

    Article  Google Scholar 

  58. R.E. Melchers, C.Q. Li, W. Lawanwisut, Probabilistic modeling of structural deterioration of reinforced concrete beams under saline environment corrosion. Struct. Saf. 30(5), 447–460 (2008)

    Article  Google Scholar 

  59. S. Suresh, Fatigue of Materials, 2nd edn. (Cambridge University Press, Edimburgh, 1998)

    Google Scholar 

  60. V.V. Bolotin, Mechanics of Fatigue, Mechanical and Aerospace Engineering Series (CRC, Boca Raton, 1999)

    Google Scholar 

  61. A. Fatemi, Metal Fatigue in Engineering (Wiley, New York, 2000)

    Google Scholar 

  62. R. Lundstrom, J. Ekblad, U. Isacsson, R. Karlsson, Fatigue modeling as related to flexible pavement design, road materials and pavement design: state of the art. Road Mater. Pavement Des. 8(2), 165–205 (2007)

    Google Scholar 

  63. E. Masad, V.T.F.C. Branco, N.L. Dallas, R.L. Lytton, A unified method for the analysis of controlled-strain and controlled-stress fatigue testing. Int. J. Pavement Eng. 9(4), 233–243 (2007)

    Article  Google Scholar 

  64. R.E. Melchers, Pitting corrosion of mild steel in marine immersion environment-1: maximum pit depth. Corrosion (NACE) 60(9), 824–836 (2004)

    Article  Google Scholar 

  65. R.E. Melchers, Pitting corrosion of mild steel in marine immersion environment-2: variability of maximum pit depth. Corrosion (NACE) 60(10), 937–944 (2004)

    Article  Google Scholar 

  66. R.E. Melchers, The effect of corrosion on the structural reliability of steel offshore structures. Corros. Sci. 47, 2391–2410 (2005)

    Article  Google Scholar 

  67. P.R. Roberge, W. Revie, Corrosion Inspection and Monitoring (Wiley, New York, 2007)

    Google Scholar 

  68. D. Val, M. Stewart, Decision analysis for deteriorating structures. Reliab. Eng. Syst. Saf. 87, 377–385 (2005)

    Article  Google Scholar 

  69. Y. Liu, R.E. Weyers, Modeling the time-to-corrosion cracking of the cover concrete in chloride contaminated reinforced concrete structures. ACI Mater. 95, 675–681 (1988)

    Google Scholar 

  70. E. Bastidas, P. Bressolette, A. Chateauneuf, M. Sánchez-Silva, Probabilistic lifetime assessment of RC structures subject to corrosion-fatigue deterioration. Struct. Saf. 31, 84–96 (2009)

    Article  Google Scholar 

  71. E. Bastidas, M. Sánchez-Silva, A. Chateauneuf, M.R. Silva, Integrated reliability model of biodeterioration and chloride ingress for reinforced concrete structures. Struct. Saf. 20(2), 110–129 (2007)

    Google Scholar 

  72. M. Sánchez-Silva, D.V. Rosowsky, Biodeterioration of construction materials: state of the art and future challenges. J. Mater. Civil Eng., ASCE 20(5), 352–365 (2008)

    Article  Google Scholar 

  73. Y.H. Huang, Pavement Analysis and Design, 2nd edn. (Pearson/Prentice Hall, New Jersey, 1998)

    Google Scholar 

  74. A.T. Papagiannakis, E. Masad, Pavement Design and Materials (Wiley, New Jersey, 2009)

    Google Scholar 

  75. S. Caro, E. Masad, A. Bhasin, D. Little, Moisture susceptibility of asphalt mixtures, part I: mechanisms. Int. J. Eng. Pavements 9(2), 81–98 (2008)

    Article  Google Scholar 

  76. R.G. Hicks, Moisture damage in asphalt concrete: synthesis of highway practice. Rep. No. NCHRP 175, National Cooperative Highway Research Program (1991)

    Google Scholar 

  77. T. Nakagawa, Shock and Damage Models in Reliability (Springer, London, 2007)

    MATH  Google Scholar 

  78. M.S. Finkelstein, V.I. Zarudnij, A shock process with a non-cumulative damage. Reliab. Eng. Syst. Saf. 71, 103–107 (2001)

    Article  Google Scholar 

  79. J.D. Esary, A.W. Marshall, F. Proschan, Shock models and wear processes. Ann. Prob. 1, 627–649 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  80. M. Abdel-Hameed, Life distribution properties of devices subject to a pure jump damage process. J. Appl. Prob. 21, 816–825 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  81. J. Grandell, Doubly Stochastic Poisson Process Lecture Notes In Mathematics 529 (Springer, New York, 1976)

    Book  Google Scholar 

  82. R.E. Barlow, F. Proschan, Mathematical Theory of Reliability (Wiley, New York, 1965)

    MATH  Google Scholar 

  83. Y.S. Sherif, M.L. Smith, Optimal maintenance models for systems subject to failure—a review. Nay. Res. Log. Q. 28, 47–74 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  84. T.J. Aven, U. Jensen, Stochastic Models in Reliability. Series in Applications of Mathematics: Stochastic Modeling and Applied Probability (41) (Springer, New York, 1999)

    Google Scholar 

  85. H.M. Taylor, Optimal replacement under additive damage and other failure models. Naval Res. Logist. Q. 22, 1–18 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  86. T. Nakagawa, On a replacement problem of a cumulative damage model: part 1. J. Oper. Res. Soc. 27(4), 895–900 (1976)

    Article  MATH  Google Scholar 

  87. T. Nakagawa, Continuous and discrete age replacement policies. J. Oper. Res. Soc. 36(2), 147–154 (1985)

    Article  MATH  Google Scholar 

  88. R.M. Feldman, Optimal replacement with semi-Markov shock models. J. Appl. Prob. 13, 108–117 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  89. R.M. Feldman, Optimal replacement for systems governed by Markov additive shock processes. Ann. Probab. 5, 413–429 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  90. R.M. Feldman, Optimal replacement with semi-Markov shock models using discounted costs. Math. Oper. Res. 2, 78–90 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  91. D. Zuckerman, Replacement models under additive damage. Naval Res. Logist. Q. 24(1), 549–558 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  92. M.A. Wortman, G.-A. Klutke, H. Ayhan, A maintenance strategy for systems subjected to deterioration governed by random shocks. IEEE Trans. Reliab. 43(3), 439–445 (1994)

    Article  Google Scholar 

  93. Y. Yang, G.-A. Klutke, Improved inspections schemes for deteriorating equipment. Probab. Eng. Inf. Sci. 14, 445–460 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  94. L. Takacs, Stochastic Processes (Wiley, New York, 1960)

    MATH  Google Scholar 

  95. J. Riascos-Ochoa, M. Sánchez-Silva, R. Akhavan-Tabatabaei, Reliability analysis of shock-based deterioration using phase-type distributions. Probab. Eng. Mech. 38, 88–101 (2014)

    Article  Google Scholar 

  96. J. Ghosh, J. Padgett, M. Sánchez-Silva, Seismic damage accumulation of highway bridges in earthquake prone regions. Earthquake Spectra 31(1), 115–135 (2015)

    Article  Google Scholar 

  97. M. Junca, M. Sánchez-Silva, Optimal maintenance policy for permanently monitored infrastructure subjected to extreme events. Probab. Eng. Mech. 33(1), 1–8 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Sánchez-Silva .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sánchez-Silva, M., Klutke, GA. (2016). Degradation: Data Analysis and Analytical Modeling. In: Reliability and Life-Cycle Analysis of Deteriorating Systems. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20946-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20946-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20945-6

  • Online ISBN: 978-3-319-20946-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics